| /* |
| * Common Flash Interface support: |
| * ST Advanced Architecture Command Set (ID 0x0020) |
| * |
| * (C) 2000 Red Hat. GPL'd |
| * |
| * 10/10/2000 Nicolas Pitre <nico@fluxnic.net> |
| * - completely revamped method functions so they are aware and |
| * independent of the flash geometry (buswidth, interleave, etc.) |
| * - scalability vs code size is completely set at compile-time |
| * (see include/linux/mtd/cfi.h for selection) |
| * - optimized write buffer method |
| * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others |
| * - modified Intel Command Set 0x0001 to support ST Advanced Architecture |
| * (command set 0x0020) |
| * - added a writev function |
| * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de> |
| * - Plugged memory leak in cfi_staa_writev(). |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <asm/io.h> |
| #include <asm/byteorder.h> |
| |
| #include <linux/errno.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/mtd/map.h> |
| #include <linux/mtd/cfi.h> |
| #include <linux/mtd/mtd.h> |
| |
| |
| static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *); |
| static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); |
| static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, |
| unsigned long count, loff_t to, size_t *retlen); |
| static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *); |
| static void cfi_staa_sync (struct mtd_info *); |
| static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); |
| static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); |
| static int cfi_staa_suspend (struct mtd_info *); |
| static void cfi_staa_resume (struct mtd_info *); |
| |
| static void cfi_staa_destroy(struct mtd_info *); |
| |
| struct mtd_info *cfi_cmdset_0020(struct map_info *, int); |
| |
| static struct mtd_info *cfi_staa_setup (struct map_info *); |
| |
| static struct mtd_chip_driver cfi_staa_chipdrv = { |
| .probe = NULL, /* Not usable directly */ |
| .destroy = cfi_staa_destroy, |
| .name = "cfi_cmdset_0020", |
| .module = THIS_MODULE |
| }; |
| |
| /* #define DEBUG_LOCK_BITS */ |
| //#define DEBUG_CFI_FEATURES |
| |
| #ifdef DEBUG_CFI_FEATURES |
| static void cfi_tell_features(struct cfi_pri_intelext *extp) |
| { |
| int i; |
| printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); |
| printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); |
| printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); |
| printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); |
| printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); |
| printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); |
| printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); |
| printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); |
| printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); |
| printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); |
| for (i=9; i<32; i++) { |
| if (extp->FeatureSupport & (1<<i)) |
| printk(" - Unknown Bit %X: supported\n", i); |
| } |
| |
| printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); |
| printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); |
| for (i=1; i<8; i++) { |
| if (extp->SuspendCmdSupport & (1<<i)) |
| printk(" - Unknown Bit %X: supported\n", i); |
| } |
| |
| printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); |
| printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); |
| printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); |
| for (i=2; i<16; i++) { |
| if (extp->BlkStatusRegMask & (1<<i)) |
| printk(" - Unknown Bit %X Active: yes\n",i); |
| } |
| |
| printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", |
| extp->VccOptimal >> 8, extp->VccOptimal & 0xf); |
| if (extp->VppOptimal) |
| printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", |
| extp->VppOptimal >> 8, extp->VppOptimal & 0xf); |
| } |
| #endif |
| |
| /* This routine is made available to other mtd code via |
| * inter_module_register. It must only be accessed through |
| * inter_module_get which will bump the use count of this module. The |
| * addresses passed back in cfi are valid as long as the use count of |
| * this module is non-zero, i.e. between inter_module_get and |
| * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. |
| */ |
| struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| int i; |
| |
| if (cfi->cfi_mode) { |
| /* |
| * It's a real CFI chip, not one for which the probe |
| * routine faked a CFI structure. So we read the feature |
| * table from it. |
| */ |
| __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; |
| struct cfi_pri_intelext *extp; |
| |
| extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics"); |
| if (!extp) |
| return NULL; |
| |
| if (extp->MajorVersion != '1' || |
| (extp->MinorVersion < '0' || extp->MinorVersion > '3')) { |
| printk(KERN_ERR " Unknown ST Microelectronics" |
| " Extended Query version %c.%c.\n", |
| extp->MajorVersion, extp->MinorVersion); |
| kfree(extp); |
| return NULL; |
| } |
| |
| /* Do some byteswapping if necessary */ |
| extp->FeatureSupport = cfi32_to_cpu(extp->FeatureSupport); |
| extp->BlkStatusRegMask = cfi32_to_cpu(extp->BlkStatusRegMask); |
| |
| #ifdef DEBUG_CFI_FEATURES |
| /* Tell the user about it in lots of lovely detail */ |
| cfi_tell_features(extp); |
| #endif |
| |
| /* Install our own private info structure */ |
| cfi->cmdset_priv = extp; |
| } |
| |
| for (i=0; i< cfi->numchips; i++) { |
| cfi->chips[i].word_write_time = 128; |
| cfi->chips[i].buffer_write_time = 128; |
| cfi->chips[i].erase_time = 1024; |
| cfi->chips[i].ref_point_counter = 0; |
| init_waitqueue_head(&(cfi->chips[i].wq)); |
| } |
| |
| return cfi_staa_setup(map); |
| } |
| EXPORT_SYMBOL_GPL(cfi_cmdset_0020); |
| |
| static struct mtd_info *cfi_staa_setup(struct map_info *map) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct mtd_info *mtd; |
| unsigned long offset = 0; |
| int i,j; |
| unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; |
| |
| mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); |
| //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); |
| |
| if (!mtd) { |
| printk(KERN_ERR "Failed to allocate memory for MTD device\n"); |
| kfree(cfi->cmdset_priv); |
| return NULL; |
| } |
| |
| mtd->priv = map; |
| mtd->type = MTD_NORFLASH; |
| mtd->size = devsize * cfi->numchips; |
| |
| mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; |
| mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) |
| * mtd->numeraseregions, GFP_KERNEL); |
| if (!mtd->eraseregions) { |
| printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); |
| kfree(cfi->cmdset_priv); |
| kfree(mtd); |
| return NULL; |
| } |
| |
| for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { |
| unsigned long ernum, ersize; |
| ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; |
| ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; |
| |
| if (mtd->erasesize < ersize) { |
| mtd->erasesize = ersize; |
| } |
| for (j=0; j<cfi->numchips; j++) { |
| mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; |
| mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; |
| mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; |
| } |
| offset += (ersize * ernum); |
| } |
| |
| if (offset != devsize) { |
| /* Argh */ |
| printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); |
| kfree(mtd->eraseregions); |
| kfree(cfi->cmdset_priv); |
| kfree(mtd); |
| return NULL; |
| } |
| |
| for (i=0; i<mtd->numeraseregions;i++){ |
| printk(KERN_DEBUG "%d: offset=0x%llx,size=0x%x,blocks=%d\n", |
| i, (unsigned long long)mtd->eraseregions[i].offset, |
| mtd->eraseregions[i].erasesize, |
| mtd->eraseregions[i].numblocks); |
| } |
| |
| /* Also select the correct geometry setup too */ |
| mtd->erase = cfi_staa_erase_varsize; |
| mtd->read = cfi_staa_read; |
| mtd->write = cfi_staa_write_buffers; |
| mtd->writev = cfi_staa_writev; |
| mtd->sync = cfi_staa_sync; |
| mtd->lock = cfi_staa_lock; |
| mtd->unlock = cfi_staa_unlock; |
| mtd->suspend = cfi_staa_suspend; |
| mtd->resume = cfi_staa_resume; |
| mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE; |
| mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */ |
| mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; |
| map->fldrv = &cfi_staa_chipdrv; |
| __module_get(THIS_MODULE); |
| mtd->name = map->name; |
| return mtd; |
| } |
| |
| |
| static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) |
| { |
| map_word status, status_OK; |
| unsigned long timeo; |
| DECLARE_WAITQUEUE(wait, current); |
| int suspended = 0; |
| unsigned long cmd_addr; |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| adr += chip->start; |
| |
| /* Ensure cmd read/writes are aligned. */ |
| cmd_addr = adr & ~(map_bankwidth(map)-1); |
| |
| /* Let's determine this according to the interleave only once */ |
| status_OK = CMD(0x80); |
| |
| timeo = jiffies + HZ; |
| retry: |
| mutex_lock(&chip->mutex); |
| |
| /* Check that the chip's ready to talk to us. |
| * If it's in FL_ERASING state, suspend it and make it talk now. |
| */ |
| switch (chip->state) { |
| case FL_ERASING: |
| if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2)) |
| goto sleep; /* We don't support erase suspend */ |
| |
| map_write (map, CMD(0xb0), cmd_addr); |
| /* If the flash has finished erasing, then 'erase suspend' |
| * appears to make some (28F320) flash devices switch to |
| * 'read' mode. Make sure that we switch to 'read status' |
| * mode so we get the right data. --rmk |
| */ |
| map_write(map, CMD(0x70), cmd_addr); |
| chip->oldstate = FL_ERASING; |
| chip->state = FL_ERASE_SUSPENDING; |
| // printk("Erase suspending at 0x%lx\n", cmd_addr); |
| for (;;) { |
| status = map_read(map, cmd_addr); |
| if (map_word_andequal(map, status, status_OK, status_OK)) |
| break; |
| |
| if (time_after(jiffies, timeo)) { |
| /* Urgh */ |
| map_write(map, CMD(0xd0), cmd_addr); |
| /* make sure we're in 'read status' mode */ |
| map_write(map, CMD(0x70), cmd_addr); |
| chip->state = FL_ERASING; |
| mutex_unlock(&chip->mutex); |
| printk(KERN_ERR "Chip not ready after erase " |
| "suspended: status = 0x%lx\n", status.x[0]); |
| return -EIO; |
| } |
| |
| mutex_unlock(&chip->mutex); |
| cfi_udelay(1); |
| mutex_lock(&chip->mutex); |
| } |
| |
| suspended = 1; |
| map_write(map, CMD(0xff), cmd_addr); |
| chip->state = FL_READY; |
| break; |
| |
| #if 0 |
| case FL_WRITING: |
| /* Not quite yet */ |
| #endif |
| |
| case FL_READY: |
| break; |
| |
| case FL_CFI_QUERY: |
| case FL_JEDEC_QUERY: |
| map_write(map, CMD(0x70), cmd_addr); |
| chip->state = FL_STATUS; |
| |
| case FL_STATUS: |
| status = map_read(map, cmd_addr); |
| if (map_word_andequal(map, status, status_OK, status_OK)) { |
| map_write(map, CMD(0xff), cmd_addr); |
| chip->state = FL_READY; |
| break; |
| } |
| |
| /* Urgh. Chip not yet ready to talk to us. */ |
| if (time_after(jiffies, timeo)) { |
| mutex_unlock(&chip->mutex); |
| printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]); |
| return -EIO; |
| } |
| |
| /* Latency issues. Drop the lock, wait a while and retry */ |
| mutex_unlock(&chip->mutex); |
| cfi_udelay(1); |
| goto retry; |
| |
| default: |
| sleep: |
| /* Stick ourselves on a wait queue to be woken when |
| someone changes the status */ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| timeo = jiffies + HZ; |
| goto retry; |
| } |
| |
| map_copy_from(map, buf, adr, len); |
| |
| if (suspended) { |
| chip->state = chip->oldstate; |
| /* What if one interleaved chip has finished and the |
| other hasn't? The old code would leave the finished |
| one in READY mode. That's bad, and caused -EROFS |
| errors to be returned from do_erase_oneblock because |
| that's the only bit it checked for at the time. |
| As the state machine appears to explicitly allow |
| sending the 0x70 (Read Status) command to an erasing |
| chip and expecting it to be ignored, that's what we |
| do. */ |
| map_write(map, CMD(0xd0), cmd_addr); |
| map_write(map, CMD(0x70), cmd_addr); |
| } |
| |
| wake_up(&chip->wq); |
| mutex_unlock(&chip->mutex); |
| return 0; |
| } |
| |
| static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| unsigned long ofs; |
| int chipnum; |
| int ret = 0; |
| |
| /* ofs: offset within the first chip that the first read should start */ |
| chipnum = (from >> cfi->chipshift); |
| ofs = from - (chipnum << cfi->chipshift); |
| |
| *retlen = 0; |
| |
| while (len) { |
| unsigned long thislen; |
| |
| if (chipnum >= cfi->numchips) |
| break; |
| |
| if ((len + ofs -1) >> cfi->chipshift) |
| thislen = (1<<cfi->chipshift) - ofs; |
| else |
| thislen = len; |
| |
| ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); |
| if (ret) |
| break; |
| |
| *retlen += thislen; |
| len -= thislen; |
| buf += thislen; |
| |
| ofs = 0; |
| chipnum++; |
| } |
| return ret; |
| } |
| |
| static inline int do_write_buffer(struct map_info *map, struct flchip *chip, |
| unsigned long adr, const u_char *buf, int len) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| map_word status, status_OK; |
| unsigned long cmd_adr, timeo; |
| DECLARE_WAITQUEUE(wait, current); |
| int wbufsize, z; |
| |
| /* M58LW064A requires bus alignment for buffer wriets -- saw */ |
| if (adr & (map_bankwidth(map)-1)) |
| return -EINVAL; |
| |
| wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; |
| adr += chip->start; |
| cmd_adr = adr & ~(wbufsize-1); |
| |
| /* Let's determine this according to the interleave only once */ |
| status_OK = CMD(0x80); |
| |
| timeo = jiffies + HZ; |
| retry: |
| |
| #ifdef DEBUG_CFI_FEATURES |
| printk("%s: chip->state[%d]\n", __func__, chip->state); |
| #endif |
| mutex_lock(&chip->mutex); |
| |
| /* Check that the chip's ready to talk to us. |
| * Later, we can actually think about interrupting it |
| * if it's in FL_ERASING state. |
| * Not just yet, though. |
| */ |
| switch (chip->state) { |
| case FL_READY: |
| break; |
| |
| case FL_CFI_QUERY: |
| case FL_JEDEC_QUERY: |
| map_write(map, CMD(0x70), cmd_adr); |
| chip->state = FL_STATUS; |
| #ifdef DEBUG_CFI_FEATURES |
| printk("%s: 1 status[%x]\n", __func__, map_read(map, cmd_adr)); |
| #endif |
| |
| case FL_STATUS: |
| status = map_read(map, cmd_adr); |
| if (map_word_andequal(map, status, status_OK, status_OK)) |
| break; |
| /* Urgh. Chip not yet ready to talk to us. */ |
| if (time_after(jiffies, timeo)) { |
| mutex_unlock(&chip->mutex); |
| printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n", |
| status.x[0], map_read(map, cmd_adr).x[0]); |
| return -EIO; |
| } |
| |
| /* Latency issues. Drop the lock, wait a while and retry */ |
| mutex_unlock(&chip->mutex); |
| cfi_udelay(1); |
| goto retry; |
| |
| default: |
| /* Stick ourselves on a wait queue to be woken when |
| someone changes the status */ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| timeo = jiffies + HZ; |
| goto retry; |
| } |
| |
| ENABLE_VPP(map); |
| map_write(map, CMD(0xe8), cmd_adr); |
| chip->state = FL_WRITING_TO_BUFFER; |
| |
| z = 0; |
| for (;;) { |
| status = map_read(map, cmd_adr); |
| if (map_word_andequal(map, status, status_OK, status_OK)) |
| break; |
| |
| mutex_unlock(&chip->mutex); |
| cfi_udelay(1); |
| mutex_lock(&chip->mutex); |
| |
| if (++z > 100) { |
| /* Argh. Not ready for write to buffer */ |
| DISABLE_VPP(map); |
| map_write(map, CMD(0x70), cmd_adr); |
| chip->state = FL_STATUS; |
| mutex_unlock(&chip->mutex); |
| printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]); |
| return -EIO; |
| } |
| } |
| |
| /* Write length of data to come */ |
| map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr ); |
| |
| /* Write data */ |
| for (z = 0; z < len; |
| z += map_bankwidth(map), buf += map_bankwidth(map)) { |
| map_word d; |
| d = map_word_load(map, buf); |
| map_write(map, d, adr+z); |
| } |
| /* GO GO GO */ |
| map_write(map, CMD(0xd0), cmd_adr); |
| chip->state = FL_WRITING; |
| |
| mutex_unlock(&chip->mutex); |
| cfi_udelay(chip->buffer_write_time); |
| mutex_lock(&chip->mutex); |
| |
| timeo = jiffies + (HZ/2); |
| z = 0; |
| for (;;) { |
| if (chip->state != FL_WRITING) { |
| /* Someone's suspended the write. Sleep */ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| timeo = jiffies + (HZ / 2); /* FIXME */ |
| mutex_lock(&chip->mutex); |
| continue; |
| } |
| |
| status = map_read(map, cmd_adr); |
| if (map_word_andequal(map, status, status_OK, status_OK)) |
| break; |
| |
| /* OK Still waiting */ |
| if (time_after(jiffies, timeo)) { |
| /* clear status */ |
| map_write(map, CMD(0x50), cmd_adr); |
| /* put back into read status register mode */ |
| map_write(map, CMD(0x70), adr); |
| chip->state = FL_STATUS; |
| DISABLE_VPP(map); |
| mutex_unlock(&chip->mutex); |
| printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n"); |
| return -EIO; |
| } |
| |
| /* Latency issues. Drop the lock, wait a while and retry */ |
| mutex_unlock(&chip->mutex); |
| cfi_udelay(1); |
| z++; |
| mutex_lock(&chip->mutex); |
| } |
| if (!z) { |
| chip->buffer_write_time--; |
| if (!chip->buffer_write_time) |
| chip->buffer_write_time++; |
| } |
| if (z > 1) |
| chip->buffer_write_time++; |
| |
| /* Done and happy. */ |
| DISABLE_VPP(map); |
| chip->state = FL_STATUS; |
| |
| /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */ |
| if (map_word_bitsset(map, status, CMD(0x3a))) { |
| #ifdef DEBUG_CFI_FEATURES |
| printk("%s: 2 status[%lx]\n", __func__, status.x[0]); |
| #endif |
| /* clear status */ |
| map_write(map, CMD(0x50), cmd_adr); |
| /* put back into read status register mode */ |
| map_write(map, CMD(0x70), adr); |
| wake_up(&chip->wq); |
| mutex_unlock(&chip->mutex); |
| return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO; |
| } |
| wake_up(&chip->wq); |
| mutex_unlock(&chip->mutex); |
| |
| return 0; |
| } |
| |
| static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to, |
| size_t len, size_t *retlen, const u_char *buf) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; |
| int ret = 0; |
| int chipnum; |
| unsigned long ofs; |
| |
| *retlen = 0; |
| if (!len) |
| return 0; |
| |
| chipnum = to >> cfi->chipshift; |
| ofs = to - (chipnum << cfi->chipshift); |
| |
| #ifdef DEBUG_CFI_FEATURES |
| printk("%s: map_bankwidth(map)[%x]\n", __func__, map_bankwidth(map)); |
| printk("%s: chipnum[%x] wbufsize[%x]\n", __func__, chipnum, wbufsize); |
| printk("%s: ofs[%x] len[%x]\n", __func__, ofs, len); |
| #endif |
| |
| /* Write buffer is worth it only if more than one word to write... */ |
| while (len > 0) { |
| /* We must not cross write block boundaries */ |
| int size = wbufsize - (ofs & (wbufsize-1)); |
| |
| if (size > len) |
| size = len; |
| |
| ret = do_write_buffer(map, &cfi->chips[chipnum], |
| ofs, buf, size); |
| if (ret) |
| return ret; |
| |
| ofs += size; |
| buf += size; |
| (*retlen) += size; |
| len -= size; |
| |
| if (ofs >> cfi->chipshift) { |
| chipnum ++; |
| ofs = 0; |
| if (chipnum == cfi->numchips) |
| return 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Writev for ECC-Flashes is a little more complicated. We need to maintain |
| * a small buffer for this. |
| * XXX: If the buffer size is not a multiple of 2, this will break |
| */ |
| #define ECCBUF_SIZE (mtd->writesize) |
| #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1)) |
| #define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1)) |
| static int |
| cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, |
| unsigned long count, loff_t to, size_t *retlen) |
| { |
| unsigned long i; |
| size_t totlen = 0, thislen; |
| int ret = 0; |
| size_t buflen = 0; |
| static char *buffer; |
| |
| if (!ECCBUF_SIZE) { |
| /* We should fall back to a general writev implementation. |
| * Until that is written, just break. |
| */ |
| return -EIO; |
| } |
| buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL); |
| if (!buffer) |
| return -ENOMEM; |
| |
| for (i=0; i<count; i++) { |
| size_t elem_len = vecs[i].iov_len; |
| void *elem_base = vecs[i].iov_base; |
| if (!elem_len) /* FIXME: Might be unnecessary. Check that */ |
| continue; |
| if (buflen) { /* cut off head */ |
| if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */ |
| memcpy(buffer+buflen, elem_base, elem_len); |
| buflen += elem_len; |
| continue; |
| } |
| memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen); |
| ret = mtd->write(mtd, to, ECCBUF_SIZE, &thislen, buffer); |
| totlen += thislen; |
| if (ret || thislen != ECCBUF_SIZE) |
| goto write_error; |
| elem_len -= thislen-buflen; |
| elem_base += thislen-buflen; |
| to += ECCBUF_SIZE; |
| } |
| if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */ |
| ret = mtd->write(mtd, to, ECCBUF_DIV(elem_len), &thislen, elem_base); |
| totlen += thislen; |
| if (ret || thislen != ECCBUF_DIV(elem_len)) |
| goto write_error; |
| to += thislen; |
| } |
| buflen = ECCBUF_MOD(elem_len); /* cut off tail */ |
| if (buflen) { |
| memset(buffer, 0xff, ECCBUF_SIZE); |
| memcpy(buffer, elem_base + thislen, buflen); |
| } |
| } |
| if (buflen) { /* flush last page, even if not full */ |
| /* This is sometimes intended behaviour, really */ |
| ret = mtd->write(mtd, to, buflen, &thislen, buffer); |
| totlen += thislen; |
| if (ret || thislen != ECCBUF_SIZE) |
| goto write_error; |
| } |
| write_error: |
| if (retlen) |
| *retlen = totlen; |
| kfree(buffer); |
| return ret; |
| } |
| |
| |
| static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| map_word status, status_OK; |
| unsigned long timeo; |
| int retries = 3; |
| DECLARE_WAITQUEUE(wait, current); |
| int ret = 0; |
| |
| adr += chip->start; |
| |
| /* Let's determine this according to the interleave only once */ |
| status_OK = CMD(0x80); |
| |
| timeo = jiffies + HZ; |
| retry: |
| mutex_lock(&chip->mutex); |
| |
| /* Check that the chip's ready to talk to us. */ |
| switch (chip->state) { |
| case FL_CFI_QUERY: |
| case FL_JEDEC_QUERY: |
| case FL_READY: |
| map_write(map, CMD(0x70), adr); |
| chip->state = FL_STATUS; |
| |
| case FL_STATUS: |
| status = map_read(map, adr); |
| if (map_word_andequal(map, status, status_OK, status_OK)) |
| break; |
| |
| /* Urgh. Chip not yet ready to talk to us. */ |
| if (time_after(jiffies, timeo)) { |
| mutex_unlock(&chip->mutex); |
| printk(KERN_ERR "waiting for chip to be ready timed out in erase\n"); |
| return -EIO; |
| } |
| |
| /* Latency issues. Drop the lock, wait a while and retry */ |
| mutex_unlock(&chip->mutex); |
| cfi_udelay(1); |
| goto retry; |
| |
| default: |
| /* Stick ourselves on a wait queue to be woken when |
| someone changes the status */ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| timeo = jiffies + HZ; |
| goto retry; |
| } |
| |
| ENABLE_VPP(map); |
| /* Clear the status register first */ |
| map_write(map, CMD(0x50), adr); |
| |
| /* Now erase */ |
| map_write(map, CMD(0x20), adr); |
| map_write(map, CMD(0xD0), adr); |
| chip->state = FL_ERASING; |
| |
| mutex_unlock(&chip->mutex); |
| msleep(1000); |
| mutex_lock(&chip->mutex); |
| |
| /* FIXME. Use a timer to check this, and return immediately. */ |
| /* Once the state machine's known to be working I'll do that */ |
| |
| timeo = jiffies + (HZ*20); |
| for (;;) { |
| if (chip->state != FL_ERASING) { |
| /* Someone's suspended the erase. Sleep */ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| timeo = jiffies + (HZ*20); /* FIXME */ |
| mutex_lock(&chip->mutex); |
| continue; |
| } |
| |
| status = map_read(map, adr); |
| if (map_word_andequal(map, status, status_OK, status_OK)) |
| break; |
| |
| /* OK Still waiting */ |
| if (time_after(jiffies, timeo)) { |
| map_write(map, CMD(0x70), adr); |
| chip->state = FL_STATUS; |
| printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); |
| DISABLE_VPP(map); |
| mutex_unlock(&chip->mutex); |
| return -EIO; |
| } |
| |
| /* Latency issues. Drop the lock, wait a while and retry */ |
| mutex_unlock(&chip->mutex); |
| cfi_udelay(1); |
| mutex_lock(&chip->mutex); |
| } |
| |
| DISABLE_VPP(map); |
| ret = 0; |
| |
| /* We've broken this before. It doesn't hurt to be safe */ |
| map_write(map, CMD(0x70), adr); |
| chip->state = FL_STATUS; |
| status = map_read(map, adr); |
| |
| /* check for lock bit */ |
| if (map_word_bitsset(map, status, CMD(0x3a))) { |
| unsigned char chipstatus = status.x[0]; |
| if (!map_word_equal(map, status, CMD(chipstatus))) { |
| int i, w; |
| for (w=0; w<map_words(map); w++) { |
| for (i = 0; i<cfi_interleave(cfi); i++) { |
| chipstatus |= status.x[w] >> (cfi->device_type * 8); |
| } |
| } |
| printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n", |
| status.x[0], chipstatus); |
| } |
| /* Reset the error bits */ |
| map_write(map, CMD(0x50), adr); |
| map_write(map, CMD(0x70), adr); |
| |
| if ((chipstatus & 0x30) == 0x30) { |
| printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus); |
| ret = -EIO; |
| } else if (chipstatus & 0x02) { |
| /* Protection bit set */ |
| ret = -EROFS; |
| } else if (chipstatus & 0x8) { |
| /* Voltage */ |
| printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus); |
| ret = -EIO; |
| } else if (chipstatus & 0x20) { |
| if (retries--) { |
| printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus); |
| timeo = jiffies + HZ; |
| chip->state = FL_STATUS; |
| mutex_unlock(&chip->mutex); |
| goto retry; |
| } |
| printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus); |
| ret = -EIO; |
| } |
| } |
| |
| wake_up(&chip->wq); |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| static int cfi_staa_erase_varsize(struct mtd_info *mtd, |
| struct erase_info *instr) |
| { struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| unsigned long adr, len; |
| int chipnum, ret = 0; |
| int i, first; |
| struct mtd_erase_region_info *regions = mtd->eraseregions; |
| |
| if (instr->addr > mtd->size) |
| return -EINVAL; |
| |
| if ((instr->len + instr->addr) > mtd->size) |
| return -EINVAL; |
| |
| /* Check that both start and end of the requested erase are |
| * aligned with the erasesize at the appropriate addresses. |
| */ |
| |
| i = 0; |
| |
| /* Skip all erase regions which are ended before the start of |
| the requested erase. Actually, to save on the calculations, |
| we skip to the first erase region which starts after the |
| start of the requested erase, and then go back one. |
| */ |
| |
| while (i < mtd->numeraseregions && instr->addr >= regions[i].offset) |
| i++; |
| i--; |
| |
| /* OK, now i is pointing at the erase region in which this |
| erase request starts. Check the start of the requested |
| erase range is aligned with the erase size which is in |
| effect here. |
| */ |
| |
| if (instr->addr & (regions[i].erasesize-1)) |
| return -EINVAL; |
| |
| /* Remember the erase region we start on */ |
| first = i; |
| |
| /* Next, check that the end of the requested erase is aligned |
| * with the erase region at that address. |
| */ |
| |
| while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset) |
| i++; |
| |
| /* As before, drop back one to point at the region in which |
| the address actually falls |
| */ |
| i--; |
| |
| if ((instr->addr + instr->len) & (regions[i].erasesize-1)) |
| return -EINVAL; |
| |
| chipnum = instr->addr >> cfi->chipshift; |
| adr = instr->addr - (chipnum << cfi->chipshift); |
| len = instr->len; |
| |
| i=first; |
| |
| while(len) { |
| ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr); |
| |
| if (ret) |
| return ret; |
| |
| adr += regions[i].erasesize; |
| len -= regions[i].erasesize; |
| |
| if (adr % (1<< cfi->chipshift) == (((unsigned long)regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift))) |
| i++; |
| |
| if (adr >> cfi->chipshift) { |
| adr = 0; |
| chipnum++; |
| |
| if (chipnum >= cfi->numchips) |
| break; |
| } |
| } |
| |
| instr->state = MTD_ERASE_DONE; |
| mtd_erase_callback(instr); |
| |
| return 0; |
| } |
| |
| static void cfi_staa_sync (struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int i; |
| struct flchip *chip; |
| int ret = 0; |
| DECLARE_WAITQUEUE(wait, current); |
| |
| for (i=0; !ret && i<cfi->numchips; i++) { |
| chip = &cfi->chips[i]; |
| |
| retry: |
| mutex_lock(&chip->mutex); |
| |
| switch(chip->state) { |
| case FL_READY: |
| case FL_STATUS: |
| case FL_CFI_QUERY: |
| case FL_JEDEC_QUERY: |
| chip->oldstate = chip->state; |
| chip->state = FL_SYNCING; |
| /* No need to wake_up() on this state change - |
| * as the whole point is that nobody can do anything |
| * with the chip now anyway. |
| */ |
| case FL_SYNCING: |
| mutex_unlock(&chip->mutex); |
| break; |
| |
| default: |
| /* Not an idle state */ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| |
| goto retry; |
| } |
| } |
| |
| /* Unlock the chips again */ |
| |
| for (i--; i >=0; i--) { |
| chip = &cfi->chips[i]; |
| |
| mutex_lock(&chip->mutex); |
| |
| if (chip->state == FL_SYNCING) { |
| chip->state = chip->oldstate; |
| wake_up(&chip->wq); |
| } |
| mutex_unlock(&chip->mutex); |
| } |
| } |
| |
| static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| map_word status, status_OK; |
| unsigned long timeo = jiffies + HZ; |
| DECLARE_WAITQUEUE(wait, current); |
| |
| adr += chip->start; |
| |
| /* Let's determine this according to the interleave only once */ |
| status_OK = CMD(0x80); |
| |
| timeo = jiffies + HZ; |
| retry: |
| mutex_lock(&chip->mutex); |
| |
| /* Check that the chip's ready to talk to us. */ |
| switch (chip->state) { |
| case FL_CFI_QUERY: |
| case FL_JEDEC_QUERY: |
| case FL_READY: |
| map_write(map, CMD(0x70), adr); |
| chip->state = FL_STATUS; |
| |
| case FL_STATUS: |
| status = map_read(map, adr); |
| if (map_word_andequal(map, status, status_OK, status_OK)) |
| break; |
| |
| /* Urgh. Chip not yet ready to talk to us. */ |
| if (time_after(jiffies, timeo)) { |
| mutex_unlock(&chip->mutex); |
| printk(KERN_ERR "waiting for chip to be ready timed out in lock\n"); |
| return -EIO; |
| } |
| |
| /* Latency issues. Drop the lock, wait a while and retry */ |
| mutex_unlock(&chip->mutex); |
| cfi_udelay(1); |
| goto retry; |
| |
| default: |
| /* Stick ourselves on a wait queue to be woken when |
| someone changes the status */ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| timeo = jiffies + HZ; |
| goto retry; |
| } |
| |
| ENABLE_VPP(map); |
| map_write(map, CMD(0x60), adr); |
| map_write(map, CMD(0x01), adr); |
| chip->state = FL_LOCKING; |
| |
| mutex_unlock(&chip->mutex); |
| msleep(1000); |
| mutex_lock(&chip->mutex); |
| |
| /* FIXME. Use a timer to check this, and return immediately. */ |
| /* Once the state machine's known to be working I'll do that */ |
| |
| timeo = jiffies + (HZ*2); |
| for (;;) { |
| |
| status = map_read(map, adr); |
| if (map_word_andequal(map, status, status_OK, status_OK)) |
| break; |
| |
| /* OK Still waiting */ |
| if (time_after(jiffies, timeo)) { |
| map_write(map, CMD(0x70), adr); |
| chip->state = FL_STATUS; |
| printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); |
| DISABLE_VPP(map); |
| mutex_unlock(&chip->mutex); |
| return -EIO; |
| } |
| |
| /* Latency issues. Drop the lock, wait a while and retry */ |
| mutex_unlock(&chip->mutex); |
| cfi_udelay(1); |
| mutex_lock(&chip->mutex); |
| } |
| |
| /* Done and happy. */ |
| chip->state = FL_STATUS; |
| DISABLE_VPP(map); |
| wake_up(&chip->wq); |
| mutex_unlock(&chip->mutex); |
| return 0; |
| } |
| static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| unsigned long adr; |
| int chipnum, ret = 0; |
| #ifdef DEBUG_LOCK_BITS |
| int ofs_factor = cfi->interleave * cfi->device_type; |
| #endif |
| |
| if (ofs & (mtd->erasesize - 1)) |
| return -EINVAL; |
| |
| if (len & (mtd->erasesize -1)) |
| return -EINVAL; |
| |
| if ((len + ofs) > mtd->size) |
| return -EINVAL; |
| |
| chipnum = ofs >> cfi->chipshift; |
| adr = ofs - (chipnum << cfi->chipshift); |
| |
| while(len) { |
| |
| #ifdef DEBUG_LOCK_BITS |
| cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); |
| printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); |
| cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); |
| #endif |
| |
| ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr); |
| |
| #ifdef DEBUG_LOCK_BITS |
| cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); |
| printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); |
| cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); |
| #endif |
| |
| if (ret) |
| return ret; |
| |
| adr += mtd->erasesize; |
| len -= mtd->erasesize; |
| |
| if (adr >> cfi->chipshift) { |
| adr = 0; |
| chipnum++; |
| |
| if (chipnum >= cfi->numchips) |
| break; |
| } |
| } |
| return 0; |
| } |
| static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| map_word status, status_OK; |
| unsigned long timeo = jiffies + HZ; |
| DECLARE_WAITQUEUE(wait, current); |
| |
| adr += chip->start; |
| |
| /* Let's determine this according to the interleave only once */ |
| status_OK = CMD(0x80); |
| |
| timeo = jiffies + HZ; |
| retry: |
| mutex_lock(&chip->mutex); |
| |
| /* Check that the chip's ready to talk to us. */ |
| switch (chip->state) { |
| case FL_CFI_QUERY: |
| case FL_JEDEC_QUERY: |
| case FL_READY: |
| map_write(map, CMD(0x70), adr); |
| chip->state = FL_STATUS; |
| |
| case FL_STATUS: |
| status = map_read(map, adr); |
| if (map_word_andequal(map, status, status_OK, status_OK)) |
| break; |
| |
| /* Urgh. Chip not yet ready to talk to us. */ |
| if (time_after(jiffies, timeo)) { |
| mutex_unlock(&chip->mutex); |
| printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n"); |
| return -EIO; |
| } |
| |
| /* Latency issues. Drop the lock, wait a while and retry */ |
| mutex_unlock(&chip->mutex); |
| cfi_udelay(1); |
| goto retry; |
| |
| default: |
| /* Stick ourselves on a wait queue to be woken when |
| someone changes the status */ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| timeo = jiffies + HZ; |
| goto retry; |
| } |
| |
| ENABLE_VPP(map); |
| map_write(map, CMD(0x60), adr); |
| map_write(map, CMD(0xD0), adr); |
| chip->state = FL_UNLOCKING; |
| |
| mutex_unlock(&chip->mutex); |
| msleep(1000); |
| mutex_lock(&chip->mutex); |
| |
| /* FIXME. Use a timer to check this, and return immediately. */ |
| /* Once the state machine's known to be working I'll do that */ |
| |
| timeo = jiffies + (HZ*2); |
| for (;;) { |
| |
| status = map_read(map, adr); |
| if (map_word_andequal(map, status, status_OK, status_OK)) |
| break; |
| |
| /* OK Still waiting */ |
| if (time_after(jiffies, timeo)) { |
| map_write(map, CMD(0x70), adr); |
| chip->state = FL_STATUS; |
| printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); |
| DISABLE_VPP(map); |
| mutex_unlock(&chip->mutex); |
| return -EIO; |
| } |
| |
| /* Latency issues. Drop the unlock, wait a while and retry */ |
| mutex_unlock(&chip->mutex); |
| cfi_udelay(1); |
| mutex_lock(&chip->mutex); |
| } |
| |
| /* Done and happy. */ |
| chip->state = FL_STATUS; |
| DISABLE_VPP(map); |
| wake_up(&chip->wq); |
| mutex_unlock(&chip->mutex); |
| return 0; |
| } |
| static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| unsigned long adr; |
| int chipnum, ret = 0; |
| #ifdef DEBUG_LOCK_BITS |
| int ofs_factor = cfi->interleave * cfi->device_type; |
| #endif |
| |
| chipnum = ofs >> cfi->chipshift; |
| adr = ofs - (chipnum << cfi->chipshift); |
| |
| #ifdef DEBUG_LOCK_BITS |
| { |
| unsigned long temp_adr = adr; |
| unsigned long temp_len = len; |
| |
| cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); |
| while (temp_len) { |
| printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor))); |
| temp_adr += mtd->erasesize; |
| temp_len -= mtd->erasesize; |
| } |
| cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); |
| } |
| #endif |
| |
| ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr); |
| |
| #ifdef DEBUG_LOCK_BITS |
| cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); |
| printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); |
| cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); |
| #endif |
| |
| return ret; |
| } |
| |
| static int cfi_staa_suspend(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int i; |
| struct flchip *chip; |
| int ret = 0; |
| |
| for (i=0; !ret && i<cfi->numchips; i++) { |
| chip = &cfi->chips[i]; |
| |
| mutex_lock(&chip->mutex); |
| |
| switch(chip->state) { |
| case FL_READY: |
| case FL_STATUS: |
| case FL_CFI_QUERY: |
| case FL_JEDEC_QUERY: |
| chip->oldstate = chip->state; |
| chip->state = FL_PM_SUSPENDED; |
| /* No need to wake_up() on this state change - |
| * as the whole point is that nobody can do anything |
| * with the chip now anyway. |
| */ |
| case FL_PM_SUSPENDED: |
| break; |
| |
| default: |
| ret = -EAGAIN; |
| break; |
| } |
| mutex_unlock(&chip->mutex); |
| } |
| |
| /* Unlock the chips again */ |
| |
| if (ret) { |
| for (i--; i >=0; i--) { |
| chip = &cfi->chips[i]; |
| |
| mutex_lock(&chip->mutex); |
| |
| if (chip->state == FL_PM_SUSPENDED) { |
| /* No need to force it into a known state here, |
| because we're returning failure, and it didn't |
| get power cycled */ |
| chip->state = chip->oldstate; |
| wake_up(&chip->wq); |
| } |
| mutex_unlock(&chip->mutex); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void cfi_staa_resume(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int i; |
| struct flchip *chip; |
| |
| for (i=0; i<cfi->numchips; i++) { |
| |
| chip = &cfi->chips[i]; |
| |
| mutex_lock(&chip->mutex); |
| |
| /* Go to known state. Chip may have been power cycled */ |
| if (chip->state == FL_PM_SUSPENDED) { |
| map_write(map, CMD(0xFF), 0); |
| chip->state = FL_READY; |
| wake_up(&chip->wq); |
| } |
| |
| mutex_unlock(&chip->mutex); |
| } |
| } |
| |
| static void cfi_staa_destroy(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| kfree(cfi->cmdset_priv); |
| kfree(cfi); |
| } |
| |
| MODULE_LICENSE("GPL"); |