| /* |
| * Xen SMP support |
| * |
| * This file implements the Xen versions of smp_ops. SMP under Xen is |
| * very straightforward. Bringing a CPU up is simply a matter of |
| * loading its initial context and setting it running. |
| * |
| * IPIs are handled through the Xen event mechanism. |
| * |
| * Because virtual CPUs can be scheduled onto any real CPU, there's no |
| * useful topology information for the kernel to make use of. As a |
| * result, all CPUs are treated as if they're single-core and |
| * single-threaded. |
| */ |
| #include <linux/sched.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| #include <linux/smp.h> |
| #include <linux/irq_work.h> |
| #include <linux/tick.h> |
| |
| #include <asm/paravirt.h> |
| #include <asm/desc.h> |
| #include <asm/pgtable.h> |
| #include <asm/cpu.h> |
| |
| #include <xen/interface/xen.h> |
| #include <xen/interface/vcpu.h> |
| #include <xen/interface/xenpmu.h> |
| |
| #include <asm/xen/interface.h> |
| #include <asm/xen/hypercall.h> |
| |
| #include <xen/xen.h> |
| #include <xen/page.h> |
| #include <xen/events.h> |
| |
| #include <xen/hvc-console.h> |
| #include "xen-ops.h" |
| #include "mmu.h" |
| #include "smp.h" |
| #include "pmu.h" |
| |
| cpumask_var_t xen_cpu_initialized_map; |
| |
| struct xen_common_irq { |
| int irq; |
| char *name; |
| }; |
| static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 }; |
| static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 }; |
| static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 }; |
| static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 }; |
| static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 }; |
| static DEFINE_PER_CPU(struct xen_common_irq, xen_pmu_irq) = { .irq = -1 }; |
| |
| static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id); |
| static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id); |
| static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id); |
| |
| /* |
| * Reschedule call back. |
| */ |
| static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id) |
| { |
| inc_irq_stat(irq_resched_count); |
| scheduler_ipi(); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void cpu_bringup(void) |
| { |
| int cpu; |
| |
| cpu_init(); |
| touch_softlockup_watchdog(); |
| preempt_disable(); |
| |
| /* PVH runs in ring 0 and allows us to do native syscalls. Yay! */ |
| if (!xen_feature(XENFEAT_supervisor_mode_kernel)) { |
| xen_enable_sysenter(); |
| xen_enable_syscall(); |
| } |
| cpu = smp_processor_id(); |
| smp_store_cpu_info(cpu); |
| cpu_data(cpu).x86_max_cores = 1; |
| set_cpu_sibling_map(cpu); |
| |
| xen_setup_cpu_clockevents(); |
| |
| notify_cpu_starting(cpu); |
| |
| set_cpu_online(cpu, true); |
| |
| cpu_set_state_online(cpu); /* Implies full memory barrier. */ |
| |
| /* We can take interrupts now: we're officially "up". */ |
| local_irq_enable(); |
| } |
| |
| /* |
| * Note: cpu parameter is only relevant for PVH. The reason for passing it |
| * is we can't do smp_processor_id until the percpu segments are loaded, for |
| * which we need the cpu number! So we pass it in rdi as first parameter. |
| */ |
| asmlinkage __visible void cpu_bringup_and_idle(int cpu) |
| { |
| #ifdef CONFIG_XEN_PVH |
| if (xen_feature(XENFEAT_auto_translated_physmap) && |
| xen_feature(XENFEAT_supervisor_mode_kernel)) |
| xen_pvh_secondary_vcpu_init(cpu); |
| #endif |
| cpu_bringup(); |
| cpu_startup_entry(CPUHP_ONLINE); |
| } |
| |
| static void xen_smp_intr_free(unsigned int cpu) |
| { |
| if (per_cpu(xen_resched_irq, cpu).irq >= 0) { |
| unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL); |
| per_cpu(xen_resched_irq, cpu).irq = -1; |
| kfree(per_cpu(xen_resched_irq, cpu).name); |
| per_cpu(xen_resched_irq, cpu).name = NULL; |
| } |
| if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) { |
| unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL); |
| per_cpu(xen_callfunc_irq, cpu).irq = -1; |
| kfree(per_cpu(xen_callfunc_irq, cpu).name); |
| per_cpu(xen_callfunc_irq, cpu).name = NULL; |
| } |
| if (per_cpu(xen_debug_irq, cpu).irq >= 0) { |
| unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL); |
| per_cpu(xen_debug_irq, cpu).irq = -1; |
| kfree(per_cpu(xen_debug_irq, cpu).name); |
| per_cpu(xen_debug_irq, cpu).name = NULL; |
| } |
| if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) { |
| unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq, |
| NULL); |
| per_cpu(xen_callfuncsingle_irq, cpu).irq = -1; |
| kfree(per_cpu(xen_callfuncsingle_irq, cpu).name); |
| per_cpu(xen_callfuncsingle_irq, cpu).name = NULL; |
| } |
| if (xen_hvm_domain()) |
| return; |
| |
| if (per_cpu(xen_irq_work, cpu).irq >= 0) { |
| unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL); |
| per_cpu(xen_irq_work, cpu).irq = -1; |
| kfree(per_cpu(xen_irq_work, cpu).name); |
| per_cpu(xen_irq_work, cpu).name = NULL; |
| } |
| |
| if (per_cpu(xen_pmu_irq, cpu).irq >= 0) { |
| unbind_from_irqhandler(per_cpu(xen_pmu_irq, cpu).irq, NULL); |
| per_cpu(xen_pmu_irq, cpu).irq = -1; |
| kfree(per_cpu(xen_pmu_irq, cpu).name); |
| per_cpu(xen_pmu_irq, cpu).name = NULL; |
| } |
| }; |
| static int xen_smp_intr_init(unsigned int cpu) |
| { |
| int rc; |
| char *resched_name, *callfunc_name, *debug_name, *pmu_name; |
| |
| resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu); |
| rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR, |
| cpu, |
| xen_reschedule_interrupt, |
| IRQF_PERCPU|IRQF_NOBALANCING, |
| resched_name, |
| NULL); |
| if (rc < 0) |
| goto fail; |
| per_cpu(xen_resched_irq, cpu).irq = rc; |
| per_cpu(xen_resched_irq, cpu).name = resched_name; |
| |
| callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu); |
| rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR, |
| cpu, |
| xen_call_function_interrupt, |
| IRQF_PERCPU|IRQF_NOBALANCING, |
| callfunc_name, |
| NULL); |
| if (rc < 0) |
| goto fail; |
| per_cpu(xen_callfunc_irq, cpu).irq = rc; |
| per_cpu(xen_callfunc_irq, cpu).name = callfunc_name; |
| |
| debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu); |
| rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt, |
| IRQF_PERCPU | IRQF_NOBALANCING, |
| debug_name, NULL); |
| if (rc < 0) |
| goto fail; |
| per_cpu(xen_debug_irq, cpu).irq = rc; |
| per_cpu(xen_debug_irq, cpu).name = debug_name; |
| |
| callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu); |
| rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR, |
| cpu, |
| xen_call_function_single_interrupt, |
| IRQF_PERCPU|IRQF_NOBALANCING, |
| callfunc_name, |
| NULL); |
| if (rc < 0) |
| goto fail; |
| per_cpu(xen_callfuncsingle_irq, cpu).irq = rc; |
| per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name; |
| |
| /* |
| * The IRQ worker on PVHVM goes through the native path and uses the |
| * IPI mechanism. |
| */ |
| if (xen_hvm_domain()) |
| return 0; |
| |
| callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu); |
| rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR, |
| cpu, |
| xen_irq_work_interrupt, |
| IRQF_PERCPU|IRQF_NOBALANCING, |
| callfunc_name, |
| NULL); |
| if (rc < 0) |
| goto fail; |
| per_cpu(xen_irq_work, cpu).irq = rc; |
| per_cpu(xen_irq_work, cpu).name = callfunc_name; |
| |
| if (is_xen_pmu(cpu)) { |
| pmu_name = kasprintf(GFP_KERNEL, "pmu%d", cpu); |
| rc = bind_virq_to_irqhandler(VIRQ_XENPMU, cpu, |
| xen_pmu_irq_handler, |
| IRQF_PERCPU|IRQF_NOBALANCING, |
| pmu_name, NULL); |
| if (rc < 0) |
| goto fail; |
| per_cpu(xen_pmu_irq, cpu).irq = rc; |
| per_cpu(xen_pmu_irq, cpu).name = pmu_name; |
| } |
| |
| return 0; |
| |
| fail: |
| xen_smp_intr_free(cpu); |
| return rc; |
| } |
| |
| static void __init xen_fill_possible_map(void) |
| { |
| int i, rc; |
| |
| if (xen_initial_domain()) |
| return; |
| |
| for (i = 0; i < nr_cpu_ids; i++) { |
| rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); |
| if (rc >= 0) { |
| num_processors++; |
| set_cpu_possible(i, true); |
| } |
| } |
| } |
| |
| static void __init xen_filter_cpu_maps(void) |
| { |
| int i, rc; |
| unsigned int subtract = 0; |
| |
| if (!xen_initial_domain()) |
| return; |
| |
| num_processors = 0; |
| disabled_cpus = 0; |
| for (i = 0; i < nr_cpu_ids; i++) { |
| rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); |
| if (rc >= 0) { |
| num_processors++; |
| set_cpu_possible(i, true); |
| } else { |
| set_cpu_possible(i, false); |
| set_cpu_present(i, false); |
| subtract++; |
| } |
| } |
| #ifdef CONFIG_HOTPLUG_CPU |
| /* This is akin to using 'nr_cpus' on the Linux command line. |
| * Which is OK as when we use 'dom0_max_vcpus=X' we can only |
| * have up to X, while nr_cpu_ids is greater than X. This |
| * normally is not a problem, except when CPU hotplugging |
| * is involved and then there might be more than X CPUs |
| * in the guest - which will not work as there is no |
| * hypercall to expand the max number of VCPUs an already |
| * running guest has. So cap it up to X. */ |
| if (subtract) |
| nr_cpu_ids = nr_cpu_ids - subtract; |
| #endif |
| |
| } |
| |
| static void __init xen_smp_prepare_boot_cpu(void) |
| { |
| BUG_ON(smp_processor_id() != 0); |
| native_smp_prepare_boot_cpu(); |
| |
| if (xen_pv_domain()) { |
| if (!xen_feature(XENFEAT_writable_page_tables)) |
| /* We've switched to the "real" per-cpu gdt, so make |
| * sure the old memory can be recycled. */ |
| make_lowmem_page_readwrite(xen_initial_gdt); |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * Xen starts us with XEN_FLAT_RING1_DS, but linux code |
| * expects __USER_DS |
| */ |
| loadsegment(ds, __USER_DS); |
| loadsegment(es, __USER_DS); |
| #endif |
| |
| xen_filter_cpu_maps(); |
| xen_setup_vcpu_info_placement(); |
| } |
| /* |
| * The alternative logic (which patches the unlock/lock) runs before |
| * the smp bootup up code is activated. Hence we need to set this up |
| * the core kernel is being patched. Otherwise we will have only |
| * modules patched but not core code. |
| */ |
| xen_init_spinlocks(); |
| } |
| |
| static void __init xen_smp_prepare_cpus(unsigned int max_cpus) |
| { |
| unsigned cpu; |
| unsigned int i; |
| |
| if (skip_ioapic_setup) { |
| char *m = (max_cpus == 0) ? |
| "The nosmp parameter is incompatible with Xen; " \ |
| "use Xen dom0_max_vcpus=1 parameter" : |
| "The noapic parameter is incompatible with Xen"; |
| |
| xen_raw_printk(m); |
| panic(m); |
| } |
| xen_init_lock_cpu(0); |
| |
| smp_store_boot_cpu_info(); |
| cpu_data(0).x86_max_cores = 1; |
| |
| for_each_possible_cpu(i) { |
| zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); |
| zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); |
| zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); |
| } |
| set_cpu_sibling_map(0); |
| |
| xen_pmu_init(0); |
| |
| if (xen_smp_intr_init(0)) |
| BUG(); |
| |
| if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL)) |
| panic("could not allocate xen_cpu_initialized_map\n"); |
| |
| cpumask_copy(xen_cpu_initialized_map, cpumask_of(0)); |
| |
| /* Restrict the possible_map according to max_cpus. */ |
| while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) { |
| for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--) |
| continue; |
| set_cpu_possible(cpu, false); |
| } |
| |
| for_each_possible_cpu(cpu) |
| set_cpu_present(cpu, true); |
| } |
| |
| static int |
| cpu_initialize_context(unsigned int cpu, struct task_struct *idle) |
| { |
| struct vcpu_guest_context *ctxt; |
| struct desc_struct *gdt; |
| unsigned long gdt_mfn; |
| |
| /* used to tell cpu_init() that it can proceed with initialization */ |
| cpumask_set_cpu(cpu, cpu_callout_mask); |
| if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map)) |
| return 0; |
| |
| ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); |
| if (ctxt == NULL) |
| return -ENOMEM; |
| |
| gdt = get_cpu_gdt_table(cpu); |
| |
| #ifdef CONFIG_X86_32 |
| /* Note: PVH is not yet supported on x86_32. */ |
| ctxt->user_regs.fs = __KERNEL_PERCPU; |
| ctxt->user_regs.gs = __KERNEL_STACK_CANARY; |
| #endif |
| memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt)); |
| |
| if (!xen_feature(XENFEAT_auto_translated_physmap)) { |
| ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle; |
| ctxt->flags = VGCF_IN_KERNEL; |
| ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */ |
| ctxt->user_regs.ds = __USER_DS; |
| ctxt->user_regs.es = __USER_DS; |
| ctxt->user_regs.ss = __KERNEL_DS; |
| |
| xen_copy_trap_info(ctxt->trap_ctxt); |
| |
| ctxt->ldt_ents = 0; |
| |
| BUG_ON((unsigned long)gdt & ~PAGE_MASK); |
| |
| gdt_mfn = arbitrary_virt_to_mfn(gdt); |
| make_lowmem_page_readonly(gdt); |
| make_lowmem_page_readonly(mfn_to_virt(gdt_mfn)); |
| |
| ctxt->gdt_frames[0] = gdt_mfn; |
| ctxt->gdt_ents = GDT_ENTRIES; |
| |
| ctxt->kernel_ss = __KERNEL_DS; |
| ctxt->kernel_sp = idle->thread.sp0; |
| |
| #ifdef CONFIG_X86_32 |
| ctxt->event_callback_cs = __KERNEL_CS; |
| ctxt->failsafe_callback_cs = __KERNEL_CS; |
| #else |
| ctxt->gs_base_kernel = per_cpu_offset(cpu); |
| #endif |
| ctxt->event_callback_eip = |
| (unsigned long)xen_hypervisor_callback; |
| ctxt->failsafe_callback_eip = |
| (unsigned long)xen_failsafe_callback; |
| ctxt->user_regs.cs = __KERNEL_CS; |
| per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir); |
| } |
| #ifdef CONFIG_XEN_PVH |
| else { |
| /* |
| * The vcpu comes on kernel page tables which have the NX pte |
| * bit set. This means before DS/SS is touched, NX in |
| * EFER must be set. Hence the following assembly glue code. |
| */ |
| ctxt->user_regs.eip = (unsigned long)xen_pvh_early_cpu_init; |
| ctxt->user_regs.rdi = cpu; |
| ctxt->user_regs.rsi = true; /* entry == true */ |
| } |
| #endif |
| ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs); |
| ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir)); |
| if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt)) |
| BUG(); |
| |
| kfree(ctxt); |
| return 0; |
| } |
| |
| static int xen_cpu_up(unsigned int cpu, struct task_struct *idle) |
| { |
| int rc; |
| |
| common_cpu_up(cpu, idle); |
| |
| xen_setup_runstate_info(cpu); |
| xen_setup_timer(cpu); |
| xen_init_lock_cpu(cpu); |
| |
| /* |
| * PV VCPUs are always successfully taken down (see 'while' loop |
| * in xen_cpu_die()), so -EBUSY is an error. |
| */ |
| rc = cpu_check_up_prepare(cpu); |
| if (rc) |
| return rc; |
| |
| /* make sure interrupts start blocked */ |
| per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1; |
| |
| rc = cpu_initialize_context(cpu, idle); |
| if (rc) |
| return rc; |
| |
| xen_pmu_init(cpu); |
| |
| rc = xen_smp_intr_init(cpu); |
| if (rc) |
| return rc; |
| |
| rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL); |
| BUG_ON(rc); |
| |
| while (cpu_report_state(cpu) != CPU_ONLINE) |
| HYPERVISOR_sched_op(SCHEDOP_yield, NULL); |
| |
| return 0; |
| } |
| |
| static void xen_smp_cpus_done(unsigned int max_cpus) |
| { |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static int xen_cpu_disable(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| if (cpu == 0) |
| return -EBUSY; |
| |
| cpu_disable_common(); |
| |
| load_cr3(swapper_pg_dir); |
| return 0; |
| } |
| |
| static void xen_cpu_die(unsigned int cpu) |
| { |
| while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) { |
| __set_current_state(TASK_UNINTERRUPTIBLE); |
| schedule_timeout(HZ/10); |
| } |
| |
| if (common_cpu_die(cpu) == 0) { |
| xen_smp_intr_free(cpu); |
| xen_uninit_lock_cpu(cpu); |
| xen_teardown_timer(cpu); |
| xen_pmu_finish(cpu); |
| } |
| } |
| |
| static void xen_play_dead(void) /* used only with HOTPLUG_CPU */ |
| { |
| play_dead_common(); |
| HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL); |
| cpu_bringup(); |
| /* |
| * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down) |
| * clears certain data that the cpu_idle loop (which called us |
| * and that we return from) expects. The only way to get that |
| * data back is to call: |
| */ |
| tick_nohz_idle_enter(); |
| } |
| |
| #else /* !CONFIG_HOTPLUG_CPU */ |
| static int xen_cpu_disable(void) |
| { |
| return -ENOSYS; |
| } |
| |
| static void xen_cpu_die(unsigned int cpu) |
| { |
| BUG(); |
| } |
| |
| static void xen_play_dead(void) |
| { |
| BUG(); |
| } |
| |
| #endif |
| static void stop_self(void *v) |
| { |
| int cpu = smp_processor_id(); |
| |
| /* make sure we're not pinning something down */ |
| load_cr3(swapper_pg_dir); |
| /* should set up a minimal gdt */ |
| |
| set_cpu_online(cpu, false); |
| |
| HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL); |
| BUG(); |
| } |
| |
| static void xen_stop_other_cpus(int wait) |
| { |
| smp_call_function(stop_self, NULL, wait); |
| } |
| |
| static void xen_smp_send_reschedule(int cpu) |
| { |
| xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR); |
| } |
| |
| static void __xen_send_IPI_mask(const struct cpumask *mask, |
| int vector) |
| { |
| unsigned cpu; |
| |
| for_each_cpu_and(cpu, mask, cpu_online_mask) |
| xen_send_IPI_one(cpu, vector); |
| } |
| |
| static void xen_smp_send_call_function_ipi(const struct cpumask *mask) |
| { |
| int cpu; |
| |
| __xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR); |
| |
| /* Make sure other vcpus get a chance to run if they need to. */ |
| for_each_cpu(cpu, mask) { |
| if (xen_vcpu_stolen(cpu)) { |
| HYPERVISOR_sched_op(SCHEDOP_yield, NULL); |
| break; |
| } |
| } |
| } |
| |
| static void xen_smp_send_call_function_single_ipi(int cpu) |
| { |
| __xen_send_IPI_mask(cpumask_of(cpu), |
| XEN_CALL_FUNCTION_SINGLE_VECTOR); |
| } |
| |
| static inline int xen_map_vector(int vector) |
| { |
| int xen_vector; |
| |
| switch (vector) { |
| case RESCHEDULE_VECTOR: |
| xen_vector = XEN_RESCHEDULE_VECTOR; |
| break; |
| case CALL_FUNCTION_VECTOR: |
| xen_vector = XEN_CALL_FUNCTION_VECTOR; |
| break; |
| case CALL_FUNCTION_SINGLE_VECTOR: |
| xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR; |
| break; |
| case IRQ_WORK_VECTOR: |
| xen_vector = XEN_IRQ_WORK_VECTOR; |
| break; |
| #ifdef CONFIG_X86_64 |
| case NMI_VECTOR: |
| case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */ |
| xen_vector = XEN_NMI_VECTOR; |
| break; |
| #endif |
| default: |
| xen_vector = -1; |
| printk(KERN_ERR "xen: vector 0x%x is not implemented\n", |
| vector); |
| } |
| |
| return xen_vector; |
| } |
| |
| void xen_send_IPI_mask(const struct cpumask *mask, |
| int vector) |
| { |
| int xen_vector = xen_map_vector(vector); |
| |
| if (xen_vector >= 0) |
| __xen_send_IPI_mask(mask, xen_vector); |
| } |
| |
| void xen_send_IPI_all(int vector) |
| { |
| int xen_vector = xen_map_vector(vector); |
| |
| if (xen_vector >= 0) |
| __xen_send_IPI_mask(cpu_online_mask, xen_vector); |
| } |
| |
| void xen_send_IPI_self(int vector) |
| { |
| int xen_vector = xen_map_vector(vector); |
| |
| if (xen_vector >= 0) |
| xen_send_IPI_one(smp_processor_id(), xen_vector); |
| } |
| |
| void xen_send_IPI_mask_allbutself(const struct cpumask *mask, |
| int vector) |
| { |
| unsigned cpu; |
| unsigned int this_cpu = smp_processor_id(); |
| int xen_vector = xen_map_vector(vector); |
| |
| if (!(num_online_cpus() > 1) || (xen_vector < 0)) |
| return; |
| |
| for_each_cpu_and(cpu, mask, cpu_online_mask) { |
| if (this_cpu == cpu) |
| continue; |
| |
| xen_send_IPI_one(cpu, xen_vector); |
| } |
| } |
| |
| void xen_send_IPI_allbutself(int vector) |
| { |
| xen_send_IPI_mask_allbutself(cpu_online_mask, vector); |
| } |
| |
| static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id) |
| { |
| irq_enter(); |
| generic_smp_call_function_interrupt(); |
| inc_irq_stat(irq_call_count); |
| irq_exit(); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id) |
| { |
| irq_enter(); |
| generic_smp_call_function_single_interrupt(); |
| inc_irq_stat(irq_call_count); |
| irq_exit(); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id) |
| { |
| irq_enter(); |
| irq_work_run(); |
| inc_irq_stat(apic_irq_work_irqs); |
| irq_exit(); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static const struct smp_ops xen_smp_ops __initconst = { |
| .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu, |
| .smp_prepare_cpus = xen_smp_prepare_cpus, |
| .smp_cpus_done = xen_smp_cpus_done, |
| |
| .cpu_up = xen_cpu_up, |
| .cpu_die = xen_cpu_die, |
| .cpu_disable = xen_cpu_disable, |
| .play_dead = xen_play_dead, |
| |
| .stop_other_cpus = xen_stop_other_cpus, |
| .smp_send_reschedule = xen_smp_send_reschedule, |
| |
| .send_call_func_ipi = xen_smp_send_call_function_ipi, |
| .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi, |
| }; |
| |
| void __init xen_smp_init(void) |
| { |
| smp_ops = xen_smp_ops; |
| xen_fill_possible_map(); |
| } |
| |
| static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus) |
| { |
| native_smp_prepare_cpus(max_cpus); |
| WARN_ON(xen_smp_intr_init(0)); |
| |
| xen_init_lock_cpu(0); |
| } |
| |
| static int xen_hvm_cpu_up(unsigned int cpu, struct task_struct *tidle) |
| { |
| int rc; |
| |
| /* |
| * This can happen if CPU was offlined earlier and |
| * offlining timed out in common_cpu_die(). |
| */ |
| if (cpu_report_state(cpu) == CPU_DEAD_FROZEN) { |
| xen_smp_intr_free(cpu); |
| xen_uninit_lock_cpu(cpu); |
| } |
| |
| /* |
| * xen_smp_intr_init() needs to run before native_cpu_up() |
| * so that IPI vectors are set up on the booting CPU before |
| * it is marked online in native_cpu_up(). |
| */ |
| rc = xen_smp_intr_init(cpu); |
| WARN_ON(rc); |
| if (!rc) |
| rc = native_cpu_up(cpu, tidle); |
| |
| /* |
| * We must initialize the slowpath CPU kicker _after_ the native |
| * path has executed. If we initialized it before none of the |
| * unlocker IPI kicks would reach the booting CPU as the booting |
| * CPU had not set itself 'online' in cpu_online_mask. That mask |
| * is checked when IPIs are sent (on HVM at least). |
| */ |
| xen_init_lock_cpu(cpu); |
| return rc; |
| } |
| |
| void __init xen_hvm_smp_init(void) |
| { |
| if (!xen_have_vector_callback) |
| return; |
| smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus; |
| smp_ops.smp_send_reschedule = xen_smp_send_reschedule; |
| smp_ops.cpu_up = xen_hvm_cpu_up; |
| smp_ops.cpu_die = xen_cpu_die; |
| smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi; |
| smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi; |
| smp_ops.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu; |
| } |