| /* |
| Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> |
| Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> |
| <http://rt2x00.serialmonkey.com> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the |
| Free Software Foundation, Inc., |
| 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* |
| Module: rt2x00lib |
| Abstract: rt2x00 generic device routines. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/log2.h> |
| |
| #include "rt2x00.h" |
| #include "rt2x00lib.h" |
| |
| /* |
| * Utility functions. |
| */ |
| u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, |
| struct ieee80211_vif *vif) |
| { |
| /* |
| * When in STA mode, bssidx is always 0 otherwise local_address[5] |
| * contains the bss number, see BSS_ID_MASK comments for details. |
| */ |
| if (rt2x00dev->intf_sta_count) |
| return 0; |
| return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); |
| |
| /* |
| * Radio control handlers. |
| */ |
| int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| int status; |
| |
| /* |
| * Don't enable the radio twice. |
| * And check if the hardware button has been disabled. |
| */ |
| if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return 0; |
| |
| /* |
| * Initialize all data queues. |
| */ |
| rt2x00queue_init_queues(rt2x00dev); |
| |
| /* |
| * Enable radio. |
| */ |
| status = |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); |
| if (status) |
| return status; |
| |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); |
| |
| rt2x00leds_led_radio(rt2x00dev, true); |
| rt2x00led_led_activity(rt2x00dev, true); |
| |
| set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); |
| |
| /* |
| * Enable queues. |
| */ |
| rt2x00queue_start_queues(rt2x00dev); |
| rt2x00link_start_tuner(rt2x00dev); |
| rt2x00link_start_agc(rt2x00dev); |
| if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags)) |
| rt2x00link_start_vcocal(rt2x00dev); |
| |
| /* |
| * Start watchdog monitoring. |
| */ |
| rt2x00link_start_watchdog(rt2x00dev); |
| |
| return 0; |
| } |
| |
| void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return; |
| |
| /* |
| * Stop watchdog monitoring. |
| */ |
| rt2x00link_stop_watchdog(rt2x00dev); |
| |
| /* |
| * Stop all queues |
| */ |
| rt2x00link_stop_agc(rt2x00dev); |
| if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags)) |
| rt2x00link_stop_vcocal(rt2x00dev); |
| rt2x00link_stop_tuner(rt2x00dev); |
| rt2x00queue_stop_queues(rt2x00dev); |
| rt2x00queue_flush_queues(rt2x00dev, true); |
| |
| /* |
| * Disable radio. |
| */ |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); |
| rt2x00led_led_activity(rt2x00dev, false); |
| rt2x00leds_led_radio(rt2x00dev, false); |
| } |
| |
| static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, |
| struct ieee80211_vif *vif) |
| { |
| struct rt2x00_dev *rt2x00dev = data; |
| struct rt2x00_intf *intf = vif_to_intf(vif); |
| |
| /* |
| * It is possible the radio was disabled while the work had been |
| * scheduled. If that happens we should return here immediately, |
| * note that in the spinlock protected area above the delayed_flags |
| * have been cleared correctly. |
| */ |
| if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return; |
| |
| if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) |
| rt2x00queue_update_beacon(rt2x00dev, vif); |
| } |
| |
| static void rt2x00lib_intf_scheduled(struct work_struct *work) |
| { |
| struct rt2x00_dev *rt2x00dev = |
| container_of(work, struct rt2x00_dev, intf_work); |
| |
| /* |
| * Iterate over each interface and perform the |
| * requested configurations. |
| */ |
| ieee80211_iterate_active_interfaces(rt2x00dev->hw, |
| IEEE80211_IFACE_ITER_RESUME_ALL, |
| rt2x00lib_intf_scheduled_iter, |
| rt2x00dev); |
| } |
| |
| static void rt2x00lib_autowakeup(struct work_struct *work) |
| { |
| struct rt2x00_dev *rt2x00dev = |
| container_of(work, struct rt2x00_dev, autowakeup_work.work); |
| |
| if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) |
| return; |
| |
| if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) |
| rt2x00_err(rt2x00dev, "Device failed to wakeup\n"); |
| clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); |
| } |
| |
| /* |
| * Interrupt context handlers. |
| */ |
| static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, |
| struct ieee80211_vif *vif) |
| { |
| struct rt2x00_dev *rt2x00dev = data; |
| struct sk_buff *skb; |
| |
| /* |
| * Only AP mode interfaces do broad- and multicast buffering |
| */ |
| if (vif->type != NL80211_IFTYPE_AP) |
| return; |
| |
| /* |
| * Send out buffered broad- and multicast frames |
| */ |
| skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); |
| while (skb) { |
| rt2x00mac_tx(rt2x00dev->hw, NULL, skb); |
| skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); |
| } |
| } |
| |
| static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, |
| struct ieee80211_vif *vif) |
| { |
| struct rt2x00_dev *rt2x00dev = data; |
| |
| if (vif->type != NL80211_IFTYPE_AP && |
| vif->type != NL80211_IFTYPE_ADHOC && |
| vif->type != NL80211_IFTYPE_MESH_POINT && |
| vif->type != NL80211_IFTYPE_WDS) |
| return; |
| |
| /* |
| * Update the beacon without locking. This is safe on PCI devices |
| * as they only update the beacon periodically here. This should |
| * never be called for USB devices. |
| */ |
| WARN_ON(rt2x00_is_usb(rt2x00dev)); |
| rt2x00queue_update_beacon_locked(rt2x00dev, vif); |
| } |
| |
| void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) |
| { |
| if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return; |
| |
| /* send buffered bc/mc frames out for every bssid */ |
| ieee80211_iterate_active_interfaces_atomic( |
| rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, |
| rt2x00lib_bc_buffer_iter, rt2x00dev); |
| /* |
| * Devices with pre tbtt interrupt don't need to update the beacon |
| * here as they will fetch the next beacon directly prior to |
| * transmission. |
| */ |
| if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags)) |
| return; |
| |
| /* fetch next beacon */ |
| ieee80211_iterate_active_interfaces_atomic( |
| rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, |
| rt2x00lib_beaconupdate_iter, rt2x00dev); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); |
| |
| void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) |
| { |
| if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return; |
| |
| /* fetch next beacon */ |
| ieee80211_iterate_active_interfaces_atomic( |
| rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, |
| rt2x00lib_beaconupdate_iter, rt2x00dev); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); |
| |
| void rt2x00lib_dmastart(struct queue_entry *entry) |
| { |
| set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); |
| rt2x00queue_index_inc(entry, Q_INDEX); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); |
| |
| void rt2x00lib_dmadone(struct queue_entry *entry) |
| { |
| set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); |
| clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); |
| rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); |
| |
| static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct ieee80211_bar *bar = (void *) entry->skb->data; |
| struct rt2x00_bar_list_entry *bar_entry; |
| int ret; |
| |
| if (likely(!ieee80211_is_back_req(bar->frame_control))) |
| return 0; |
| |
| /* |
| * Unlike all other frames, the status report for BARs does |
| * not directly come from the hardware as it is incapable of |
| * matching a BA to a previously send BAR. The hardware will |
| * report all BARs as if they weren't acked at all. |
| * |
| * Instead the RX-path will scan for incoming BAs and set the |
| * block_acked flag if it sees one that was likely caused by |
| * a BAR from us. |
| * |
| * Remove remaining BARs here and return their status for |
| * TX done processing. |
| */ |
| ret = 0; |
| rcu_read_lock(); |
| list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) { |
| if (bar_entry->entry != entry) |
| continue; |
| |
| spin_lock_bh(&rt2x00dev->bar_list_lock); |
| /* Return whether this BAR was blockacked or not */ |
| ret = bar_entry->block_acked; |
| /* Remove the BAR from our checklist */ |
| list_del_rcu(&bar_entry->list); |
| spin_unlock_bh(&rt2x00dev->bar_list_lock); |
| kfree_rcu(bar_entry, head); |
| |
| break; |
| } |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| void rt2x00lib_txdone(struct queue_entry *entry, |
| struct txdone_entry_desc *txdesc) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| unsigned int header_length, i; |
| u8 rate_idx, rate_flags, retry_rates; |
| u8 skbdesc_flags = skbdesc->flags; |
| bool success; |
| |
| /* |
| * Unmap the skb. |
| */ |
| rt2x00queue_unmap_skb(entry); |
| |
| /* |
| * Remove the extra tx headroom from the skb. |
| */ |
| skb_pull(entry->skb, rt2x00dev->extra_tx_headroom); |
| |
| /* |
| * Signal that the TX descriptor is no longer in the skb. |
| */ |
| skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; |
| |
| /* |
| * Determine the length of 802.11 header. |
| */ |
| header_length = ieee80211_get_hdrlen_from_skb(entry->skb); |
| |
| /* |
| * Remove L2 padding which was added during |
| */ |
| if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) |
| rt2x00queue_remove_l2pad(entry->skb, header_length); |
| |
| /* |
| * If the IV/EIV data was stripped from the frame before it was |
| * passed to the hardware, we should now reinsert it again because |
| * mac80211 will expect the same data to be present it the |
| * frame as it was passed to us. |
| */ |
| if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) |
| rt2x00crypto_tx_insert_iv(entry->skb, header_length); |
| |
| /* |
| * Send frame to debugfs immediately, after this call is completed |
| * we are going to overwrite the skb->cb array. |
| */ |
| rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb); |
| |
| /* |
| * Determine if the frame has been successfully transmitted and |
| * remove BARs from our check list while checking for their |
| * TX status. |
| */ |
| success = |
| rt2x00lib_txdone_bar_status(entry) || |
| test_bit(TXDONE_SUCCESS, &txdesc->flags) || |
| test_bit(TXDONE_UNKNOWN, &txdesc->flags); |
| |
| /* |
| * Update TX statistics. |
| */ |
| rt2x00dev->link.qual.tx_success += success; |
| rt2x00dev->link.qual.tx_failed += !success; |
| |
| rate_idx = skbdesc->tx_rate_idx; |
| rate_flags = skbdesc->tx_rate_flags; |
| retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? |
| (txdesc->retry + 1) : 1; |
| |
| /* |
| * Initialize TX status |
| */ |
| memset(&tx_info->status, 0, sizeof(tx_info->status)); |
| tx_info->status.ack_signal = 0; |
| |
| /* |
| * Frame was send with retries, hardware tried |
| * different rates to send out the frame, at each |
| * retry it lowered the rate 1 step except when the |
| * lowest rate was used. |
| */ |
| for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { |
| tx_info->status.rates[i].idx = rate_idx - i; |
| tx_info->status.rates[i].flags = rate_flags; |
| |
| if (rate_idx - i == 0) { |
| /* |
| * The lowest rate (index 0) was used until the |
| * number of max retries was reached. |
| */ |
| tx_info->status.rates[i].count = retry_rates - i; |
| i++; |
| break; |
| } |
| tx_info->status.rates[i].count = 1; |
| } |
| if (i < (IEEE80211_TX_MAX_RATES - 1)) |
| tx_info->status.rates[i].idx = -1; /* terminate */ |
| |
| if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { |
| if (success) |
| tx_info->flags |= IEEE80211_TX_STAT_ACK; |
| else |
| rt2x00dev->low_level_stats.dot11ACKFailureCount++; |
| } |
| |
| /* |
| * Every single frame has it's own tx status, hence report |
| * every frame as ampdu of size 1. |
| * |
| * TODO: if we can find out how many frames were aggregated |
| * by the hw we could provide the real ampdu_len to mac80211 |
| * which would allow the rc algorithm to better decide on |
| * which rates are suitable. |
| */ |
| if (test_bit(TXDONE_AMPDU, &txdesc->flags) || |
| tx_info->flags & IEEE80211_TX_CTL_AMPDU) { |
| tx_info->flags |= IEEE80211_TX_STAT_AMPDU; |
| tx_info->status.ampdu_len = 1; |
| tx_info->status.ampdu_ack_len = success ? 1 : 0; |
| |
| if (!success) |
| tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; |
| } |
| |
| if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { |
| if (success) |
| rt2x00dev->low_level_stats.dot11RTSSuccessCount++; |
| else |
| rt2x00dev->low_level_stats.dot11RTSFailureCount++; |
| } |
| |
| /* |
| * Only send the status report to mac80211 when it's a frame |
| * that originated in mac80211. If this was a extra frame coming |
| * through a mac80211 library call (RTS/CTS) then we should not |
| * send the status report back. |
| */ |
| if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { |
| if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags)) |
| ieee80211_tx_status(rt2x00dev->hw, entry->skb); |
| else |
| ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); |
| } else |
| dev_kfree_skb_any(entry->skb); |
| |
| /* |
| * Make this entry available for reuse. |
| */ |
| entry->skb = NULL; |
| entry->flags = 0; |
| |
| rt2x00dev->ops->lib->clear_entry(entry); |
| |
| rt2x00queue_index_inc(entry, Q_INDEX_DONE); |
| |
| /* |
| * If the data queue was below the threshold before the txdone |
| * handler we must make sure the packet queue in the mac80211 stack |
| * is reenabled when the txdone handler has finished. This has to be |
| * serialized with rt2x00mac_tx(), otherwise we can wake up queue |
| * before it was stopped. |
| */ |
| spin_lock_bh(&entry->queue->tx_lock); |
| if (!rt2x00queue_threshold(entry->queue)) |
| rt2x00queue_unpause_queue(entry->queue); |
| spin_unlock_bh(&entry->queue->tx_lock); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_txdone); |
| |
| void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) |
| { |
| struct txdone_entry_desc txdesc; |
| |
| txdesc.flags = 0; |
| __set_bit(status, &txdesc.flags); |
| txdesc.retry = 0; |
| |
| rt2x00lib_txdone(entry, &txdesc); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); |
| |
| static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) |
| { |
| struct ieee80211_mgmt *mgmt = (void *)data; |
| u8 *pos, *end; |
| |
| pos = (u8 *)mgmt->u.beacon.variable; |
| end = data + len; |
| while (pos < end) { |
| if (pos + 2 + pos[1] > end) |
| return NULL; |
| |
| if (pos[0] == ie) |
| return pos; |
| |
| pos += 2 + pos[1]; |
| } |
| |
| return NULL; |
| } |
| |
| static void rt2x00lib_sleep(struct work_struct *work) |
| { |
| struct rt2x00_dev *rt2x00dev = |
| container_of(work, struct rt2x00_dev, sleep_work); |
| |
| if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) |
| return; |
| |
| /* |
| * Check again is powersaving is enabled, to prevent races from delayed |
| * work execution. |
| */ |
| if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) |
| rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, |
| IEEE80211_CONF_CHANGE_PS); |
| } |
| |
| static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev, |
| struct sk_buff *skb, |
| struct rxdone_entry_desc *rxdesc) |
| { |
| struct rt2x00_bar_list_entry *entry; |
| struct ieee80211_bar *ba = (void *)skb->data; |
| |
| if (likely(!ieee80211_is_back(ba->frame_control))) |
| return; |
| |
| if (rxdesc->size < sizeof(*ba) + FCS_LEN) |
| return; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) { |
| |
| if (ba->start_seq_num != entry->start_seq_num) |
| continue; |
| |
| #define TID_CHECK(a, b) ( \ |
| ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \ |
| ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \ |
| |
| if (!TID_CHECK(ba->control, entry->control)) |
| continue; |
| |
| #undef TID_CHECK |
| |
| if (compare_ether_addr(ba->ra, entry->ta)) |
| continue; |
| |
| if (compare_ether_addr(ba->ta, entry->ra)) |
| continue; |
| |
| /* Mark BAR since we received the according BA */ |
| spin_lock_bh(&rt2x00dev->bar_list_lock); |
| entry->block_acked = 1; |
| spin_unlock_bh(&rt2x00dev->bar_list_lock); |
| break; |
| } |
| rcu_read_unlock(); |
| |
| } |
| |
| static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, |
| struct sk_buff *skb, |
| struct rxdone_entry_desc *rxdesc) |
| { |
| struct ieee80211_hdr *hdr = (void *) skb->data; |
| struct ieee80211_tim_ie *tim_ie; |
| u8 *tim; |
| u8 tim_len; |
| bool cam; |
| |
| /* If this is not a beacon, or if mac80211 has no powersaving |
| * configured, or if the device is already in powersaving mode |
| * we can exit now. */ |
| if (likely(!ieee80211_is_beacon(hdr->frame_control) || |
| !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) |
| return; |
| |
| /* min. beacon length + FCS_LEN */ |
| if (skb->len <= 40 + FCS_LEN) |
| return; |
| |
| /* and only beacons from the associated BSSID, please */ |
| if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || |
| !rt2x00dev->aid) |
| return; |
| |
| rt2x00dev->last_beacon = jiffies; |
| |
| tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); |
| if (!tim) |
| return; |
| |
| if (tim[1] < sizeof(*tim_ie)) |
| return; |
| |
| tim_len = tim[1]; |
| tim_ie = (struct ieee80211_tim_ie *) &tim[2]; |
| |
| /* Check whenever the PHY can be turned off again. */ |
| |
| /* 1. What about buffered unicast traffic for our AID? */ |
| cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); |
| |
| /* 2. Maybe the AP wants to send multicast/broadcast data? */ |
| cam |= (tim_ie->bitmap_ctrl & 0x01); |
| |
| if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) |
| queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); |
| } |
| |
| static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, |
| struct rxdone_entry_desc *rxdesc) |
| { |
| struct ieee80211_supported_band *sband; |
| const struct rt2x00_rate *rate; |
| unsigned int i; |
| int signal = rxdesc->signal; |
| int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); |
| |
| switch (rxdesc->rate_mode) { |
| case RATE_MODE_CCK: |
| case RATE_MODE_OFDM: |
| /* |
| * For non-HT rates the MCS value needs to contain the |
| * actually used rate modulation (CCK or OFDM). |
| */ |
| if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) |
| signal = RATE_MCS(rxdesc->rate_mode, signal); |
| |
| sband = &rt2x00dev->bands[rt2x00dev->curr_band]; |
| for (i = 0; i < sband->n_bitrates; i++) { |
| rate = rt2x00_get_rate(sband->bitrates[i].hw_value); |
| if (((type == RXDONE_SIGNAL_PLCP) && |
| (rate->plcp == signal)) || |
| ((type == RXDONE_SIGNAL_BITRATE) && |
| (rate->bitrate == signal)) || |
| ((type == RXDONE_SIGNAL_MCS) && |
| (rate->mcs == signal))) { |
| return i; |
| } |
| } |
| break; |
| case RATE_MODE_HT_MIX: |
| case RATE_MODE_HT_GREENFIELD: |
| if (signal >= 0 && signal <= 76) |
| return signal; |
| break; |
| default: |
| break; |
| } |
| |
| rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n", |
| rxdesc->rate_mode, signal, type); |
| return 0; |
| } |
| |
| void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct rxdone_entry_desc rxdesc; |
| struct sk_buff *skb; |
| struct ieee80211_rx_status *rx_status; |
| unsigned int header_length; |
| int rate_idx; |
| |
| if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || |
| !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| goto submit_entry; |
| |
| if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) |
| goto submit_entry; |
| |
| /* |
| * Allocate a new sk_buffer. If no new buffer available, drop the |
| * received frame and reuse the existing buffer. |
| */ |
| skb = rt2x00queue_alloc_rxskb(entry, gfp); |
| if (!skb) |
| goto submit_entry; |
| |
| /* |
| * Unmap the skb. |
| */ |
| rt2x00queue_unmap_skb(entry); |
| |
| /* |
| * Extract the RXD details. |
| */ |
| memset(&rxdesc, 0, sizeof(rxdesc)); |
| rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); |
| |
| /* |
| * Check for valid size in case we get corrupted descriptor from |
| * hardware. |
| */ |
| if (unlikely(rxdesc.size == 0 || |
| rxdesc.size > entry->queue->data_size)) { |
| rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n", |
| rxdesc.size, entry->queue->data_size); |
| dev_kfree_skb(entry->skb); |
| goto renew_skb; |
| } |
| |
| /* |
| * The data behind the ieee80211 header must be |
| * aligned on a 4 byte boundary. |
| */ |
| header_length = ieee80211_get_hdrlen_from_skb(entry->skb); |
| |
| /* |
| * Hardware might have stripped the IV/EIV/ICV data, |
| * in that case it is possible that the data was |
| * provided separately (through hardware descriptor) |
| * in which case we should reinsert the data into the frame. |
| */ |
| if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && |
| (rxdesc.flags & RX_FLAG_IV_STRIPPED)) |
| rt2x00crypto_rx_insert_iv(entry->skb, header_length, |
| &rxdesc); |
| else if (header_length && |
| (rxdesc.size > header_length) && |
| (rxdesc.dev_flags & RXDONE_L2PAD)) |
| rt2x00queue_remove_l2pad(entry->skb, header_length); |
| |
| /* Trim buffer to correct size */ |
| skb_trim(entry->skb, rxdesc.size); |
| |
| /* |
| * Translate the signal to the correct bitrate index. |
| */ |
| rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); |
| if (rxdesc.rate_mode == RATE_MODE_HT_MIX || |
| rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) |
| rxdesc.flags |= RX_FLAG_HT; |
| |
| /* |
| * Check if this is a beacon, and more frames have been |
| * buffered while we were in powersaving mode. |
| */ |
| rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); |
| |
| /* |
| * Check for incoming BlockAcks to match to the BlockAckReqs |
| * we've send out. |
| */ |
| rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc); |
| |
| /* |
| * Update extra components |
| */ |
| rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); |
| rt2x00debug_update_crypto(rt2x00dev, &rxdesc); |
| rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb); |
| |
| /* |
| * Initialize RX status information, and send frame |
| * to mac80211. |
| */ |
| rx_status = IEEE80211_SKB_RXCB(entry->skb); |
| |
| /* Ensure that all fields of rx_status are initialized |
| * properly. The skb->cb array was used for driver |
| * specific informations, so rx_status might contain |
| * garbage. |
| */ |
| memset(rx_status, 0, sizeof(*rx_status)); |
| |
| rx_status->mactime = rxdesc.timestamp; |
| rx_status->band = rt2x00dev->curr_band; |
| rx_status->freq = rt2x00dev->curr_freq; |
| rx_status->rate_idx = rate_idx; |
| rx_status->signal = rxdesc.rssi; |
| rx_status->flag = rxdesc.flags; |
| rx_status->antenna = rt2x00dev->link.ant.active.rx; |
| |
| ieee80211_rx_ni(rt2x00dev->hw, entry->skb); |
| |
| renew_skb: |
| /* |
| * Replace the skb with the freshly allocated one. |
| */ |
| entry->skb = skb; |
| |
| submit_entry: |
| entry->flags = 0; |
| rt2x00queue_index_inc(entry, Q_INDEX_DONE); |
| if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && |
| test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| rt2x00dev->ops->lib->clear_entry(entry); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); |
| |
| /* |
| * Driver initialization handlers. |
| */ |
| const struct rt2x00_rate rt2x00_supported_rates[12] = { |
| { |
| .flags = DEV_RATE_CCK, |
| .bitrate = 10, |
| .ratemask = BIT(0), |
| .plcp = 0x00, |
| .mcs = RATE_MCS(RATE_MODE_CCK, 0), |
| }, |
| { |
| .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, |
| .bitrate = 20, |
| .ratemask = BIT(1), |
| .plcp = 0x01, |
| .mcs = RATE_MCS(RATE_MODE_CCK, 1), |
| }, |
| { |
| .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, |
| .bitrate = 55, |
| .ratemask = BIT(2), |
| .plcp = 0x02, |
| .mcs = RATE_MCS(RATE_MODE_CCK, 2), |
| }, |
| { |
| .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, |
| .bitrate = 110, |
| .ratemask = BIT(3), |
| .plcp = 0x03, |
| .mcs = RATE_MCS(RATE_MODE_CCK, 3), |
| }, |
| { |
| .flags = DEV_RATE_OFDM, |
| .bitrate = 60, |
| .ratemask = BIT(4), |
| .plcp = 0x0b, |
| .mcs = RATE_MCS(RATE_MODE_OFDM, 0), |
| }, |
| { |
| .flags = DEV_RATE_OFDM, |
| .bitrate = 90, |
| .ratemask = BIT(5), |
| .plcp = 0x0f, |
| .mcs = RATE_MCS(RATE_MODE_OFDM, 1), |
| }, |
| { |
| .flags = DEV_RATE_OFDM, |
| .bitrate = 120, |
| .ratemask = BIT(6), |
| .plcp = 0x0a, |
| .mcs = RATE_MCS(RATE_MODE_OFDM, 2), |
| }, |
| { |
| .flags = DEV_RATE_OFDM, |
| .bitrate = 180, |
| .ratemask = BIT(7), |
| .plcp = 0x0e, |
| .mcs = RATE_MCS(RATE_MODE_OFDM, 3), |
| }, |
| { |
| .flags = DEV_RATE_OFDM, |
| .bitrate = 240, |
| .ratemask = BIT(8), |
| .plcp = 0x09, |
| .mcs = RATE_MCS(RATE_MODE_OFDM, 4), |
| }, |
| { |
| .flags = DEV_RATE_OFDM, |
| .bitrate = 360, |
| .ratemask = BIT(9), |
| .plcp = 0x0d, |
| .mcs = RATE_MCS(RATE_MODE_OFDM, 5), |
| }, |
| { |
| .flags = DEV_RATE_OFDM, |
| .bitrate = 480, |
| .ratemask = BIT(10), |
| .plcp = 0x08, |
| .mcs = RATE_MCS(RATE_MODE_OFDM, 6), |
| }, |
| { |
| .flags = DEV_RATE_OFDM, |
| .bitrate = 540, |
| .ratemask = BIT(11), |
| .plcp = 0x0c, |
| .mcs = RATE_MCS(RATE_MODE_OFDM, 7), |
| }, |
| }; |
| |
| static void rt2x00lib_channel(struct ieee80211_channel *entry, |
| const int channel, const int tx_power, |
| const int value) |
| { |
| /* XXX: this assumption about the band is wrong for 802.11j */ |
| entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; |
| entry->center_freq = ieee80211_channel_to_frequency(channel, |
| entry->band); |
| entry->hw_value = value; |
| entry->max_power = tx_power; |
| entry->max_antenna_gain = 0xff; |
| } |
| |
| static void rt2x00lib_rate(struct ieee80211_rate *entry, |
| const u16 index, const struct rt2x00_rate *rate) |
| { |
| entry->flags = 0; |
| entry->bitrate = rate->bitrate; |
| entry->hw_value = index; |
| entry->hw_value_short = index; |
| |
| if (rate->flags & DEV_RATE_SHORT_PREAMBLE) |
| entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; |
| } |
| |
| static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, |
| struct hw_mode_spec *spec) |
| { |
| struct ieee80211_hw *hw = rt2x00dev->hw; |
| struct ieee80211_channel *channels; |
| struct ieee80211_rate *rates; |
| unsigned int num_rates; |
| unsigned int i; |
| |
| num_rates = 0; |
| if (spec->supported_rates & SUPPORT_RATE_CCK) |
| num_rates += 4; |
| if (spec->supported_rates & SUPPORT_RATE_OFDM) |
| num_rates += 8; |
| |
| channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); |
| if (!channels) |
| return -ENOMEM; |
| |
| rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); |
| if (!rates) |
| goto exit_free_channels; |
| |
| /* |
| * Initialize Rate list. |
| */ |
| for (i = 0; i < num_rates; i++) |
| rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); |
| |
| /* |
| * Initialize Channel list. |
| */ |
| for (i = 0; i < spec->num_channels; i++) { |
| rt2x00lib_channel(&channels[i], |
| spec->channels[i].channel, |
| spec->channels_info[i].max_power, i); |
| } |
| |
| /* |
| * Intitialize 802.11b, 802.11g |
| * Rates: CCK, OFDM. |
| * Channels: 2.4 GHz |
| */ |
| if (spec->supported_bands & SUPPORT_BAND_2GHZ) { |
| rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14; |
| rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates; |
| rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels; |
| rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates; |
| hw->wiphy->bands[IEEE80211_BAND_2GHZ] = |
| &rt2x00dev->bands[IEEE80211_BAND_2GHZ]; |
| memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap, |
| &spec->ht, sizeof(spec->ht)); |
| } |
| |
| /* |
| * Intitialize 802.11a |
| * Rates: OFDM. |
| * Channels: OFDM, UNII, HiperLAN2. |
| */ |
| if (spec->supported_bands & SUPPORT_BAND_5GHZ) { |
| rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels = |
| spec->num_channels - 14; |
| rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates = |
| num_rates - 4; |
| rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14]; |
| rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4]; |
| hw->wiphy->bands[IEEE80211_BAND_5GHZ] = |
| &rt2x00dev->bands[IEEE80211_BAND_5GHZ]; |
| memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap, |
| &spec->ht, sizeof(spec->ht)); |
| } |
| |
| return 0; |
| |
| exit_free_channels: |
| kfree(channels); |
| rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n"); |
| return -ENOMEM; |
| } |
| |
| static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) |
| { |
| if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) |
| ieee80211_unregister_hw(rt2x00dev->hw); |
| |
| if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) { |
| kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels); |
| kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates); |
| rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL; |
| rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL; |
| } |
| |
| kfree(rt2x00dev->spec.channels_info); |
| } |
| |
| static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) |
| { |
| struct hw_mode_spec *spec = &rt2x00dev->spec; |
| int status; |
| |
| if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) |
| return 0; |
| |
| /* |
| * Initialize HW modes. |
| */ |
| status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); |
| if (status) |
| return status; |
| |
| /* |
| * Initialize HW fields. |
| */ |
| rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; |
| |
| /* |
| * Initialize extra TX headroom required. |
| */ |
| rt2x00dev->hw->extra_tx_headroom = |
| max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, |
| rt2x00dev->extra_tx_headroom); |
| |
| /* |
| * Take TX headroom required for alignment into account. |
| */ |
| if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) |
| rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; |
| else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) |
| rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; |
| |
| /* |
| * Tell mac80211 about the size of our private STA structure. |
| */ |
| rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); |
| |
| /* |
| * Allocate tx status FIFO for driver use. |
| */ |
| if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) { |
| /* |
| * Allocate the txstatus fifo. In the worst case the tx |
| * status fifo has to hold the tx status of all entries |
| * in all tx queues. Hence, calculate the kfifo size as |
| * tx_queues * entry_num and round up to the nearest |
| * power of 2. |
| */ |
| int kfifo_size = |
| roundup_pow_of_two(rt2x00dev->ops->tx_queues * |
| rt2x00dev->tx->limit * |
| sizeof(u32)); |
| |
| status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, |
| GFP_KERNEL); |
| if (status) |
| return status; |
| } |
| |
| /* |
| * Initialize tasklets if used by the driver. Tasklets are |
| * disabled until the interrupts are turned on. The driver |
| * has to handle that. |
| */ |
| #define RT2X00_TASKLET_INIT(taskletname) \ |
| if (rt2x00dev->ops->lib->taskletname) { \ |
| tasklet_init(&rt2x00dev->taskletname, \ |
| rt2x00dev->ops->lib->taskletname, \ |
| (unsigned long)rt2x00dev); \ |
| } |
| |
| RT2X00_TASKLET_INIT(txstatus_tasklet); |
| RT2X00_TASKLET_INIT(pretbtt_tasklet); |
| RT2X00_TASKLET_INIT(tbtt_tasklet); |
| RT2X00_TASKLET_INIT(rxdone_tasklet); |
| RT2X00_TASKLET_INIT(autowake_tasklet); |
| |
| #undef RT2X00_TASKLET_INIT |
| |
| /* |
| * Register HW. |
| */ |
| status = ieee80211_register_hw(rt2x00dev->hw); |
| if (status) |
| return status; |
| |
| set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); |
| |
| return 0; |
| } |
| |
| /* |
| * Initialization/uninitialization handlers. |
| */ |
| static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) |
| { |
| if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) |
| return; |
| |
| /* |
| * Unregister extra components. |
| */ |
| rt2x00rfkill_unregister(rt2x00dev); |
| |
| /* |
| * Allow the HW to uninitialize. |
| */ |
| rt2x00dev->ops->lib->uninitialize(rt2x00dev); |
| |
| /* |
| * Free allocated queue entries. |
| */ |
| rt2x00queue_uninitialize(rt2x00dev); |
| } |
| |
| static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) |
| { |
| int status; |
| |
| if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) |
| return 0; |
| |
| /* |
| * Allocate all queue entries. |
| */ |
| status = rt2x00queue_initialize(rt2x00dev); |
| if (status) |
| return status; |
| |
| /* |
| * Initialize the device. |
| */ |
| status = rt2x00dev->ops->lib->initialize(rt2x00dev); |
| if (status) { |
| rt2x00queue_uninitialize(rt2x00dev); |
| return status; |
| } |
| |
| set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); |
| |
| return 0; |
| } |
| |
| int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) |
| { |
| int retval; |
| |
| if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) |
| return 0; |
| |
| /* |
| * If this is the first interface which is added, |
| * we should load the firmware now. |
| */ |
| retval = rt2x00lib_load_firmware(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * Initialize the device. |
| */ |
| retval = rt2x00lib_initialize(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| rt2x00dev->intf_ap_count = 0; |
| rt2x00dev->intf_sta_count = 0; |
| rt2x00dev->intf_associated = 0; |
| |
| /* Enable the radio */ |
| retval = rt2x00lib_enable_radio(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); |
| |
| return 0; |
| } |
| |
| void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) |
| { |
| if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) |
| return; |
| |
| /* |
| * Perhaps we can add something smarter here, |
| * but for now just disabling the radio should do. |
| */ |
| rt2x00lib_disable_radio(rt2x00dev); |
| |
| rt2x00dev->intf_ap_count = 0; |
| rt2x00dev->intf_sta_count = 0; |
| rt2x00dev->intf_associated = 0; |
| } |
| |
| static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev) |
| { |
| struct ieee80211_iface_limit *if_limit; |
| struct ieee80211_iface_combination *if_combination; |
| |
| if (rt2x00dev->ops->max_ap_intf < 2) |
| return; |
| |
| /* |
| * Build up AP interface limits structure. |
| */ |
| if_limit = &rt2x00dev->if_limits_ap; |
| if_limit->max = rt2x00dev->ops->max_ap_intf; |
| if_limit->types = BIT(NL80211_IFTYPE_AP); |
| #ifdef CONFIG_MAC80211_MESH |
| if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT); |
| #endif |
| |
| /* |
| * Build up AP interface combinations structure. |
| */ |
| if_combination = &rt2x00dev->if_combinations[IF_COMB_AP]; |
| if_combination->limits = if_limit; |
| if_combination->n_limits = 1; |
| if_combination->max_interfaces = if_limit->max; |
| if_combination->num_different_channels = 1; |
| |
| /* |
| * Finally, specify the possible combinations to mac80211. |
| */ |
| rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations; |
| rt2x00dev->hw->wiphy->n_iface_combinations = 1; |
| } |
| |
| static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev) |
| { |
| if (WARN_ON(!rt2x00dev->tx)) |
| return 0; |
| |
| if (rt2x00_is_usb(rt2x00dev)) |
| return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size; |
| |
| return rt2x00dev->tx[0].winfo_size; |
| } |
| |
| /* |
| * driver allocation handlers. |
| */ |
| int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) |
| { |
| int retval = -ENOMEM; |
| |
| /* |
| * Set possible interface combinations. |
| */ |
| rt2x00lib_set_if_combinations(rt2x00dev); |
| |
| /* |
| * Allocate the driver data memory, if necessary. |
| */ |
| if (rt2x00dev->ops->drv_data_size > 0) { |
| rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size, |
| GFP_KERNEL); |
| if (!rt2x00dev->drv_data) { |
| retval = -ENOMEM; |
| goto exit; |
| } |
| } |
| |
| spin_lock_init(&rt2x00dev->irqmask_lock); |
| mutex_init(&rt2x00dev->csr_mutex); |
| INIT_LIST_HEAD(&rt2x00dev->bar_list); |
| spin_lock_init(&rt2x00dev->bar_list_lock); |
| |
| set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); |
| |
| /* |
| * Make room for rt2x00_intf inside the per-interface |
| * structure ieee80211_vif. |
| */ |
| rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); |
| |
| /* |
| * rt2x00 devices can only use the last n bits of the MAC address |
| * for virtual interfaces. |
| */ |
| rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] = |
| (rt2x00dev->ops->max_ap_intf - 1); |
| |
| /* |
| * Initialize work. |
| */ |
| rt2x00dev->workqueue = |
| alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0); |
| if (!rt2x00dev->workqueue) { |
| retval = -ENOMEM; |
| goto exit; |
| } |
| |
| INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); |
| INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); |
| INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); |
| |
| /* |
| * Let the driver probe the device to detect the capabilities. |
| */ |
| retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); |
| if (retval) { |
| rt2x00_err(rt2x00dev, "Failed to allocate device\n"); |
| goto exit; |
| } |
| |
| /* |
| * Allocate queue array. |
| */ |
| retval = rt2x00queue_allocate(rt2x00dev); |
| if (retval) |
| goto exit; |
| |
| /* Cache TX headroom value */ |
| rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev); |
| |
| /* |
| * Determine which operating modes are supported, all modes |
| * which require beaconing, depend on the availability of |
| * beacon entries. |
| */ |
| rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); |
| if (rt2x00dev->bcn->limit > 0) |
| rt2x00dev->hw->wiphy->interface_modes |= |
| BIT(NL80211_IFTYPE_ADHOC) | |
| BIT(NL80211_IFTYPE_AP) | |
| #ifdef CONFIG_MAC80211_MESH |
| BIT(NL80211_IFTYPE_MESH_POINT) | |
| #endif |
| BIT(NL80211_IFTYPE_WDS); |
| |
| rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; |
| |
| /* |
| * Initialize ieee80211 structure. |
| */ |
| retval = rt2x00lib_probe_hw(rt2x00dev); |
| if (retval) { |
| rt2x00_err(rt2x00dev, "Failed to initialize hw\n"); |
| goto exit; |
| } |
| |
| /* |
| * Register extra components. |
| */ |
| rt2x00link_register(rt2x00dev); |
| rt2x00leds_register(rt2x00dev); |
| rt2x00debug_register(rt2x00dev); |
| rt2x00rfkill_register(rt2x00dev); |
| |
| return 0; |
| |
| exit: |
| rt2x00lib_remove_dev(rt2x00dev); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); |
| |
| void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) |
| { |
| clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); |
| |
| /* |
| * Disable radio. |
| */ |
| rt2x00lib_disable_radio(rt2x00dev); |
| |
| /* |
| * Stop all work. |
| */ |
| cancel_work_sync(&rt2x00dev->intf_work); |
| cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); |
| cancel_work_sync(&rt2x00dev->sleep_work); |
| if (rt2x00_is_usb(rt2x00dev)) { |
| hrtimer_cancel(&rt2x00dev->txstatus_timer); |
| cancel_work_sync(&rt2x00dev->rxdone_work); |
| cancel_work_sync(&rt2x00dev->txdone_work); |
| } |
| if (rt2x00dev->workqueue) |
| destroy_workqueue(rt2x00dev->workqueue); |
| |
| /* |
| * Free the tx status fifo. |
| */ |
| kfifo_free(&rt2x00dev->txstatus_fifo); |
| |
| /* |
| * Kill the tx status tasklet. |
| */ |
| tasklet_kill(&rt2x00dev->txstatus_tasklet); |
| tasklet_kill(&rt2x00dev->pretbtt_tasklet); |
| tasklet_kill(&rt2x00dev->tbtt_tasklet); |
| tasklet_kill(&rt2x00dev->rxdone_tasklet); |
| tasklet_kill(&rt2x00dev->autowake_tasklet); |
| |
| /* |
| * Uninitialize device. |
| */ |
| rt2x00lib_uninitialize(rt2x00dev); |
| |
| /* |
| * Free extra components |
| */ |
| rt2x00debug_deregister(rt2x00dev); |
| rt2x00leds_unregister(rt2x00dev); |
| |
| /* |
| * Free ieee80211_hw memory. |
| */ |
| rt2x00lib_remove_hw(rt2x00dev); |
| |
| /* |
| * Free firmware image. |
| */ |
| rt2x00lib_free_firmware(rt2x00dev); |
| |
| /* |
| * Free queue structures. |
| */ |
| rt2x00queue_free(rt2x00dev); |
| |
| /* |
| * Free the driver data. |
| */ |
| if (rt2x00dev->drv_data) |
| kfree(rt2x00dev->drv_data); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); |
| |
| /* |
| * Device state handlers |
| */ |
| #ifdef CONFIG_PM |
| int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) |
| { |
| rt2x00_dbg(rt2x00dev, "Going to sleep\n"); |
| |
| /* |
| * Prevent mac80211 from accessing driver while suspended. |
| */ |
| if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) |
| return 0; |
| |
| /* |
| * Cleanup as much as possible. |
| */ |
| rt2x00lib_uninitialize(rt2x00dev); |
| |
| /* |
| * Suspend/disable extra components. |
| */ |
| rt2x00leds_suspend(rt2x00dev); |
| rt2x00debug_deregister(rt2x00dev); |
| |
| /* |
| * Set device mode to sleep for power management, |
| * on some hardware this call seems to consistently fail. |
| * From the specifications it is hard to tell why it fails, |
| * and if this is a "bad thing". |
| * Overall it is safe to just ignore the failure and |
| * continue suspending. The only downside is that the |
| * device will not be in optimal power save mode, but with |
| * the radio and the other components already disabled the |
| * device is as good as disabled. |
| */ |
| if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) |
| rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n"); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_suspend); |
| |
| int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) |
| { |
| rt2x00_dbg(rt2x00dev, "Waking up\n"); |
| |
| /* |
| * Restore/enable extra components. |
| */ |
| rt2x00debug_register(rt2x00dev); |
| rt2x00leds_resume(rt2x00dev); |
| |
| /* |
| * We are ready again to receive requests from mac80211. |
| */ |
| set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_resume); |
| #endif /* CONFIG_PM */ |
| |
| /* |
| * rt2x00lib module information. |
| */ |
| MODULE_AUTHOR(DRV_PROJECT); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_DESCRIPTION("rt2x00 library"); |
| MODULE_LICENSE("GPL"); |