| /* |
| * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/mmzone.h> |
| #include <linux/bootmem.h> |
| #include <linux/module.h> |
| #include <linux/node.h> |
| #include <linux/cpu.h> |
| #include <linux/ioport.h> |
| #include <linux/irq.h> |
| #include <linux/kexec.h> |
| #include <linux/pci.h> |
| #include <linux/initrd.h> |
| #include <linux/io.h> |
| #include <linux/highmem.h> |
| #include <linux/smp.h> |
| #include <linux/timex.h> |
| #include <asm/setup.h> |
| #include <asm/sections.h> |
| #include <asm/cacheflush.h> |
| #include <asm/pgalloc.h> |
| #include <asm/mmu_context.h> |
| #include <hv/hypervisor.h> |
| #include <arch/interrupts.h> |
| |
| /* <linux/smp.h> doesn't provide this definition. */ |
| #ifndef CONFIG_SMP |
| #define setup_max_cpus 1 |
| #endif |
| |
| static inline int ABS(int x) { return x >= 0 ? x : -x; } |
| |
| /* Chip information */ |
| char chip_model[64] __write_once; |
| |
| struct pglist_data node_data[MAX_NUMNODES] __read_mostly; |
| EXPORT_SYMBOL(node_data); |
| |
| /* We only create bootmem data on node 0. */ |
| static bootmem_data_t __initdata node0_bdata; |
| |
| /* Information on the NUMA nodes that we compute early */ |
| unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES]; |
| unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES]; |
| unsigned long __initdata node_memmap_pfn[MAX_NUMNODES]; |
| unsigned long __initdata node_percpu_pfn[MAX_NUMNODES]; |
| unsigned long __initdata node_free_pfn[MAX_NUMNODES]; |
| |
| static unsigned long __initdata node_percpu[MAX_NUMNODES]; |
| |
| #ifdef CONFIG_HIGHMEM |
| /* Page frame index of end of lowmem on each controller. */ |
| unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES]; |
| |
| /* Number of pages that can be mapped into lowmem. */ |
| static unsigned long __initdata mappable_physpages; |
| #endif |
| |
| /* Data on which physical memory controller corresponds to which NUMA node */ |
| int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 }; |
| |
| #ifdef CONFIG_HIGHMEM |
| /* Map information from VAs to PAs */ |
| unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)] |
| __write_once __attribute__((aligned(L2_CACHE_BYTES))); |
| EXPORT_SYMBOL(pbase_map); |
| |
| /* Map information from PAs to VAs */ |
| void *vbase_map[NR_PA_HIGHBIT_VALUES] |
| __write_once __attribute__((aligned(L2_CACHE_BYTES))); |
| EXPORT_SYMBOL(vbase_map); |
| #endif |
| |
| /* Node number as a function of the high PA bits */ |
| int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once; |
| EXPORT_SYMBOL(highbits_to_node); |
| |
| static unsigned int __initdata maxmem_pfn = -1U; |
| static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = { |
| [0 ... MAX_NUMNODES-1] = -1U |
| }; |
| static nodemask_t __initdata isolnodes; |
| |
| #ifdef CONFIG_PCI |
| enum { DEFAULT_PCI_RESERVE_MB = 64 }; |
| static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB; |
| unsigned long __initdata pci_reserve_start_pfn = -1U; |
| unsigned long __initdata pci_reserve_end_pfn = -1U; |
| #endif |
| |
| static int __init setup_maxmem(char *str) |
| { |
| long maxmem_mb; |
| if (str == NULL || strict_strtol(str, 0, &maxmem_mb) != 0 || |
| maxmem_mb == 0) |
| return -EINVAL; |
| |
| maxmem_pfn = (maxmem_mb >> (HPAGE_SHIFT - 20)) << |
| (HPAGE_SHIFT - PAGE_SHIFT); |
| pr_info("Forcing RAM used to no more than %dMB\n", |
| maxmem_pfn >> (20 - PAGE_SHIFT)); |
| return 0; |
| } |
| early_param("maxmem", setup_maxmem); |
| |
| static int __init setup_maxnodemem(char *str) |
| { |
| char *endp; |
| long maxnodemem_mb, node; |
| |
| node = str ? simple_strtoul(str, &endp, 0) : INT_MAX; |
| if (node >= MAX_NUMNODES || *endp != ':' || |
| strict_strtol(endp+1, 0, &maxnodemem_mb) != 0) |
| return -EINVAL; |
| |
| maxnodemem_pfn[node] = (maxnodemem_mb >> (HPAGE_SHIFT - 20)) << |
| (HPAGE_SHIFT - PAGE_SHIFT); |
| pr_info("Forcing RAM used on node %ld to no more than %dMB\n", |
| node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT)); |
| return 0; |
| } |
| early_param("maxnodemem", setup_maxnodemem); |
| |
| static int __init setup_isolnodes(char *str) |
| { |
| char buf[MAX_NUMNODES * 5]; |
| if (str == NULL || nodelist_parse(str, isolnodes) != 0) |
| return -EINVAL; |
| |
| nodelist_scnprintf(buf, sizeof(buf), isolnodes); |
| pr_info("Set isolnodes value to '%s'\n", buf); |
| return 0; |
| } |
| early_param("isolnodes", setup_isolnodes); |
| |
| #ifdef CONFIG_PCI |
| static int __init setup_pci_reserve(char* str) |
| { |
| unsigned long mb; |
| |
| if (str == NULL || strict_strtoul(str, 0, &mb) != 0 || |
| mb > 3 * 1024) |
| return -EINVAL; |
| |
| pci_reserve_mb = mb; |
| pr_info("Reserving %dMB for PCIE root complex mappings\n", |
| pci_reserve_mb); |
| return 0; |
| } |
| early_param("pci_reserve", setup_pci_reserve); |
| #endif |
| |
| #ifndef __tilegx__ |
| /* |
| * vmalloc=size forces the vmalloc area to be exactly 'size' bytes. |
| * This can be used to increase (or decrease) the vmalloc area. |
| */ |
| static int __init parse_vmalloc(char *arg) |
| { |
| if (!arg) |
| return -EINVAL; |
| |
| VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK; |
| |
| /* See validate_va() for more on this test. */ |
| if ((long)_VMALLOC_START >= 0) |
| early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n", |
| VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL); |
| |
| return 0; |
| } |
| early_param("vmalloc", parse_vmalloc); |
| #endif |
| |
| #ifdef CONFIG_HIGHMEM |
| /* |
| * Determine for each controller where its lowmem is mapped and how much of |
| * it is mapped there. On controller zero, the first few megabytes are |
| * already mapped in as code at MEM_SV_INTRPT, so in principle we could |
| * start our data mappings higher up, but for now we don't bother, to avoid |
| * additional confusion. |
| * |
| * One question is whether, on systems with more than 768 Mb and |
| * controllers of different sizes, to map in a proportionate amount of |
| * each one, or to try to map the same amount from each controller. |
| * (E.g. if we have three controllers with 256MB, 1GB, and 256MB |
| * respectively, do we map 256MB from each, or do we map 128 MB, 512 |
| * MB, and 128 MB respectively?) For now we use a proportionate |
| * solution like the latter. |
| * |
| * The VA/PA mapping demands that we align our decisions at 16 MB |
| * boundaries so that we can rapidly convert VA to PA. |
| */ |
| static void *__init setup_pa_va_mapping(void) |
| { |
| unsigned long curr_pages = 0; |
| unsigned long vaddr = PAGE_OFFSET; |
| nodemask_t highonlynodes = isolnodes; |
| int i, j; |
| |
| memset(pbase_map, -1, sizeof(pbase_map)); |
| memset(vbase_map, -1, sizeof(vbase_map)); |
| |
| /* Node zero cannot be isolated for LOWMEM purposes. */ |
| node_clear(0, highonlynodes); |
| |
| /* Count up the number of pages on non-highonlynodes controllers. */ |
| mappable_physpages = 0; |
| for_each_online_node(i) { |
| if (!node_isset(i, highonlynodes)) |
| mappable_physpages += |
| node_end_pfn[i] - node_start_pfn[i]; |
| } |
| |
| for_each_online_node(i) { |
| unsigned long start = node_start_pfn[i]; |
| unsigned long end = node_end_pfn[i]; |
| unsigned long size = end - start; |
| unsigned long vaddr_end; |
| |
| if (node_isset(i, highonlynodes)) { |
| /* Mark this controller as having no lowmem. */ |
| node_lowmem_end_pfn[i] = start; |
| continue; |
| } |
| |
| curr_pages += size; |
| if (mappable_physpages > MAXMEM_PFN) { |
| vaddr_end = PAGE_OFFSET + |
| (((u64)curr_pages * MAXMEM_PFN / |
| mappable_physpages) |
| << PAGE_SHIFT); |
| } else { |
| vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT); |
| } |
| for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) { |
| unsigned long this_pfn = |
| start + (j << HUGETLB_PAGE_ORDER); |
| pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn; |
| if (vbase_map[__pfn_to_highbits(this_pfn)] == |
| (void *)-1) |
| vbase_map[__pfn_to_highbits(this_pfn)] = |
| (void *)(vaddr & HPAGE_MASK); |
| } |
| node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER); |
| BUG_ON(node_lowmem_end_pfn[i] > end); |
| } |
| |
| /* Return highest address of any mapped memory. */ |
| return (void *)vaddr; |
| } |
| #endif /* CONFIG_HIGHMEM */ |
| |
| /* |
| * Register our most important memory mappings with the debug stub. |
| * |
| * This is up to 4 mappings for lowmem, one mapping per memory |
| * controller, plus one for our text segment. |
| */ |
| static void __cpuinit store_permanent_mappings(void) |
| { |
| int i; |
| |
| for_each_online_node(i) { |
| HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT; |
| #ifdef CONFIG_HIGHMEM |
| HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i]; |
| #else |
| HV_PhysAddr high_mapped_pa = node_end_pfn[i]; |
| #endif |
| |
| unsigned long pages = high_mapped_pa - node_start_pfn[i]; |
| HV_VirtAddr addr = (HV_VirtAddr) __va(pa); |
| hv_store_mapping(addr, pages << PAGE_SHIFT, pa); |
| } |
| |
| hv_store_mapping((HV_VirtAddr)_stext, |
| (uint32_t)(_einittext - _stext), 0); |
| } |
| |
| /* |
| * Use hv_inquire_physical() to populate node_{start,end}_pfn[] |
| * and node_online_map, doing suitable sanity-checking. |
| * Also set min_low_pfn, max_low_pfn, and max_pfn. |
| */ |
| static void __init setup_memory(void) |
| { |
| int i, j; |
| int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 }; |
| #ifdef CONFIG_HIGHMEM |
| long highmem_pages; |
| #endif |
| #ifndef __tilegx__ |
| int cap; |
| #endif |
| #if defined(CONFIG_HIGHMEM) || defined(__tilegx__) |
| long lowmem_pages; |
| #endif |
| |
| /* We are using a char to hold the cpu_2_node[] mapping */ |
| BUILD_BUG_ON(MAX_NUMNODES > 127); |
| |
| /* Discover the ranges of memory available to us */ |
| for (i = 0; ; ++i) { |
| unsigned long start, size, end, highbits; |
| HV_PhysAddrRange range = hv_inquire_physical(i); |
| if (range.size == 0) |
| break; |
| #ifdef CONFIG_FLATMEM |
| if (i > 0) { |
| pr_err("Can't use discontiguous PAs: %#llx..%#llx\n", |
| range.size, range.start + range.size); |
| continue; |
| } |
| #endif |
| #ifndef __tilegx__ |
| if ((unsigned long)range.start) { |
| pr_err("Range not at 4GB multiple: %#llx..%#llx\n", |
| range.start, range.start + range.size); |
| continue; |
| } |
| #endif |
| if ((range.start & (HPAGE_SIZE-1)) != 0 || |
| (range.size & (HPAGE_SIZE-1)) != 0) { |
| unsigned long long start_pa = range.start; |
| unsigned long long orig_size = range.size; |
| range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK; |
| range.size -= (range.start - start_pa); |
| range.size &= HPAGE_MASK; |
| pr_err("Range not hugepage-aligned: %#llx..%#llx:" |
| " now %#llx-%#llx\n", |
| start_pa, start_pa + orig_size, |
| range.start, range.start + range.size); |
| } |
| highbits = __pa_to_highbits(range.start); |
| if (highbits >= NR_PA_HIGHBIT_VALUES) { |
| pr_err("PA high bits too high: %#llx..%#llx\n", |
| range.start, range.start + range.size); |
| continue; |
| } |
| if (highbits_seen[highbits]) { |
| pr_err("Range overlaps in high bits: %#llx..%#llx\n", |
| range.start, range.start + range.size); |
| continue; |
| } |
| highbits_seen[highbits] = 1; |
| if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) { |
| int max_size = maxnodemem_pfn[i]; |
| if (max_size > 0) { |
| pr_err("Maxnodemem reduced node %d to" |
| " %d pages\n", i, max_size); |
| range.size = PFN_PHYS(max_size); |
| } else { |
| pr_err("Maxnodemem disabled node %d\n", i); |
| continue; |
| } |
| } |
| if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) { |
| int max_size = maxmem_pfn - num_physpages; |
| if (max_size > 0) { |
| pr_err("Maxmem reduced node %d to %d pages\n", |
| i, max_size); |
| range.size = PFN_PHYS(max_size); |
| } else { |
| pr_err("Maxmem disabled node %d\n", i); |
| continue; |
| } |
| } |
| if (i >= MAX_NUMNODES) { |
| pr_err("Too many PA nodes (#%d): %#llx...%#llx\n", |
| i, range.size, range.size + range.start); |
| continue; |
| } |
| |
| start = range.start >> PAGE_SHIFT; |
| size = range.size >> PAGE_SHIFT; |
| end = start + size; |
| |
| #ifndef __tilegx__ |
| if (((HV_PhysAddr)end << PAGE_SHIFT) != |
| (range.start + range.size)) { |
| pr_err("PAs too high to represent: %#llx..%#llx\n", |
| range.start, range.start + range.size); |
| continue; |
| } |
| #endif |
| #ifdef CONFIG_PCI |
| /* |
| * Blocks that overlap the pci reserved region must |
| * have enough space to hold the maximum percpu data |
| * region at the top of the range. If there isn't |
| * enough space above the reserved region, just |
| * truncate the node. |
| */ |
| if (start <= pci_reserve_start_pfn && |
| end > pci_reserve_start_pfn) { |
| unsigned int per_cpu_size = |
| __per_cpu_end - __per_cpu_start; |
| unsigned int percpu_pages = |
| NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT); |
| if (end < pci_reserve_end_pfn + percpu_pages) { |
| end = pci_reserve_start_pfn; |
| pr_err("PCI mapping region reduced node %d to" |
| " %ld pages\n", i, end - start); |
| } |
| } |
| #endif |
| |
| for (j = __pfn_to_highbits(start); |
| j <= __pfn_to_highbits(end - 1); j++) |
| highbits_to_node[j] = i; |
| |
| node_start_pfn[i] = start; |
| node_end_pfn[i] = end; |
| node_controller[i] = range.controller; |
| num_physpages += size; |
| max_pfn = end; |
| |
| /* Mark node as online */ |
| node_set(i, node_online_map); |
| node_set(i, node_possible_map); |
| } |
| |
| #ifndef __tilegx__ |
| /* |
| * For 4KB pages, mem_map "struct page" data is 1% of the size |
| * of the physical memory, so can be quite big (640 MB for |
| * four 16G zones). These structures must be mapped in |
| * lowmem, and since we currently cap out at about 768 MB, |
| * it's impractical to try to use this much address space. |
| * For now, arbitrarily cap the amount of physical memory |
| * we're willing to use at 8 million pages (32GB of 4KB pages). |
| */ |
| cap = 8 * 1024 * 1024; /* 8 million pages */ |
| if (num_physpages > cap) { |
| int num_nodes = num_online_nodes(); |
| int cap_each = cap / num_nodes; |
| unsigned long dropped_pages = 0; |
| for (i = 0; i < num_nodes; ++i) { |
| int size = node_end_pfn[i] - node_start_pfn[i]; |
| if (size > cap_each) { |
| dropped_pages += (size - cap_each); |
| node_end_pfn[i] = node_start_pfn[i] + cap_each; |
| } |
| } |
| num_physpages -= dropped_pages; |
| pr_warning("Only using %ldMB memory;" |
| " ignoring %ldMB.\n", |
| num_physpages >> (20 - PAGE_SHIFT), |
| dropped_pages >> (20 - PAGE_SHIFT)); |
| pr_warning("Consider using a larger page size.\n"); |
| } |
| #endif |
| |
| /* Heap starts just above the last loaded address. */ |
| min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET); |
| |
| #ifdef CONFIG_HIGHMEM |
| /* Find where we map lowmem from each controller. */ |
| high_memory = setup_pa_va_mapping(); |
| |
| /* Set max_low_pfn based on what node 0 can directly address. */ |
| max_low_pfn = node_lowmem_end_pfn[0]; |
| |
| lowmem_pages = (mappable_physpages > MAXMEM_PFN) ? |
| MAXMEM_PFN : mappable_physpages; |
| highmem_pages = (long) (num_physpages - lowmem_pages); |
| |
| pr_notice("%ldMB HIGHMEM available.\n", |
| pages_to_mb(highmem_pages > 0 ? highmem_pages : 0)); |
| pr_notice("%ldMB LOWMEM available.\n", |
| pages_to_mb(lowmem_pages)); |
| #else |
| /* Set max_low_pfn based on what node 0 can directly address. */ |
| max_low_pfn = node_end_pfn[0]; |
| |
| #ifndef __tilegx__ |
| if (node_end_pfn[0] > MAXMEM_PFN) { |
| pr_warning("Only using %ldMB LOWMEM.\n", |
| MAXMEM>>20); |
| pr_warning("Use a HIGHMEM enabled kernel.\n"); |
| max_low_pfn = MAXMEM_PFN; |
| max_pfn = MAXMEM_PFN; |
| num_physpages = MAXMEM_PFN; |
| node_end_pfn[0] = MAXMEM_PFN; |
| } else { |
| pr_notice("%ldMB memory available.\n", |
| pages_to_mb(node_end_pfn[0])); |
| } |
| for (i = 1; i < MAX_NUMNODES; ++i) { |
| node_start_pfn[i] = 0; |
| node_end_pfn[i] = 0; |
| } |
| high_memory = __va(node_end_pfn[0]); |
| #else |
| lowmem_pages = 0; |
| for (i = 0; i < MAX_NUMNODES; ++i) { |
| int pages = node_end_pfn[i] - node_start_pfn[i]; |
| lowmem_pages += pages; |
| if (pages) |
| high_memory = pfn_to_kaddr(node_end_pfn[i]); |
| } |
| pr_notice("%ldMB memory available.\n", |
| pages_to_mb(lowmem_pages)); |
| #endif |
| #endif |
| } |
| |
| static void __init setup_bootmem_allocator(void) |
| { |
| unsigned long bootmap_size, first_alloc_pfn, last_alloc_pfn; |
| |
| /* Provide a node 0 bdata. */ |
| NODE_DATA(0)->bdata = &node0_bdata; |
| |
| #ifdef CONFIG_PCI |
| /* Don't let boot memory alias the PCI region. */ |
| last_alloc_pfn = min(max_low_pfn, pci_reserve_start_pfn); |
| #else |
| last_alloc_pfn = max_low_pfn; |
| #endif |
| |
| /* |
| * Initialize the boot-time allocator (with low memory only): |
| * The first argument says where to put the bitmap, and the |
| * second says where the end of allocatable memory is. |
| */ |
| bootmap_size = init_bootmem(min_low_pfn, last_alloc_pfn); |
| |
| /* |
| * Let the bootmem allocator use all the space we've given it |
| * except for its own bitmap. |
| */ |
| first_alloc_pfn = min_low_pfn + PFN_UP(bootmap_size); |
| if (first_alloc_pfn >= last_alloc_pfn) |
| early_panic("Not enough memory on controller 0 for bootmem\n"); |
| |
| free_bootmem(PFN_PHYS(first_alloc_pfn), |
| PFN_PHYS(last_alloc_pfn - first_alloc_pfn)); |
| |
| #ifdef CONFIG_KEXEC |
| if (crashk_res.start != crashk_res.end) |
| reserve_bootmem(crashk_res.start, resource_size(&crashk_res), 0); |
| #endif |
| } |
| |
| void *__init alloc_remap(int nid, unsigned long size) |
| { |
| int pages = node_end_pfn[nid] - node_start_pfn[nid]; |
| void *map = pfn_to_kaddr(node_memmap_pfn[nid]); |
| BUG_ON(size != pages * sizeof(struct page)); |
| memset(map, 0, size); |
| return map; |
| } |
| |
| static int __init percpu_size(void) |
| { |
| int size = __per_cpu_end - __per_cpu_start; |
| size += PERCPU_MODULE_RESERVE; |
| size += PERCPU_DYNAMIC_EARLY_SIZE; |
| if (size < PCPU_MIN_UNIT_SIZE) |
| size = PCPU_MIN_UNIT_SIZE; |
| size = roundup(size, PAGE_SIZE); |
| |
| /* In several places we assume the per-cpu data fits on a huge page. */ |
| BUG_ON(kdata_huge && size > HPAGE_SIZE); |
| return size; |
| } |
| |
| static inline unsigned long alloc_bootmem_pfn(int size, unsigned long goal) |
| { |
| void *kva = __alloc_bootmem(size, PAGE_SIZE, goal); |
| unsigned long pfn = kaddr_to_pfn(kva); |
| BUG_ON(goal && PFN_PHYS(pfn) != goal); |
| return pfn; |
| } |
| |
| static void __init zone_sizes_init(void) |
| { |
| unsigned long zones_size[MAX_NR_ZONES] = { 0 }; |
| int size = percpu_size(); |
| int num_cpus = smp_height * smp_width; |
| int i; |
| |
| for (i = 0; i < num_cpus; ++i) |
| node_percpu[cpu_to_node(i)] += size; |
| |
| for_each_online_node(i) { |
| unsigned long start = node_start_pfn[i]; |
| unsigned long end = node_end_pfn[i]; |
| #ifdef CONFIG_HIGHMEM |
| unsigned long lowmem_end = node_lowmem_end_pfn[i]; |
| #else |
| unsigned long lowmem_end = end; |
| #endif |
| int memmap_size = (end - start) * sizeof(struct page); |
| node_free_pfn[i] = start; |
| |
| /* |
| * Set aside pages for per-cpu data and the mem_map array. |
| * |
| * Since the per-cpu data requires special homecaching, |
| * if we are in kdata_huge mode, we put it at the end of |
| * the lowmem region. If we're not in kdata_huge mode, |
| * we take the per-cpu pages from the bottom of the |
| * controller, since that avoids fragmenting a huge page |
| * that users might want. We always take the memmap |
| * from the bottom of the controller, since with |
| * kdata_huge that lets it be under a huge TLB entry. |
| * |
| * If the user has requested isolnodes for a controller, |
| * though, there'll be no lowmem, so we just alloc_bootmem |
| * the memmap. There will be no percpu memory either. |
| */ |
| if (__pfn_to_highbits(start) == 0) { |
| /* In low PAs, allocate via bootmem. */ |
| unsigned long goal = 0; |
| node_memmap_pfn[i] = |
| alloc_bootmem_pfn(memmap_size, goal); |
| if (kdata_huge) |
| goal = PFN_PHYS(lowmem_end) - node_percpu[i]; |
| if (node_percpu[i]) |
| node_percpu_pfn[i] = |
| alloc_bootmem_pfn(node_percpu[i], goal); |
| } else if (cpu_isset(i, isolnodes)) { |
| node_memmap_pfn[i] = alloc_bootmem_pfn(memmap_size, 0); |
| BUG_ON(node_percpu[i] != 0); |
| } else { |
| /* In high PAs, just reserve some pages. */ |
| node_memmap_pfn[i] = node_free_pfn[i]; |
| node_free_pfn[i] += PFN_UP(memmap_size); |
| if (!kdata_huge) { |
| node_percpu_pfn[i] = node_free_pfn[i]; |
| node_free_pfn[i] += PFN_UP(node_percpu[i]); |
| } else { |
| node_percpu_pfn[i] = |
| lowmem_end - PFN_UP(node_percpu[i]); |
| } |
| } |
| |
| #ifdef CONFIG_HIGHMEM |
| if (start > lowmem_end) { |
| zones_size[ZONE_NORMAL] = 0; |
| zones_size[ZONE_HIGHMEM] = end - start; |
| } else { |
| zones_size[ZONE_NORMAL] = lowmem_end - start; |
| zones_size[ZONE_HIGHMEM] = end - lowmem_end; |
| } |
| #else |
| zones_size[ZONE_NORMAL] = end - start; |
| #endif |
| |
| /* |
| * Everyone shares node 0's bootmem allocator, but |
| * we use alloc_remap(), above, to put the actual |
| * struct page array on the individual controllers, |
| * which is most of the data that we actually care about. |
| * We can't place bootmem allocators on the other |
| * controllers since the bootmem allocator can only |
| * operate on 32-bit physical addresses. |
| */ |
| NODE_DATA(i)->bdata = NODE_DATA(0)->bdata; |
| |
| free_area_init_node(i, zones_size, start, NULL); |
| printk(KERN_DEBUG " Normal zone: %ld per-cpu pages\n", |
| PFN_UP(node_percpu[i])); |
| |
| /* Track the type of memory on each node */ |
| if (zones_size[ZONE_NORMAL]) |
| node_set_state(i, N_NORMAL_MEMORY); |
| #ifdef CONFIG_HIGHMEM |
| if (end != start) |
| node_set_state(i, N_HIGH_MEMORY); |
| #endif |
| |
| node_set_online(i); |
| } |
| } |
| |
| #ifdef CONFIG_NUMA |
| |
| /* which logical CPUs are on which nodes */ |
| struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once; |
| EXPORT_SYMBOL(node_2_cpu_mask); |
| |
| /* which node each logical CPU is on */ |
| char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES))); |
| EXPORT_SYMBOL(cpu_2_node); |
| |
| /* Return cpu_to_node() except for cpus not yet assigned, which return -1 */ |
| static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus) |
| { |
| if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus)) |
| return -1; |
| else |
| return cpu_to_node(cpu); |
| } |
| |
| /* Return number of immediately-adjacent tiles sharing the same NUMA node. */ |
| static int __init node_neighbors(int node, int cpu, |
| struct cpumask *unbound_cpus) |
| { |
| int neighbors = 0; |
| int w = smp_width; |
| int h = smp_height; |
| int x = cpu % w; |
| int y = cpu / w; |
| if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node) |
| ++neighbors; |
| if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node) |
| ++neighbors; |
| if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node) |
| ++neighbors; |
| if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node) |
| ++neighbors; |
| return neighbors; |
| } |
| |
| static void __init setup_numa_mapping(void) |
| { |
| int distance[MAX_NUMNODES][NR_CPUS]; |
| HV_Coord coord; |
| int cpu, node, cpus, i, x, y; |
| int num_nodes = num_online_nodes(); |
| struct cpumask unbound_cpus; |
| nodemask_t default_nodes; |
| |
| cpumask_clear(&unbound_cpus); |
| |
| /* Get set of nodes we will use for defaults */ |
| nodes_andnot(default_nodes, node_online_map, isolnodes); |
| if (nodes_empty(default_nodes)) { |
| BUG_ON(!node_isset(0, node_online_map)); |
| pr_err("Forcing NUMA node zero available as a default node\n"); |
| node_set(0, default_nodes); |
| } |
| |
| /* Populate the distance[] array */ |
| memset(distance, -1, sizeof(distance)); |
| cpu = 0; |
| for (coord.y = 0; coord.y < smp_height; ++coord.y) { |
| for (coord.x = 0; coord.x < smp_width; |
| ++coord.x, ++cpu) { |
| BUG_ON(cpu >= nr_cpu_ids); |
| if (!cpu_possible(cpu)) { |
| cpu_2_node[cpu] = -1; |
| continue; |
| } |
| for_each_node_mask(node, default_nodes) { |
| HV_MemoryControllerInfo info = |
| hv_inquire_memory_controller( |
| coord, node_controller[node]); |
| distance[node][cpu] = |
| ABS(info.coord.x) + ABS(info.coord.y); |
| } |
| cpumask_set_cpu(cpu, &unbound_cpus); |
| } |
| } |
| cpus = cpu; |
| |
| /* |
| * Round-robin through the NUMA nodes until all the cpus are |
| * assigned. We could be more clever here (e.g. create four |
| * sorted linked lists on the same set of cpu nodes, and pull |
| * off them in round-robin sequence, removing from all four |
| * lists each time) but given the relatively small numbers |
| * involved, O(n^2) seem OK for a one-time cost. |
| */ |
| node = first_node(default_nodes); |
| while (!cpumask_empty(&unbound_cpus)) { |
| int best_cpu = -1; |
| int best_distance = INT_MAX; |
| for (cpu = 0; cpu < cpus; ++cpu) { |
| if (cpumask_test_cpu(cpu, &unbound_cpus)) { |
| /* |
| * Compute metric, which is how much |
| * closer the cpu is to this memory |
| * controller than the others, shifted |
| * up, and then the number of |
| * neighbors already in the node as an |
| * epsilon adjustment to try to keep |
| * the nodes compact. |
| */ |
| int d = distance[node][cpu] * num_nodes; |
| for_each_node_mask(i, default_nodes) { |
| if (i != node) |
| d -= distance[i][cpu]; |
| } |
| d *= 8; /* allow space for epsilon */ |
| d -= node_neighbors(node, cpu, &unbound_cpus); |
| if (d < best_distance) { |
| best_cpu = cpu; |
| best_distance = d; |
| } |
| } |
| } |
| BUG_ON(best_cpu < 0); |
| cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]); |
| cpu_2_node[best_cpu] = node; |
| cpumask_clear_cpu(best_cpu, &unbound_cpus); |
| node = next_node(node, default_nodes); |
| if (node == MAX_NUMNODES) |
| node = first_node(default_nodes); |
| } |
| |
| /* Print out node assignments and set defaults for disabled cpus */ |
| cpu = 0; |
| for (y = 0; y < smp_height; ++y) { |
| printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y); |
| for (x = 0; x < smp_width; ++x, ++cpu) { |
| if (cpu_to_node(cpu) < 0) { |
| pr_cont(" -"); |
| cpu_2_node[cpu] = first_node(default_nodes); |
| } else { |
| pr_cont(" %d", cpu_to_node(cpu)); |
| } |
| } |
| pr_cont("\n"); |
| } |
| } |
| |
| static struct cpu cpu_devices[NR_CPUS]; |
| |
| static int __init topology_init(void) |
| { |
| int i; |
| |
| for_each_online_node(i) |
| register_one_node(i); |
| |
| for (i = 0; i < smp_height * smp_width; ++i) |
| register_cpu(&cpu_devices[i], i); |
| |
| return 0; |
| } |
| |
| subsys_initcall(topology_init); |
| |
| #else /* !CONFIG_NUMA */ |
| |
| #define setup_numa_mapping() do { } while (0) |
| |
| #endif /* CONFIG_NUMA */ |
| |
| /** |
| * setup_cpu() - Do all necessary per-cpu, tile-specific initialization. |
| * @boot: Is this the boot cpu? |
| * |
| * Called from setup_arch() on the boot cpu, or online_secondary(). |
| */ |
| void __cpuinit setup_cpu(int boot) |
| { |
| /* The boot cpu sets up its permanent mappings much earlier. */ |
| if (!boot) |
| store_permanent_mappings(); |
| |
| /* Allow asynchronous TLB interrupts. */ |
| #if CHIP_HAS_TILE_DMA() |
| arch_local_irq_unmask(INT_DMATLB_MISS); |
| arch_local_irq_unmask(INT_DMATLB_ACCESS); |
| #endif |
| #if CHIP_HAS_SN_PROC() |
| arch_local_irq_unmask(INT_SNITLB_MISS); |
| #endif |
| #ifdef __tilegx__ |
| arch_local_irq_unmask(INT_SINGLE_STEP_K); |
| #endif |
| |
| /* |
| * Allow user access to many generic SPRs, like the cycle |
| * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc. |
| */ |
| __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1); |
| |
| #if CHIP_HAS_SN() |
| /* Static network is not restricted. */ |
| __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1); |
| #endif |
| #if CHIP_HAS_SN_PROC() |
| __insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1); |
| __insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1); |
| #endif |
| |
| /* |
| * Set the MPL for interrupt control 0 & 1 to the corresponding |
| * values. This includes access to the SYSTEM_SAVE and EX_CONTEXT |
| * SPRs, as well as the interrupt mask. |
| */ |
| __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1); |
| __insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1); |
| |
| /* Initialize IRQ support for this cpu. */ |
| setup_irq_regs(); |
| |
| #ifdef CONFIG_HARDWALL |
| /* Reset the network state on this cpu. */ |
| reset_network_state(); |
| #endif |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| |
| static int __initdata set_initramfs_file; |
| static char __initdata initramfs_file[128] = "initramfs.cpio.gz"; |
| |
| static int __init setup_initramfs_file(char *str) |
| { |
| if (str == NULL) |
| return -EINVAL; |
| strncpy(initramfs_file, str, sizeof(initramfs_file) - 1); |
| set_initramfs_file = 1; |
| |
| return 0; |
| } |
| early_param("initramfs_file", setup_initramfs_file); |
| |
| /* |
| * We look for an additional "initramfs.cpio.gz" file in the hvfs. |
| * If there is one, we allocate some memory for it and it will be |
| * unpacked to the initramfs after any built-in initramfs_data. |
| */ |
| static void __init load_hv_initrd(void) |
| { |
| HV_FS_StatInfo stat; |
| int fd, rc; |
| void *initrd; |
| |
| fd = hv_fs_findfile((HV_VirtAddr) initramfs_file); |
| if (fd == HV_ENOENT) { |
| if (set_initramfs_file) |
| pr_warning("No such hvfs initramfs file '%s'\n", |
| initramfs_file); |
| return; |
| } |
| BUG_ON(fd < 0); |
| stat = hv_fs_fstat(fd); |
| BUG_ON(stat.size < 0); |
| if (stat.flags & HV_FS_ISDIR) { |
| pr_warning("Ignoring hvfs file '%s': it's a directory.\n", |
| initramfs_file); |
| return; |
| } |
| initrd = alloc_bootmem_pages(stat.size); |
| rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0); |
| if (rc != stat.size) { |
| pr_err("Error reading %d bytes from hvfs file '%s': %d\n", |
| stat.size, initramfs_file, rc); |
| free_initrd_mem((unsigned long) initrd, stat.size); |
| return; |
| } |
| initrd_start = (unsigned long) initrd; |
| initrd_end = initrd_start + stat.size; |
| } |
| |
| void __init free_initrd_mem(unsigned long begin, unsigned long end) |
| { |
| free_bootmem(__pa(begin), end - begin); |
| } |
| |
| #else |
| static inline void load_hv_initrd(void) {} |
| #endif /* CONFIG_BLK_DEV_INITRD */ |
| |
| static void __init validate_hv(void) |
| { |
| /* |
| * It may already be too late, but let's check our built-in |
| * configuration against what the hypervisor is providing. |
| */ |
| unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE); |
| int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL); |
| int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE); |
| HV_ASIDRange asid_range; |
| |
| #ifndef CONFIG_SMP |
| HV_Topology topology = hv_inquire_topology(); |
| BUG_ON(topology.coord.x != 0 || topology.coord.y != 0); |
| if (topology.width != 1 || topology.height != 1) { |
| pr_warning("Warning: booting UP kernel on %dx%d grid;" |
| " will ignore all but first tile.\n", |
| topology.width, topology.height); |
| } |
| #endif |
| |
| if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text) |
| early_panic("Hypervisor glue size %ld is too big!\n", |
| glue_size); |
| if (hv_page_size != PAGE_SIZE) |
| early_panic("Hypervisor page size %#x != our %#lx\n", |
| hv_page_size, PAGE_SIZE); |
| if (hv_hpage_size != HPAGE_SIZE) |
| early_panic("Hypervisor huge page size %#x != our %#lx\n", |
| hv_hpage_size, HPAGE_SIZE); |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Some hypervisor APIs take a pointer to a bitmap array |
| * whose size is at least the number of cpus on the chip. |
| * We use a struct cpumask for this, so it must be big enough. |
| */ |
| if ((smp_height * smp_width) > nr_cpu_ids) |
| early_panic("Hypervisor %d x %d grid too big for Linux" |
| " NR_CPUS %d\n", smp_height, smp_width, |
| nr_cpu_ids); |
| #endif |
| |
| /* |
| * Check that we're using allowed ASIDs, and initialize the |
| * various asid variables to their appropriate initial states. |
| */ |
| asid_range = hv_inquire_asid(0); |
| __get_cpu_var(current_asid) = min_asid = asid_range.start; |
| max_asid = asid_range.start + asid_range.size - 1; |
| |
| if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model, |
| sizeof(chip_model)) < 0) { |
| pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n"); |
| strlcpy(chip_model, "unknown", sizeof(chip_model)); |
| } |
| } |
| |
| static void __init validate_va(void) |
| { |
| #ifndef __tilegx__ /* FIXME: GX: probably some validation relevant here */ |
| /* |
| * Similarly, make sure we're only using allowed VAs. |
| * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT, |
| * and 0 .. KERNEL_HIGH_VADDR. |
| * In addition, make sure we CAN'T use the end of memory, since |
| * we use the last chunk of each pgd for the pgd_list. |
| */ |
| int i, user_kernel_ok = 0; |
| unsigned long max_va = 0; |
| unsigned long list_va = |
| ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT); |
| |
| for (i = 0; ; ++i) { |
| HV_VirtAddrRange range = hv_inquire_virtual(i); |
| if (range.size == 0) |
| break; |
| if (range.start <= MEM_USER_INTRPT && |
| range.start + range.size >= MEM_HV_INTRPT) |
| user_kernel_ok = 1; |
| if (range.start == 0) |
| max_va = range.size; |
| BUG_ON(range.start + range.size > list_va); |
| } |
| if (!user_kernel_ok) |
| early_panic("Hypervisor not configured for user/kernel VAs\n"); |
| if (max_va == 0) |
| early_panic("Hypervisor not configured for low VAs\n"); |
| if (max_va < KERNEL_HIGH_VADDR) |
| early_panic("Hypervisor max VA %#lx smaller than %#lx\n", |
| max_va, KERNEL_HIGH_VADDR); |
| |
| /* Kernel PCs must have their high bit set; see intvec.S. */ |
| if ((long)VMALLOC_START >= 0) |
| early_panic( |
| "Linux VMALLOC region below the 2GB line (%#lx)!\n" |
| "Reconfigure the kernel with fewer NR_HUGE_VMAPS\n" |
| "or smaller VMALLOC_RESERVE.\n", |
| VMALLOC_START); |
| #endif |
| } |
| |
| /* |
| * cpu_lotar_map lists all the cpus that are valid for the supervisor |
| * to cache data on at a page level, i.e. what cpus can be placed in |
| * the LOTAR field of a PTE. It is equivalent to the set of possible |
| * cpus plus any other cpus that are willing to share their cache. |
| * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR). |
| */ |
| struct cpumask __write_once cpu_lotar_map; |
| EXPORT_SYMBOL(cpu_lotar_map); |
| |
| #if CHIP_HAS_CBOX_HOME_MAP() |
| /* |
| * hash_for_home_map lists all the tiles that hash-for-home data |
| * will be cached on. Note that this may includes tiles that are not |
| * valid for this supervisor to use otherwise (e.g. if a hypervisor |
| * device is being shared between multiple supervisors). |
| * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE). |
| */ |
| struct cpumask hash_for_home_map; |
| EXPORT_SYMBOL(hash_for_home_map); |
| #endif |
| |
| /* |
| * cpu_cacheable_map lists all the cpus whose caches the hypervisor can |
| * flush on our behalf. It is set to cpu_possible_mask OR'ed with |
| * hash_for_home_map, and it is what should be passed to |
| * hv_flush_remote() to flush all caches. Note that if there are |
| * dedicated hypervisor driver tiles that have authorized use of their |
| * cache, those tiles will only appear in cpu_lotar_map, NOT in |
| * cpu_cacheable_map, as they are a special case. |
| */ |
| struct cpumask __write_once cpu_cacheable_map; |
| EXPORT_SYMBOL(cpu_cacheable_map); |
| |
| static __initdata struct cpumask disabled_map; |
| |
| static int __init disabled_cpus(char *str) |
| { |
| int boot_cpu = smp_processor_id(); |
| |
| if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0) |
| return -EINVAL; |
| if (cpumask_test_cpu(boot_cpu, &disabled_map)) { |
| pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu); |
| cpumask_clear_cpu(boot_cpu, &disabled_map); |
| } |
| return 0; |
| } |
| |
| early_param("disabled_cpus", disabled_cpus); |
| |
| void __init print_disabled_cpus(void) |
| { |
| if (!cpumask_empty(&disabled_map)) { |
| char buf[100]; |
| cpulist_scnprintf(buf, sizeof(buf), &disabled_map); |
| pr_info("CPUs not available for Linux: %s\n", buf); |
| } |
| } |
| |
| static void __init setup_cpu_maps(void) |
| { |
| struct cpumask hv_disabled_map, cpu_possible_init; |
| int boot_cpu = smp_processor_id(); |
| int cpus, i, rc; |
| |
| /* Learn which cpus are allowed by the hypervisor. */ |
| rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL, |
| (HV_VirtAddr) cpumask_bits(&cpu_possible_init), |
| sizeof(cpu_cacheable_map)); |
| if (rc < 0) |
| early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc); |
| if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init)) |
| early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu); |
| |
| /* Compute the cpus disabled by the hvconfig file. */ |
| cpumask_complement(&hv_disabled_map, &cpu_possible_init); |
| |
| /* Include them with the cpus disabled by "disabled_cpus". */ |
| cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map); |
| |
| /* |
| * Disable every cpu after "setup_max_cpus". But don't mark |
| * as disabled the cpus that are outside of our initial rectangle, |
| * since that turns out to be confusing. |
| */ |
| cpus = 1; /* this cpu */ |
| cpumask_set_cpu(boot_cpu, &disabled_map); /* ignore this cpu */ |
| for (i = 0; cpus < setup_max_cpus; ++i) |
| if (!cpumask_test_cpu(i, &disabled_map)) |
| ++cpus; |
| for (; i < smp_height * smp_width; ++i) |
| cpumask_set_cpu(i, &disabled_map); |
| cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */ |
| for (i = smp_height * smp_width; i < NR_CPUS; ++i) |
| cpumask_clear_cpu(i, &disabled_map); |
| |
| /* |
| * Setup cpu_possible map as every cpu allocated to us, minus |
| * the results of any "disabled_cpus" settings. |
| */ |
| cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map); |
| init_cpu_possible(&cpu_possible_init); |
| |
| /* Learn which cpus are valid for LOTAR caching. */ |
| rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR, |
| (HV_VirtAddr) cpumask_bits(&cpu_lotar_map), |
| sizeof(cpu_lotar_map)); |
| if (rc < 0) { |
| pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n"); |
| cpu_lotar_map = *cpu_possible_mask; |
| } |
| |
| #if CHIP_HAS_CBOX_HOME_MAP() |
| /* Retrieve set of CPUs used for hash-for-home caching */ |
| rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE, |
| (HV_VirtAddr) hash_for_home_map.bits, |
| sizeof(hash_for_home_map)); |
| if (rc < 0) |
| early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc); |
| cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map); |
| #else |
| cpu_cacheable_map = *cpu_possible_mask; |
| #endif |
| } |
| |
| |
| static int __init dataplane(char *str) |
| { |
| pr_warning("WARNING: dataplane support disabled in this kernel\n"); |
| return 0; |
| } |
| |
| early_param("dataplane", dataplane); |
| |
| #ifdef CONFIG_CMDLINE_BOOL |
| static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; |
| #endif |
| |
| void __init setup_arch(char **cmdline_p) |
| { |
| int len; |
| |
| #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE) |
| len = hv_get_command_line((HV_VirtAddr) boot_command_line, |
| COMMAND_LINE_SIZE); |
| if (boot_command_line[0]) |
| pr_warning("WARNING: ignoring dynamic command line \"%s\"\n", |
| boot_command_line); |
| strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); |
| #else |
| char *hv_cmdline; |
| #if defined(CONFIG_CMDLINE_BOOL) |
| if (builtin_cmdline[0]) { |
| int builtin_len = strlcpy(boot_command_line, builtin_cmdline, |
| COMMAND_LINE_SIZE); |
| if (builtin_len < COMMAND_LINE_SIZE-1) |
| boot_command_line[builtin_len++] = ' '; |
| hv_cmdline = &boot_command_line[builtin_len]; |
| len = COMMAND_LINE_SIZE - builtin_len; |
| } else |
| #endif |
| { |
| hv_cmdline = boot_command_line; |
| len = COMMAND_LINE_SIZE; |
| } |
| len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len); |
| if (len < 0 || len > COMMAND_LINE_SIZE) |
| early_panic("hv_get_command_line failed: %d\n", len); |
| #endif |
| |
| *cmdline_p = boot_command_line; |
| |
| /* Set disabled_map and setup_max_cpus very early */ |
| parse_early_param(); |
| |
| /* Make sure the kernel is compatible with the hypervisor. */ |
| validate_hv(); |
| validate_va(); |
| |
| setup_cpu_maps(); |
| |
| |
| #ifdef CONFIG_PCI |
| /* |
| * Initialize the PCI structures. This is done before memory |
| * setup so that we know whether or not a pci_reserve region |
| * is necessary. |
| */ |
| if (tile_pci_init() == 0) |
| pci_reserve_mb = 0; |
| |
| /* PCI systems reserve a region just below 4GB for mapping iomem. */ |
| pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT)); |
| pci_reserve_start_pfn = pci_reserve_end_pfn - |
| (pci_reserve_mb << (20 - PAGE_SHIFT)); |
| #endif |
| |
| init_mm.start_code = (unsigned long) _text; |
| init_mm.end_code = (unsigned long) _etext; |
| init_mm.end_data = (unsigned long) _edata; |
| init_mm.brk = (unsigned long) _end; |
| |
| setup_memory(); |
| store_permanent_mappings(); |
| setup_bootmem_allocator(); |
| |
| /* |
| * NOTE: before this point _nobody_ is allowed to allocate |
| * any memory using the bootmem allocator. |
| */ |
| |
| paging_init(); |
| setup_numa_mapping(); |
| zone_sizes_init(); |
| set_page_homes(); |
| setup_cpu(1); |
| setup_clock(); |
| load_hv_initrd(); |
| } |
| |
| |
| /* |
| * Set up per-cpu memory. |
| */ |
| |
| unsigned long __per_cpu_offset[NR_CPUS] __write_once; |
| EXPORT_SYMBOL(__per_cpu_offset); |
| |
| static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 }; |
| static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 }; |
| |
| /* |
| * As the percpu code allocates pages, we return the pages from the |
| * end of the node for the specified cpu. |
| */ |
| static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) |
| { |
| int nid = cpu_to_node(cpu); |
| unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid]; |
| |
| BUG_ON(size % PAGE_SIZE != 0); |
| pfn_offset[nid] += size / PAGE_SIZE; |
| BUG_ON(node_percpu[nid] < size); |
| node_percpu[nid] -= size; |
| if (percpu_pfn[cpu] == 0) |
| percpu_pfn[cpu] = pfn; |
| return pfn_to_kaddr(pfn); |
| } |
| |
| /* |
| * Pages reserved for percpu memory are not freeable, and in any case we are |
| * on a short path to panic() in setup_per_cpu_area() at this point anyway. |
| */ |
| static void __init pcpu_fc_free(void *ptr, size_t size) |
| { |
| } |
| |
| /* |
| * Set up vmalloc page tables using bootmem for the percpu code. |
| */ |
| static void __init pcpu_fc_populate_pte(unsigned long addr) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| BUG_ON(pgd_addr_invalid(addr)); |
| if (addr < VMALLOC_START || addr >= VMALLOC_END) |
| panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;" |
| " try increasing CONFIG_VMALLOC_RESERVE\n", |
| addr, VMALLOC_START, VMALLOC_END); |
| |
| pgd = swapper_pg_dir + pgd_index(addr); |
| pud = pud_offset(pgd, addr); |
| BUG_ON(!pud_present(*pud)); |
| pmd = pmd_offset(pud, addr); |
| if (pmd_present(*pmd)) { |
| BUG_ON(pmd_huge_page(*pmd)); |
| } else { |
| pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, |
| HV_PAGE_TABLE_ALIGN, 0); |
| pmd_populate_kernel(&init_mm, pmd, pte); |
| } |
| } |
| |
| void __init setup_per_cpu_areas(void) |
| { |
| struct page *pg; |
| unsigned long delta, pfn, lowmem_va; |
| unsigned long size = percpu_size(); |
| char *ptr; |
| int rc, cpu, i; |
| |
| rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc, |
| pcpu_fc_free, pcpu_fc_populate_pte); |
| if (rc < 0) |
| panic("Cannot initialize percpu area (err=%d)", rc); |
| |
| delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; |
| for_each_possible_cpu(cpu) { |
| __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; |
| |
| /* finv the copy out of cache so we can change homecache */ |
| ptr = pcpu_base_addr + pcpu_unit_offsets[cpu]; |
| __finv_buffer(ptr, size); |
| pfn = percpu_pfn[cpu]; |
| |
| /* Rewrite the page tables to cache on that cpu */ |
| pg = pfn_to_page(pfn); |
| for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) { |
| |
| /* Update the vmalloc mapping and page home. */ |
| pte_t *ptep = |
| virt_to_pte(NULL, (unsigned long)ptr + i); |
| pte_t pte = *ptep; |
| BUG_ON(pfn != pte_pfn(pte)); |
| pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3); |
| pte = set_remote_cache_cpu(pte, cpu); |
| set_pte(ptep, pte); |
| |
| /* Update the lowmem mapping for consistency. */ |
| lowmem_va = (unsigned long)pfn_to_kaddr(pfn); |
| ptep = virt_to_pte(NULL, lowmem_va); |
| if (pte_huge(*ptep)) { |
| printk(KERN_DEBUG "early shatter of huge page" |
| " at %#lx\n", lowmem_va); |
| shatter_pmd((pmd_t *)ptep); |
| ptep = virt_to_pte(NULL, lowmem_va); |
| BUG_ON(pte_huge(*ptep)); |
| } |
| BUG_ON(pfn != pte_pfn(*ptep)); |
| set_pte(ptep, pte); |
| } |
| } |
| |
| /* Set our thread pointer appropriately. */ |
| set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]); |
| |
| /* Make sure the finv's have completed. */ |
| mb_incoherent(); |
| |
| /* Flush the TLB so we reference it properly from here on out. */ |
| local_flush_tlb_all(); |
| } |
| |
| static struct resource data_resource = { |
| .name = "Kernel data", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_BUSY | IORESOURCE_MEM |
| }; |
| |
| static struct resource code_resource = { |
| .name = "Kernel code", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_BUSY | IORESOURCE_MEM |
| }; |
| |
| /* |
| * We reserve all resources above 4GB so that PCI won't try to put |
| * mappings above 4GB; the standard allows that for some devices but |
| * the probing code trunates values to 32 bits. |
| */ |
| #ifdef CONFIG_PCI |
| static struct resource* __init |
| insert_non_bus_resource(void) |
| { |
| struct resource *res = |
| kzalloc(sizeof(struct resource), GFP_ATOMIC); |
| res->name = "Non-Bus Physical Address Space"; |
| res->start = (1ULL << 32); |
| res->end = -1LL; |
| res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; |
| if (insert_resource(&iomem_resource, res)) { |
| kfree(res); |
| return NULL; |
| } |
| return res; |
| } |
| #endif |
| |
| static struct resource* __init |
| insert_ram_resource(u64 start_pfn, u64 end_pfn) |
| { |
| struct resource *res = |
| kzalloc(sizeof(struct resource), GFP_ATOMIC); |
| res->name = "System RAM"; |
| res->start = start_pfn << PAGE_SHIFT; |
| res->end = (end_pfn << PAGE_SHIFT) - 1; |
| res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; |
| if (insert_resource(&iomem_resource, res)) { |
| kfree(res); |
| return NULL; |
| } |
| return res; |
| } |
| |
| /* |
| * Request address space for all standard resources |
| * |
| * If the system includes PCI root complex drivers, we need to create |
| * a window just below 4GB where PCI BARs can be mapped. |
| */ |
| static int __init request_standard_resources(void) |
| { |
| int i; |
| enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET }; |
| |
| iomem_resource.end = -1LL; |
| #ifdef CONFIG_PCI |
| insert_non_bus_resource(); |
| #endif |
| |
| for_each_online_node(i) { |
| u64 start_pfn = node_start_pfn[i]; |
| u64 end_pfn = node_end_pfn[i]; |
| |
| #ifdef CONFIG_PCI |
| if (start_pfn <= pci_reserve_start_pfn && |
| end_pfn > pci_reserve_start_pfn) { |
| if (end_pfn > pci_reserve_end_pfn) |
| insert_ram_resource(pci_reserve_end_pfn, |
| end_pfn); |
| end_pfn = pci_reserve_start_pfn; |
| } |
| #endif |
| insert_ram_resource(start_pfn, end_pfn); |
| } |
| |
| code_resource.start = __pa(_text - CODE_DELTA); |
| code_resource.end = __pa(_etext - CODE_DELTA)-1; |
| data_resource.start = __pa(_sdata); |
| data_resource.end = __pa(_end)-1; |
| |
| insert_resource(&iomem_resource, &code_resource); |
| insert_resource(&iomem_resource, &data_resource); |
| |
| #ifdef CONFIG_KEXEC |
| insert_resource(&iomem_resource, &crashk_res); |
| #endif |
| |
| return 0; |
| } |
| |
| subsys_initcall(request_standard_resources); |