| #ifndef _HFI1_SDMA_H |
| #define _HFI1_SDMA_H |
| /* |
| * Copyright(c) 2015, 2016 Intel Corporation. |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * - Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/list.h> |
| #include <asm/byteorder.h> |
| #include <linux/workqueue.h> |
| #include <linux/rculist.h> |
| |
| #include "hfi.h" |
| #include "verbs.h" |
| #include "sdma_txreq.h" |
| |
| /* Hardware limit */ |
| #define MAX_DESC 64 |
| /* Hardware limit for SDMA packet size */ |
| #define MAX_SDMA_PKT_SIZE ((16 * 1024) - 1) |
| |
| #define SDMA_TXREQ_S_OK 0 |
| #define SDMA_TXREQ_S_SENDERROR 1 |
| #define SDMA_TXREQ_S_ABORTED 2 |
| #define SDMA_TXREQ_S_SHUTDOWN 3 |
| |
| /* flags bits */ |
| #define SDMA_TXREQ_F_URGENT 0x0001 |
| #define SDMA_TXREQ_F_AHG_COPY 0x0002 |
| #define SDMA_TXREQ_F_USE_AHG 0x0004 |
| |
| #define SDMA_MAP_NONE 0 |
| #define SDMA_MAP_SINGLE 1 |
| #define SDMA_MAP_PAGE 2 |
| |
| #define SDMA_AHG_VALUE_MASK 0xffff |
| #define SDMA_AHG_VALUE_SHIFT 0 |
| #define SDMA_AHG_INDEX_MASK 0xf |
| #define SDMA_AHG_INDEX_SHIFT 16 |
| #define SDMA_AHG_FIELD_LEN_MASK 0xf |
| #define SDMA_AHG_FIELD_LEN_SHIFT 20 |
| #define SDMA_AHG_FIELD_START_MASK 0x1f |
| #define SDMA_AHG_FIELD_START_SHIFT 24 |
| #define SDMA_AHG_UPDATE_ENABLE_MASK 0x1 |
| #define SDMA_AHG_UPDATE_ENABLE_SHIFT 31 |
| |
| /* AHG modes */ |
| |
| /* |
| * Be aware the ordering and values |
| * for SDMA_AHG_APPLY_UPDATE[123] |
| * are assumed in generating a skip |
| * count in submit_tx() in sdma.c |
| */ |
| #define SDMA_AHG_NO_AHG 0 |
| #define SDMA_AHG_COPY 1 |
| #define SDMA_AHG_APPLY_UPDATE1 2 |
| #define SDMA_AHG_APPLY_UPDATE2 3 |
| #define SDMA_AHG_APPLY_UPDATE3 4 |
| |
| /* |
| * Bits defined in the send DMA descriptor. |
| */ |
| #define SDMA_DESC0_FIRST_DESC_FLAG BIT_ULL(63) |
| #define SDMA_DESC0_LAST_DESC_FLAG BIT_ULL(62) |
| #define SDMA_DESC0_BYTE_COUNT_SHIFT 48 |
| #define SDMA_DESC0_BYTE_COUNT_WIDTH 14 |
| #define SDMA_DESC0_BYTE_COUNT_MASK \ |
| ((1ULL << SDMA_DESC0_BYTE_COUNT_WIDTH) - 1) |
| #define SDMA_DESC0_BYTE_COUNT_SMASK \ |
| (SDMA_DESC0_BYTE_COUNT_MASK << SDMA_DESC0_BYTE_COUNT_SHIFT) |
| #define SDMA_DESC0_PHY_ADDR_SHIFT 0 |
| #define SDMA_DESC0_PHY_ADDR_WIDTH 48 |
| #define SDMA_DESC0_PHY_ADDR_MASK \ |
| ((1ULL << SDMA_DESC0_PHY_ADDR_WIDTH) - 1) |
| #define SDMA_DESC0_PHY_ADDR_SMASK \ |
| (SDMA_DESC0_PHY_ADDR_MASK << SDMA_DESC0_PHY_ADDR_SHIFT) |
| |
| #define SDMA_DESC1_HEADER_UPDATE1_SHIFT 32 |
| #define SDMA_DESC1_HEADER_UPDATE1_WIDTH 32 |
| #define SDMA_DESC1_HEADER_UPDATE1_MASK \ |
| ((1ULL << SDMA_DESC1_HEADER_UPDATE1_WIDTH) - 1) |
| #define SDMA_DESC1_HEADER_UPDATE1_SMASK \ |
| (SDMA_DESC1_HEADER_UPDATE1_MASK << SDMA_DESC1_HEADER_UPDATE1_SHIFT) |
| #define SDMA_DESC1_HEADER_MODE_SHIFT 13 |
| #define SDMA_DESC1_HEADER_MODE_WIDTH 3 |
| #define SDMA_DESC1_HEADER_MODE_MASK \ |
| ((1ULL << SDMA_DESC1_HEADER_MODE_WIDTH) - 1) |
| #define SDMA_DESC1_HEADER_MODE_SMASK \ |
| (SDMA_DESC1_HEADER_MODE_MASK << SDMA_DESC1_HEADER_MODE_SHIFT) |
| #define SDMA_DESC1_HEADER_INDEX_SHIFT 8 |
| #define SDMA_DESC1_HEADER_INDEX_WIDTH 5 |
| #define SDMA_DESC1_HEADER_INDEX_MASK \ |
| ((1ULL << SDMA_DESC1_HEADER_INDEX_WIDTH) - 1) |
| #define SDMA_DESC1_HEADER_INDEX_SMASK \ |
| (SDMA_DESC1_HEADER_INDEX_MASK << SDMA_DESC1_HEADER_INDEX_SHIFT) |
| #define SDMA_DESC1_HEADER_DWS_SHIFT 4 |
| #define SDMA_DESC1_HEADER_DWS_WIDTH 4 |
| #define SDMA_DESC1_HEADER_DWS_MASK \ |
| ((1ULL << SDMA_DESC1_HEADER_DWS_WIDTH) - 1) |
| #define SDMA_DESC1_HEADER_DWS_SMASK \ |
| (SDMA_DESC1_HEADER_DWS_MASK << SDMA_DESC1_HEADER_DWS_SHIFT) |
| #define SDMA_DESC1_GENERATION_SHIFT 2 |
| #define SDMA_DESC1_GENERATION_WIDTH 2 |
| #define SDMA_DESC1_GENERATION_MASK \ |
| ((1ULL << SDMA_DESC1_GENERATION_WIDTH) - 1) |
| #define SDMA_DESC1_GENERATION_SMASK \ |
| (SDMA_DESC1_GENERATION_MASK << SDMA_DESC1_GENERATION_SHIFT) |
| #define SDMA_DESC1_INT_REQ_FLAG BIT_ULL(1) |
| #define SDMA_DESC1_HEAD_TO_HOST_FLAG BIT_ULL(0) |
| |
| enum sdma_states { |
| sdma_state_s00_hw_down, |
| sdma_state_s10_hw_start_up_halt_wait, |
| sdma_state_s15_hw_start_up_clean_wait, |
| sdma_state_s20_idle, |
| sdma_state_s30_sw_clean_up_wait, |
| sdma_state_s40_hw_clean_up_wait, |
| sdma_state_s50_hw_halt_wait, |
| sdma_state_s60_idle_halt_wait, |
| sdma_state_s80_hw_freeze, |
| sdma_state_s82_freeze_sw_clean, |
| sdma_state_s99_running, |
| }; |
| |
| enum sdma_events { |
| sdma_event_e00_go_hw_down, |
| sdma_event_e10_go_hw_start, |
| sdma_event_e15_hw_halt_done, |
| sdma_event_e25_hw_clean_up_done, |
| sdma_event_e30_go_running, |
| sdma_event_e40_sw_cleaned, |
| sdma_event_e50_hw_cleaned, |
| sdma_event_e60_hw_halted, |
| sdma_event_e70_go_idle, |
| sdma_event_e80_hw_freeze, |
| sdma_event_e81_hw_frozen, |
| sdma_event_e82_hw_unfreeze, |
| sdma_event_e85_link_down, |
| sdma_event_e90_sw_halted, |
| }; |
| |
| struct sdma_set_state_action { |
| unsigned op_enable:1; |
| unsigned op_intenable:1; |
| unsigned op_halt:1; |
| unsigned op_cleanup:1; |
| unsigned go_s99_running_tofalse:1; |
| unsigned go_s99_running_totrue:1; |
| }; |
| |
| struct sdma_state { |
| struct kref kref; |
| struct completion comp; |
| enum sdma_states current_state; |
| unsigned current_op; |
| unsigned go_s99_running; |
| /* debugging/development */ |
| enum sdma_states previous_state; |
| unsigned previous_op; |
| enum sdma_events last_event; |
| }; |
| |
| /** |
| * DOC: sdma exported routines |
| * |
| * These sdma routines fit into three categories: |
| * - The SDMA API for building and submitting packets |
| * to the ring |
| * |
| * - Initialization and tear down routines to buildup |
| * and tear down SDMA |
| * |
| * - ISR entrances to handle interrupts, state changes |
| * and errors |
| */ |
| |
| /** |
| * DOC: sdma PSM/verbs API |
| * |
| * The sdma API is designed to be used by both PSM |
| * and verbs to supply packets to the SDMA ring. |
| * |
| * The usage of the API is as follows: |
| * |
| * Embed a struct iowait in the QP or |
| * PQ. The iowait should be initialized with a |
| * call to iowait_init(). |
| * |
| * The user of the API should create an allocation method |
| * for their version of the txreq. slabs, pre-allocated lists, |
| * and dma pools can be used. Once the user's overload of |
| * the sdma_txreq has been allocated, the sdma_txreq member |
| * must be initialized with sdma_txinit() or sdma_txinit_ahg(). |
| * |
| * The txreq must be declared with the sdma_txreq first. |
| * |
| * The tx request, once initialized, is manipulated with calls to |
| * sdma_txadd_daddr(), sdma_txadd_page(), or sdma_txadd_kvaddr() |
| * for each disjoint memory location. It is the user's responsibility |
| * to understand the packet boundaries and page boundaries to do the |
| * appropriate number of sdma_txadd_* calls.. The user |
| * must be prepared to deal with failures from these routines due to |
| * either memory allocation or dma_mapping failures. |
| * |
| * The mapping specifics for each memory location are recorded |
| * in the tx. Memory locations added with sdma_txadd_page() |
| * and sdma_txadd_kvaddr() are automatically mapped when added |
| * to the tx and nmapped as part of the progress processing in the |
| * SDMA interrupt handling. |
| * |
| * sdma_txadd_daddr() is used to add an dma_addr_t memory to the |
| * tx. An example of a use case would be a pre-allocated |
| * set of headers allocated via dma_pool_alloc() or |
| * dma_alloc_coherent(). For these memory locations, it |
| * is the responsibility of the user to handle that unmapping. |
| * (This would usually be at an unload or job termination.) |
| * |
| * The routine sdma_send_txreq() is used to submit |
| * a tx to the ring after the appropriate number of |
| * sdma_txadd_* have been done. |
| * |
| * If it is desired to send a burst of sdma_txreqs, sdma_send_txlist() |
| * can be used to submit a list of packets. |
| * |
| * The user is free to use the link overhead in the struct sdma_txreq as |
| * long as the tx isn't in flight. |
| * |
| * The extreme degenerate case of the number of descriptors |
| * exceeding the ring size is automatically handled as |
| * memory locations are added. An overflow of the descriptor |
| * array that is part of the sdma_txreq is also automatically |
| * handled. |
| * |
| */ |
| |
| /** |
| * DOC: Infrastructure calls |
| * |
| * sdma_init() is used to initialize data structures and |
| * CSRs for the desired number of SDMA engines. |
| * |
| * sdma_start() is used to kick the SDMA engines initialized |
| * with sdma_init(). Interrupts must be enabled at this |
| * point since aspects of the state machine are interrupt |
| * driven. |
| * |
| * sdma_engine_error() and sdma_engine_interrupt() are |
| * entrances for interrupts. |
| * |
| * sdma_map_init() is for the management of the mapping |
| * table when the number of vls is changed. |
| * |
| */ |
| |
| /* |
| * struct hw_sdma_desc - raw 128 bit SDMA descriptor |
| * |
| * This is the raw descriptor in the SDMA ring |
| */ |
| struct hw_sdma_desc { |
| /* private: don't use directly */ |
| __le64 qw[2]; |
| }; |
| |
| /** |
| * struct sdma_engine - Data pertaining to each SDMA engine. |
| * @dd: a back-pointer to the device data |
| * @ppd: per port back-pointer |
| * @imask: mask for irq manipulation |
| * @idle_mask: mask for determining if an interrupt is due to sdma_idle |
| * |
| * This structure has the state for each sdma_engine. |
| * |
| * Accessing to non public fields are not supported |
| * since the private members are subject to change. |
| */ |
| struct sdma_engine { |
| /* read mostly */ |
| struct hfi1_devdata *dd; |
| struct hfi1_pportdata *ppd; |
| /* private: */ |
| void __iomem *tail_csr; |
| u64 imask; /* clear interrupt mask */ |
| u64 idle_mask; |
| u64 progress_mask; |
| u64 int_mask; |
| /* private: */ |
| volatile __le64 *head_dma; /* DMA'ed by chip */ |
| /* private: */ |
| dma_addr_t head_phys; |
| /* private: */ |
| struct hw_sdma_desc *descq; |
| /* private: */ |
| unsigned descq_full_count; |
| struct sdma_txreq **tx_ring; |
| /* private: */ |
| dma_addr_t descq_phys; |
| /* private */ |
| u32 sdma_mask; |
| /* private */ |
| struct sdma_state state; |
| /* private */ |
| int cpu; |
| /* private: */ |
| u8 sdma_shift; |
| /* private: */ |
| u8 this_idx; /* zero relative engine */ |
| /* protect changes to senddmactrl shadow */ |
| spinlock_t senddmactrl_lock; |
| /* private: */ |
| u64 p_senddmactrl; /* shadow per-engine SendDmaCtrl */ |
| |
| /* read/write using tail_lock */ |
| spinlock_t tail_lock ____cacheline_aligned_in_smp; |
| #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER |
| /* private: */ |
| u64 tail_sn; |
| #endif |
| /* private: */ |
| u32 descq_tail; |
| /* private: */ |
| unsigned long ahg_bits; |
| /* private: */ |
| u16 desc_avail; |
| /* private: */ |
| u16 tx_tail; |
| /* private: */ |
| u16 descq_cnt; |
| |
| /* read/write using head_lock */ |
| /* private: */ |
| seqlock_t head_lock ____cacheline_aligned_in_smp; |
| #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER |
| /* private: */ |
| u64 head_sn; |
| #endif |
| /* private: */ |
| u32 descq_head; |
| /* private: */ |
| u16 tx_head; |
| /* private: */ |
| u64 last_status; |
| /* private */ |
| u64 err_cnt; |
| /* private */ |
| u64 sdma_int_cnt; |
| u64 idle_int_cnt; |
| u64 progress_int_cnt; |
| |
| /* private: */ |
| struct list_head dmawait; |
| |
| /* CONFIG SDMA for now, just blindly duplicate */ |
| /* private: */ |
| struct tasklet_struct sdma_hw_clean_up_task |
| ____cacheline_aligned_in_smp; |
| |
| /* private: */ |
| struct tasklet_struct sdma_sw_clean_up_task |
| ____cacheline_aligned_in_smp; |
| /* private: */ |
| struct work_struct err_halt_worker; |
| /* private */ |
| struct timer_list err_progress_check_timer; |
| u32 progress_check_head; |
| /* private: */ |
| struct work_struct flush_worker; |
| /* protect flush list */ |
| spinlock_t flushlist_lock; |
| /* private: */ |
| struct list_head flushlist; |
| struct cpumask cpu_mask; |
| struct kobject kobj; |
| }; |
| |
| int sdma_init(struct hfi1_devdata *dd, u8 port); |
| void sdma_start(struct hfi1_devdata *dd); |
| void sdma_exit(struct hfi1_devdata *dd); |
| void sdma_all_running(struct hfi1_devdata *dd); |
| void sdma_all_idle(struct hfi1_devdata *dd); |
| void sdma_freeze_notify(struct hfi1_devdata *dd, int go_idle); |
| void sdma_freeze(struct hfi1_devdata *dd); |
| void sdma_unfreeze(struct hfi1_devdata *dd); |
| void sdma_wait(struct hfi1_devdata *dd); |
| |
| /** |
| * sdma_empty() - idle engine test |
| * @engine: sdma engine |
| * |
| * Currently used by verbs as a latency optimization. |
| * |
| * Return: |
| * 1 - empty, 0 - non-empty |
| */ |
| static inline int sdma_empty(struct sdma_engine *sde) |
| { |
| return sde->descq_tail == sde->descq_head; |
| } |
| |
| static inline u16 sdma_descq_freecnt(struct sdma_engine *sde) |
| { |
| return sde->descq_cnt - |
| (sde->descq_tail - |
| ACCESS_ONCE(sde->descq_head)) - 1; |
| } |
| |
| static inline u16 sdma_descq_inprocess(struct sdma_engine *sde) |
| { |
| return sde->descq_cnt - sdma_descq_freecnt(sde); |
| } |
| |
| /* |
| * Either head_lock or tail lock required to see |
| * a steady state. |
| */ |
| static inline int __sdma_running(struct sdma_engine *engine) |
| { |
| return engine->state.current_state == sdma_state_s99_running; |
| } |
| |
| /** |
| * sdma_running() - state suitability test |
| * @engine: sdma engine |
| * |
| * sdma_running probes the internal state to determine if it is suitable |
| * for submitting packets. |
| * |
| * Return: |
| * 1 - ok to submit, 0 - not ok to submit |
| * |
| */ |
| static inline int sdma_running(struct sdma_engine *engine) |
| { |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&engine->tail_lock, flags); |
| ret = __sdma_running(engine); |
| spin_unlock_irqrestore(&engine->tail_lock, flags); |
| return ret; |
| } |
| |
| void _sdma_txreq_ahgadd( |
| struct sdma_txreq *tx, |
| u8 num_ahg, |
| u8 ahg_entry, |
| u32 *ahg, |
| u8 ahg_hlen); |
| |
| /** |
| * sdma_txinit_ahg() - initialize an sdma_txreq struct with AHG |
| * @tx: tx request to initialize |
| * @flags: flags to key last descriptor additions |
| * @tlen: total packet length (pbc + headers + data) |
| * @ahg_entry: ahg entry to use (0 - 31) |
| * @num_ahg: ahg descriptor for first descriptor (0 - 9) |
| * @ahg: array of AHG descriptors (up to 9 entries) |
| * @ahg_hlen: number of bytes from ASIC entry to use |
| * @cb: callback |
| * |
| * The allocation of the sdma_txreq and it enclosing structure is user |
| * dependent. This routine must be called to initialize the user independent |
| * fields. |
| * |
| * The currently supported flags are SDMA_TXREQ_F_URGENT, |
| * SDMA_TXREQ_F_AHG_COPY, and SDMA_TXREQ_F_USE_AHG. |
| * |
| * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the |
| * completion is desired as soon as possible. |
| * |
| * SDMA_TXREQ_F_AHG_COPY causes the header in the first descriptor to be |
| * copied to chip entry. SDMA_TXREQ_F_USE_AHG causes the code to add in |
| * the AHG descriptors into the first 1 to 3 descriptors. |
| * |
| * Completions of submitted requests can be gotten on selected |
| * txreqs by giving a completion routine callback to sdma_txinit() or |
| * sdma_txinit_ahg(). The environment in which the callback runs |
| * can be from an ISR, a tasklet, or a thread, so no sleeping |
| * kernel routines can be used. Aspects of the sdma ring may |
| * be locked so care should be taken with locking. |
| * |
| * The callback pointer can be NULL to avoid any callback for the packet |
| * being submitted. The callback will be provided this tx, a status, and a flag. |
| * |
| * The status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR, |
| * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN. |
| * |
| * The flag, if the is the iowait had been used, indicates the iowait |
| * sdma_busy count has reached zero. |
| * |
| * user data portion of tlen should be precise. The sdma_txadd_* entrances |
| * will pad with a descriptor references 1 - 3 bytes when the number of bytes |
| * specified in tlen have been supplied to the sdma_txreq. |
| * |
| * ahg_hlen is used to determine the number of on-chip entry bytes to |
| * use as the header. This is for cases where the stored header is |
| * larger than the header to be used in a packet. This is typical |
| * for verbs where an RDMA_WRITE_FIRST is larger than the packet in |
| * and RDMA_WRITE_MIDDLE. |
| * |
| */ |
| static inline int sdma_txinit_ahg( |
| struct sdma_txreq *tx, |
| u16 flags, |
| u16 tlen, |
| u8 ahg_entry, |
| u8 num_ahg, |
| u32 *ahg, |
| u8 ahg_hlen, |
| void (*cb)(struct sdma_txreq *, int)) |
| { |
| if (tlen == 0) |
| return -ENODATA; |
| if (tlen > MAX_SDMA_PKT_SIZE) |
| return -EMSGSIZE; |
| tx->desc_limit = ARRAY_SIZE(tx->descs); |
| tx->descp = &tx->descs[0]; |
| INIT_LIST_HEAD(&tx->list); |
| tx->num_desc = 0; |
| tx->flags = flags; |
| tx->complete = cb; |
| tx->coalesce_buf = NULL; |
| tx->wait = NULL; |
| tx->packet_len = tlen; |
| tx->tlen = tx->packet_len; |
| tx->descs[0].qw[0] = SDMA_DESC0_FIRST_DESC_FLAG; |
| tx->descs[0].qw[1] = 0; |
| if (flags & SDMA_TXREQ_F_AHG_COPY) |
| tx->descs[0].qw[1] |= |
| (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK) |
| << SDMA_DESC1_HEADER_INDEX_SHIFT) | |
| (((u64)SDMA_AHG_COPY & SDMA_DESC1_HEADER_MODE_MASK) |
| << SDMA_DESC1_HEADER_MODE_SHIFT); |
| else if (flags & SDMA_TXREQ_F_USE_AHG && num_ahg) |
| _sdma_txreq_ahgadd(tx, num_ahg, ahg_entry, ahg, ahg_hlen); |
| return 0; |
| } |
| |
| /** |
| * sdma_txinit() - initialize an sdma_txreq struct (no AHG) |
| * @tx: tx request to initialize |
| * @flags: flags to key last descriptor additions |
| * @tlen: total packet length (pbc + headers + data) |
| * @cb: callback pointer |
| * |
| * The allocation of the sdma_txreq and it enclosing structure is user |
| * dependent. This routine must be called to initialize the user |
| * independent fields. |
| * |
| * The currently supported flags is SDMA_TXREQ_F_URGENT. |
| * |
| * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the |
| * completion is desired as soon as possible. |
| * |
| * Completions of submitted requests can be gotten on selected |
| * txreqs by giving a completion routine callback to sdma_txinit() or |
| * sdma_txinit_ahg(). The environment in which the callback runs |
| * can be from an ISR, a tasklet, or a thread, so no sleeping |
| * kernel routines can be used. The head size of the sdma ring may |
| * be locked so care should be taken with locking. |
| * |
| * The callback pointer can be NULL to avoid any callback for the packet |
| * being submitted. |
| * |
| * The callback, if non-NULL, will be provided this tx and a status. The |
| * status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR, |
| * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN. |
| * |
| */ |
| static inline int sdma_txinit( |
| struct sdma_txreq *tx, |
| u16 flags, |
| u16 tlen, |
| void (*cb)(struct sdma_txreq *, int)) |
| { |
| return sdma_txinit_ahg(tx, flags, tlen, 0, 0, NULL, 0, cb); |
| } |
| |
| /* helpers - don't use */ |
| static inline int sdma_mapping_type(struct sdma_desc *d) |
| { |
| return (d->qw[1] & SDMA_DESC1_GENERATION_SMASK) |
| >> SDMA_DESC1_GENERATION_SHIFT; |
| } |
| |
| static inline size_t sdma_mapping_len(struct sdma_desc *d) |
| { |
| return (d->qw[0] & SDMA_DESC0_BYTE_COUNT_SMASK) |
| >> SDMA_DESC0_BYTE_COUNT_SHIFT; |
| } |
| |
| static inline dma_addr_t sdma_mapping_addr(struct sdma_desc *d) |
| { |
| return (d->qw[0] & SDMA_DESC0_PHY_ADDR_SMASK) |
| >> SDMA_DESC0_PHY_ADDR_SHIFT; |
| } |
| |
| static inline void make_tx_sdma_desc( |
| struct sdma_txreq *tx, |
| int type, |
| dma_addr_t addr, |
| size_t len) |
| { |
| struct sdma_desc *desc = &tx->descp[tx->num_desc]; |
| |
| if (!tx->num_desc) { |
| /* qw[0] zero; qw[1] first, ahg mode already in from init */ |
| desc->qw[1] |= ((u64)type & SDMA_DESC1_GENERATION_MASK) |
| << SDMA_DESC1_GENERATION_SHIFT; |
| } else { |
| desc->qw[0] = 0; |
| desc->qw[1] = ((u64)type & SDMA_DESC1_GENERATION_MASK) |
| << SDMA_DESC1_GENERATION_SHIFT; |
| } |
| desc->qw[0] |= (((u64)addr & SDMA_DESC0_PHY_ADDR_MASK) |
| << SDMA_DESC0_PHY_ADDR_SHIFT) | |
| (((u64)len & SDMA_DESC0_BYTE_COUNT_MASK) |
| << SDMA_DESC0_BYTE_COUNT_SHIFT); |
| } |
| |
| /* helper to extend txreq */ |
| int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx, |
| int type, void *kvaddr, struct page *page, |
| unsigned long offset, u16 len); |
| int _pad_sdma_tx_descs(struct hfi1_devdata *, struct sdma_txreq *); |
| void __sdma_txclean(struct hfi1_devdata *, struct sdma_txreq *); |
| |
| static inline void sdma_txclean(struct hfi1_devdata *dd, struct sdma_txreq *tx) |
| { |
| if (tx->num_desc) |
| __sdma_txclean(dd, tx); |
| } |
| |
| /* helpers used by public routines */ |
| static inline void _sdma_close_tx(struct hfi1_devdata *dd, |
| struct sdma_txreq *tx) |
| { |
| u16 last_desc = tx->num_desc - 1; |
| |
| tx->descp[last_desc].qw[0] |= SDMA_DESC0_LAST_DESC_FLAG; |
| tx->descp[last_desc].qw[1] |= dd->default_desc1; |
| if (tx->flags & SDMA_TXREQ_F_URGENT) |
| tx->descp[last_desc].qw[1] |= (SDMA_DESC1_HEAD_TO_HOST_FLAG | |
| SDMA_DESC1_INT_REQ_FLAG); |
| } |
| |
| static inline int _sdma_txadd_daddr( |
| struct hfi1_devdata *dd, |
| int type, |
| struct sdma_txreq *tx, |
| dma_addr_t addr, |
| u16 len) |
| { |
| int rval = 0; |
| |
| make_tx_sdma_desc( |
| tx, |
| type, |
| addr, len); |
| WARN_ON(len > tx->tlen); |
| tx->num_desc++; |
| tx->tlen -= len; |
| /* special cases for last */ |
| if (!tx->tlen) { |
| if (tx->packet_len & (sizeof(u32) - 1)) { |
| rval = _pad_sdma_tx_descs(dd, tx); |
| if (rval) |
| return rval; |
| } else { |
| _sdma_close_tx(dd, tx); |
| } |
| } |
| return rval; |
| } |
| |
| /** |
| * sdma_txadd_page() - add a page to the sdma_txreq |
| * @dd: the device to use for mapping |
| * @tx: tx request to which the page is added |
| * @page: page to map |
| * @offset: offset within the page |
| * @len: length in bytes |
| * |
| * This is used to add a page/offset/length descriptor. |
| * |
| * The mapping/unmapping of the page/offset/len is automatically handled. |
| * |
| * Return: |
| * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't |
| * extend/coalesce descriptor array |
| */ |
| static inline int sdma_txadd_page( |
| struct hfi1_devdata *dd, |
| struct sdma_txreq *tx, |
| struct page *page, |
| unsigned long offset, |
| u16 len) |
| { |
| dma_addr_t addr; |
| int rval; |
| |
| if ((unlikely(tx->num_desc == tx->desc_limit))) { |
| rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_PAGE, |
| NULL, page, offset, len); |
| if (rval <= 0) |
| return rval; |
| } |
| |
| addr = dma_map_page( |
| &dd->pcidev->dev, |
| page, |
| offset, |
| len, |
| DMA_TO_DEVICE); |
| |
| if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) { |
| __sdma_txclean(dd, tx); |
| return -ENOSPC; |
| } |
| |
| return _sdma_txadd_daddr( |
| dd, SDMA_MAP_PAGE, tx, addr, len); |
| } |
| |
| /** |
| * sdma_txadd_daddr() - add a dma address to the sdma_txreq |
| * @dd: the device to use for mapping |
| * @tx: sdma_txreq to which the page is added |
| * @addr: dma address mapped by caller |
| * @len: length in bytes |
| * |
| * This is used to add a descriptor for memory that is already dma mapped. |
| * |
| * In this case, there is no unmapping as part of the progress processing for |
| * this memory location. |
| * |
| * Return: |
| * 0 - success, -ENOMEM - couldn't extend descriptor array |
| */ |
| |
| static inline int sdma_txadd_daddr( |
| struct hfi1_devdata *dd, |
| struct sdma_txreq *tx, |
| dma_addr_t addr, |
| u16 len) |
| { |
| int rval; |
| |
| if ((unlikely(tx->num_desc == tx->desc_limit))) { |
| rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_NONE, |
| NULL, NULL, 0, 0); |
| if (rval <= 0) |
| return rval; |
| } |
| |
| return _sdma_txadd_daddr(dd, SDMA_MAP_NONE, tx, addr, len); |
| } |
| |
| /** |
| * sdma_txadd_kvaddr() - add a kernel virtual address to sdma_txreq |
| * @dd: the device to use for mapping |
| * @tx: sdma_txreq to which the page is added |
| * @kvaddr: the kernel virtual address |
| * @len: length in bytes |
| * |
| * This is used to add a descriptor referenced by the indicated kvaddr and |
| * len. |
| * |
| * The mapping/unmapping of the kvaddr and len is automatically handled. |
| * |
| * Return: |
| * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't extend/coalesce |
| * descriptor array |
| */ |
| static inline int sdma_txadd_kvaddr( |
| struct hfi1_devdata *dd, |
| struct sdma_txreq *tx, |
| void *kvaddr, |
| u16 len) |
| { |
| dma_addr_t addr; |
| int rval; |
| |
| if ((unlikely(tx->num_desc == tx->desc_limit))) { |
| rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_SINGLE, |
| kvaddr, NULL, 0, len); |
| if (rval <= 0) |
| return rval; |
| } |
| |
| addr = dma_map_single( |
| &dd->pcidev->dev, |
| kvaddr, |
| len, |
| DMA_TO_DEVICE); |
| |
| if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) { |
| __sdma_txclean(dd, tx); |
| return -ENOSPC; |
| } |
| |
| return _sdma_txadd_daddr( |
| dd, SDMA_MAP_SINGLE, tx, addr, len); |
| } |
| |
| struct iowait; |
| |
| int sdma_send_txreq(struct sdma_engine *sde, |
| struct iowait *wait, |
| struct sdma_txreq *tx, |
| bool pkts_sent); |
| int sdma_send_txlist(struct sdma_engine *sde, |
| struct iowait *wait, |
| struct list_head *tx_list, |
| u32 *count); |
| |
| int sdma_ahg_alloc(struct sdma_engine *sde); |
| void sdma_ahg_free(struct sdma_engine *sde, int ahg_index); |
| |
| /** |
| * sdma_build_ahg - build ahg descriptor |
| * @data |
| * @dwindex |
| * @startbit |
| * @bits |
| * |
| * Build and return a 32 bit descriptor. |
| */ |
| static inline u32 sdma_build_ahg_descriptor( |
| u16 data, |
| u8 dwindex, |
| u8 startbit, |
| u8 bits) |
| { |
| return (u32)(1UL << SDMA_AHG_UPDATE_ENABLE_SHIFT | |
| ((startbit & SDMA_AHG_FIELD_START_MASK) << |
| SDMA_AHG_FIELD_START_SHIFT) | |
| ((bits & SDMA_AHG_FIELD_LEN_MASK) << |
| SDMA_AHG_FIELD_LEN_SHIFT) | |
| ((dwindex & SDMA_AHG_INDEX_MASK) << |
| SDMA_AHG_INDEX_SHIFT) | |
| ((data & SDMA_AHG_VALUE_MASK) << |
| SDMA_AHG_VALUE_SHIFT)); |
| } |
| |
| /** |
| * sdma_progress - use seq number of detect head progress |
| * @sde: sdma_engine to check |
| * @seq: base seq count |
| * @tx: txreq for which we need to check descriptor availability |
| * |
| * This is used in the appropriate spot in the sleep routine |
| * to check for potential ring progress. This routine gets the |
| * seqcount before queuing the iowait structure for progress. |
| * |
| * If the seqcount indicates that progress needs to be checked, |
| * re-submission is detected by checking whether the descriptor |
| * queue has enough descriptor for the txreq. |
| */ |
| static inline unsigned sdma_progress(struct sdma_engine *sde, unsigned seq, |
| struct sdma_txreq *tx) |
| { |
| if (read_seqretry(&sde->head_lock, seq)) { |
| sde->desc_avail = sdma_descq_freecnt(sde); |
| if (tx->num_desc > sde->desc_avail) |
| return 0; |
| return 1; |
| } |
| return 0; |
| } |
| |
| /** |
| * sdma_iowait_schedule() - initialize wait structure |
| * @sde: sdma_engine to schedule |
| * @wait: wait struct to schedule |
| * |
| * This function initializes the iowait |
| * structure embedded in the QP or PQ. |
| * |
| */ |
| static inline void sdma_iowait_schedule( |
| struct sdma_engine *sde, |
| struct iowait *wait) |
| { |
| struct hfi1_pportdata *ppd = sde->dd->pport; |
| |
| iowait_schedule(wait, ppd->hfi1_wq, sde->cpu); |
| } |
| |
| /* for use by interrupt handling */ |
| void sdma_engine_error(struct sdma_engine *sde, u64 status); |
| void sdma_engine_interrupt(struct sdma_engine *sde, u64 status); |
| |
| /* |
| * |
| * The diagram below details the relationship of the mapping structures |
| * |
| * Since the mapping now allows for non-uniform engines per vl, the |
| * number of engines for a vl is either the vl_engines[vl] or |
| * a computation based on num_sdma/num_vls: |
| * |
| * For example: |
| * nactual = vl_engines ? vl_engines[vl] : num_sdma/num_vls |
| * |
| * n = roundup to next highest power of 2 using nactual |
| * |
| * In the case where there are num_sdma/num_vls doesn't divide |
| * evenly, the extras are added from the last vl downward. |
| * |
| * For the case where n > nactual, the engines are assigned |
| * in a round robin fashion wrapping back to the first engine |
| * for a particular vl. |
| * |
| * dd->sdma_map |
| * | sdma_map_elem[0] |
| * | +--------------------+ |
| * v | mask | |
| * sdma_vl_map |--------------------| |
| * +--------------------------+ | sde[0] -> eng 1 | |
| * | list (RCU) | |--------------------| |
| * |--------------------------| ->| sde[1] -> eng 2 | |
| * | mask | --/ |--------------------| |
| * |--------------------------| -/ | * | |
| * | actual_vls (max 8) | -/ |--------------------| |
| * |--------------------------| --/ | sde[n-1] -> eng n | |
| * | vls (max 8) | -/ +--------------------+ |
| * |--------------------------| --/ |
| * | map[0] |-/ |
| * |--------------------------| +---------------------+ |
| * | map[1] |--- | mask | |
| * |--------------------------| \---- |---------------------| |
| * | * | \-- | sde[0] -> eng 1+n | |
| * | * | \---- |---------------------| |
| * | * | \->| sde[1] -> eng 2+n | |
| * |--------------------------| |---------------------| |
| * | map[vls - 1] |- | * | |
| * +--------------------------+ \- |---------------------| |
| * \- | sde[m-1] -> eng m+n | |
| * \ +---------------------+ |
| * \- |
| * \ |
| * \- +----------------------+ |
| * \- | mask | |
| * \ |----------------------| |
| * \- | sde[0] -> eng 1+m+n | |
| * \- |----------------------| |
| * >| sde[1] -> eng 2+m+n | |
| * |----------------------| |
| * | * | |
| * |----------------------| |
| * | sde[o-1] -> eng o+m+n| |
| * +----------------------+ |
| * |
| */ |
| |
| /** |
| * struct sdma_map_elem - mapping for a vl |
| * @mask - selector mask |
| * @sde - array of engines for this vl |
| * |
| * The mask is used to "mod" the selector |
| * to produce index into the trailing |
| * array of sdes. |
| */ |
| struct sdma_map_elem { |
| u32 mask; |
| struct sdma_engine *sde[0]; |
| }; |
| |
| /** |
| * struct sdma_map_el - mapping for a vl |
| * @engine_to_vl - map of an engine to a vl |
| * @list - rcu head for free callback |
| * @mask - vl mask to "mod" the vl to produce an index to map array |
| * @actual_vls - number of vls |
| * @vls - number of vls rounded to next power of 2 |
| * @map - array of sdma_map_elem entries |
| * |
| * This is the parent mapping structure. The trailing |
| * members of the struct point to sdma_map_elem entries, which |
| * in turn point to an array of sde's for that vl. |
| */ |
| struct sdma_vl_map { |
| s8 engine_to_vl[TXE_NUM_SDMA_ENGINES]; |
| struct rcu_head list; |
| u32 mask; |
| u8 actual_vls; |
| u8 vls; |
| struct sdma_map_elem *map[0]; |
| }; |
| |
| int sdma_map_init( |
| struct hfi1_devdata *dd, |
| u8 port, |
| u8 num_vls, |
| u8 *vl_engines); |
| |
| /* slow path */ |
| void _sdma_engine_progress_schedule(struct sdma_engine *sde); |
| |
| /** |
| * sdma_engine_progress_schedule() - schedule progress on engine |
| * @sde: sdma_engine to schedule progress |
| * |
| * This is the fast path. |
| * |
| */ |
| static inline void sdma_engine_progress_schedule( |
| struct sdma_engine *sde) |
| { |
| if (!sde || sdma_descq_inprocess(sde) < (sde->descq_cnt / 8)) |
| return; |
| _sdma_engine_progress_schedule(sde); |
| } |
| |
| struct sdma_engine *sdma_select_engine_sc( |
| struct hfi1_devdata *dd, |
| u32 selector, |
| u8 sc5); |
| |
| struct sdma_engine *sdma_select_engine_vl( |
| struct hfi1_devdata *dd, |
| u32 selector, |
| u8 vl); |
| |
| struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd, |
| u32 selector, u8 vl); |
| ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf); |
| ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf, |
| size_t count); |
| int sdma_engine_get_vl(struct sdma_engine *sde); |
| void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *); |
| void sdma_seqfile_dump_cpu_list(struct seq_file *s, struct hfi1_devdata *dd, |
| unsigned long cpuid); |
| |
| #ifdef CONFIG_SDMA_VERBOSITY |
| void sdma_dumpstate(struct sdma_engine *); |
| #endif |
| static inline char *slashstrip(char *s) |
| { |
| char *r = s; |
| |
| while (*s) |
| if (*s++ == '/') |
| r = s; |
| return r; |
| } |
| |
| u16 sdma_get_descq_cnt(void); |
| |
| extern uint mod_num_sdma; |
| |
| void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid); |
| |
| #endif |