| #ifndef _M68KNOMMU_BITOPS_H |
| #define _M68KNOMMU_BITOPS_H |
| |
| /* |
| * Copyright 1992, Linus Torvalds. |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/compiler.h> |
| #include <asm/byteorder.h> /* swab32 */ |
| #include <asm/system.h> /* save_flags */ |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * Generic ffs(). |
| */ |
| static inline int ffs(int x) |
| { |
| int r = 1; |
| |
| if (!x) |
| return 0; |
| if (!(x & 0xffff)) { |
| x >>= 16; |
| r += 16; |
| } |
| if (!(x & 0xff)) { |
| x >>= 8; |
| r += 8; |
| } |
| if (!(x & 0xf)) { |
| x >>= 4; |
| r += 4; |
| } |
| if (!(x & 3)) { |
| x >>= 2; |
| r += 2; |
| } |
| if (!(x & 1)) { |
| x >>= 1; |
| r += 1; |
| } |
| return r; |
| } |
| |
| /* |
| * Generic __ffs(). |
| */ |
| static inline int __ffs(int x) |
| { |
| int r = 0; |
| |
| if (!x) |
| return 0; |
| if (!(x & 0xffff)) { |
| x >>= 16; |
| r += 16; |
| } |
| if (!(x & 0xff)) { |
| x >>= 8; |
| r += 8; |
| } |
| if (!(x & 0xf)) { |
| x >>= 4; |
| r += 4; |
| } |
| if (!(x & 3)) { |
| x >>= 2; |
| r += 2; |
| } |
| if (!(x & 1)) { |
| x >>= 1; |
| r += 1; |
| } |
| return r; |
| } |
| |
| /* |
| * Every architecture must define this function. It's the fastest |
| * way of searching a 140-bit bitmap where the first 100 bits are |
| * unlikely to be set. It's guaranteed that at least one of the 140 |
| * bits is cleared. |
| */ |
| static inline int sched_find_first_bit(unsigned long *b) |
| { |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return __ffs(b[1]) + 32; |
| if (unlikely(b[2])) |
| return __ffs(b[2]) + 64; |
| if (b[3]) |
| return __ffs(b[3]) + 96; |
| return __ffs(b[4]) + 128; |
| } |
| |
| /* |
| * ffz = Find First Zero in word. Undefined if no zero exists, |
| * so code should check against ~0UL first.. |
| */ |
| static __inline__ unsigned long ffz(unsigned long word) |
| { |
| unsigned long result = 0; |
| |
| while(word & 1) { |
| result++; |
| word >>= 1; |
| } |
| return result; |
| } |
| |
| |
| static __inline__ void set_bit(int nr, volatile unsigned long * addr) |
| { |
| #ifdef CONFIG_COLDFIRE |
| __asm__ __volatile__ ("lea %0,%%a0; bset %1,(%%a0)" |
| : "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| : "d" (nr) |
| : "%a0", "cc"); |
| #else |
| __asm__ __volatile__ ("bset %1,%0" |
| : "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| : "di" (nr) |
| : "cc"); |
| #endif |
| } |
| |
| #define __set_bit(nr, addr) set_bit(nr, addr) |
| |
| /* |
| * clear_bit() doesn't provide any barrier for the compiler. |
| */ |
| #define smp_mb__before_clear_bit() barrier() |
| #define smp_mb__after_clear_bit() barrier() |
| |
| static __inline__ void clear_bit(int nr, volatile unsigned long * addr) |
| { |
| #ifdef CONFIG_COLDFIRE |
| __asm__ __volatile__ ("lea %0,%%a0; bclr %1,(%%a0)" |
| : "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| : "d" (nr) |
| : "%a0", "cc"); |
| #else |
| __asm__ __volatile__ ("bclr %1,%0" |
| : "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| : "di" (nr) |
| : "cc"); |
| #endif |
| } |
| |
| #define __clear_bit(nr, addr) clear_bit(nr, addr) |
| |
| static __inline__ void change_bit(int nr, volatile unsigned long * addr) |
| { |
| #ifdef CONFIG_COLDFIRE |
| __asm__ __volatile__ ("lea %0,%%a0; bchg %1,(%%a0)" |
| : "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| : "d" (nr) |
| : "%a0", "cc"); |
| #else |
| __asm__ __volatile__ ("bchg %1,%0" |
| : "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| : "di" (nr) |
| : "cc"); |
| #endif |
| } |
| |
| #define __change_bit(nr, addr) change_bit(nr, addr) |
| |
| static __inline__ int test_and_set_bit(int nr, volatile unsigned long * addr) |
| { |
| char retval; |
| |
| #ifdef CONFIG_COLDFIRE |
| __asm__ __volatile__ ("lea %1,%%a0; bset %2,(%%a0); sne %0" |
| : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| : "d" (nr) |
| : "%a0"); |
| #else |
| __asm__ __volatile__ ("bset %2,%1; sne %0" |
| : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| : "di" (nr) |
| /* No clobber */); |
| #endif |
| |
| return retval; |
| } |
| |
| #define __test_and_set_bit(nr, addr) test_and_set_bit(nr, addr) |
| |
| static __inline__ int test_and_clear_bit(int nr, volatile unsigned long * addr) |
| { |
| char retval; |
| |
| #ifdef CONFIG_COLDFIRE |
| __asm__ __volatile__ ("lea %1,%%a0; bclr %2,(%%a0); sne %0" |
| : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| : "d" (nr) |
| : "%a0"); |
| #else |
| __asm__ __volatile__ ("bclr %2,%1; sne %0" |
| : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| : "di" (nr) |
| /* No clobber */); |
| #endif |
| |
| return retval; |
| } |
| |
| #define __test_and_clear_bit(nr, addr) test_and_clear_bit(nr, addr) |
| |
| static __inline__ int test_and_change_bit(int nr, volatile unsigned long * addr) |
| { |
| char retval; |
| |
| #ifdef CONFIG_COLDFIRE |
| __asm__ __volatile__ ("lea %1,%%a0\n\tbchg %2,(%%a0)\n\tsne %0" |
| : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| : "d" (nr) |
| : "%a0"); |
| #else |
| __asm__ __volatile__ ("bchg %2,%1; sne %0" |
| : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| : "di" (nr) |
| /* No clobber */); |
| #endif |
| |
| return retval; |
| } |
| |
| #define __test_and_change_bit(nr, addr) test_and_change_bit(nr, addr) |
| |
| /* |
| * This routine doesn't need to be atomic. |
| */ |
| static __inline__ int __constant_test_bit(int nr, const volatile unsigned long * addr) |
| { |
| return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0; |
| } |
| |
| static __inline__ int __test_bit(int nr, const volatile unsigned long * addr) |
| { |
| int * a = (int *) addr; |
| int mask; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| return ((mask & *a) != 0); |
| } |
| |
| #define test_bit(nr,addr) \ |
| (__builtin_constant_p(nr) ? \ |
| __constant_test_bit((nr),(addr)) : \ |
| __test_bit((nr),(addr))) |
| |
| #define find_first_zero_bit(addr, size) \ |
| find_next_zero_bit((addr), (size), 0) |
| #define find_first_bit(addr, size) \ |
| find_next_bit((addr), (size), 0) |
| |
| static __inline__ int find_next_zero_bit (const void * addr, int size, int offset) |
| { |
| unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if (offset) { |
| tmp = *(p++); |
| tmp |= ~0UL >> (32-offset); |
| if (size < 32) |
| goto found_first; |
| if (~tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while (size & ~31UL) { |
| if (~(tmp = *(p++))) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp |= ~0UL << size; |
| found_middle: |
| return result + ffz(tmp); |
| } |
| |
| /* |
| * Find next one bit in a bitmap reasonably efficiently. |
| */ |
| static __inline__ unsigned long find_next_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset) |
| { |
| unsigned int *p = ((unsigned int *) addr) + (offset >> 5); |
| unsigned int result = offset & ~31UL; |
| unsigned int tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if (offset) { |
| tmp = *p++; |
| tmp &= ~0UL << offset; |
| if (size < 32) |
| goto found_first; |
| if (tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while (size >= 32) { |
| if ((tmp = *p++) != 0) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp &= ~0UL >> (32 - size); |
| if (tmp == 0UL) /* Are any bits set? */ |
| return result + size; /* Nope. */ |
| found_middle: |
| return result + __ffs(tmp); |
| } |
| |
| /* |
| * hweightN: returns the hamming weight (i.e. the number |
| * of bits set) of a N-bit word |
| */ |
| |
| #define hweight32(x) generic_hweight32(x) |
| #define hweight16(x) generic_hweight16(x) |
| #define hweight8(x) generic_hweight8(x) |
| |
| |
| static __inline__ int ext2_set_bit(int nr, volatile void * addr) |
| { |
| char retval; |
| |
| #ifdef CONFIG_COLDFIRE |
| __asm__ __volatile__ ("lea %1,%%a0; bset %2,(%%a0); sne %0" |
| : "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3]) |
| : "d" (nr) |
| : "%a0"); |
| #else |
| __asm__ __volatile__ ("bset %2,%1; sne %0" |
| : "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3]) |
| : "di" (nr) |
| /* No clobber */); |
| #endif |
| |
| return retval; |
| } |
| |
| static __inline__ int ext2_clear_bit(int nr, volatile void * addr) |
| { |
| char retval; |
| |
| #ifdef CONFIG_COLDFIRE |
| __asm__ __volatile__ ("lea %1,%%a0; bclr %2,(%%a0); sne %0" |
| : "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3]) |
| : "d" (nr) |
| : "%a0"); |
| #else |
| __asm__ __volatile__ ("bclr %2,%1; sne %0" |
| : "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3]) |
| : "di" (nr) |
| /* No clobber */); |
| #endif |
| |
| return retval; |
| } |
| |
| #define ext2_set_bit_atomic(lock, nr, addr) \ |
| ({ \ |
| int ret; \ |
| spin_lock(lock); \ |
| ret = ext2_set_bit((nr), (addr)); \ |
| spin_unlock(lock); \ |
| ret; \ |
| }) |
| |
| #define ext2_clear_bit_atomic(lock, nr, addr) \ |
| ({ \ |
| int ret; \ |
| spin_lock(lock); \ |
| ret = ext2_clear_bit((nr), (addr)); \ |
| spin_unlock(lock); \ |
| ret; \ |
| }) |
| |
| static __inline__ int ext2_test_bit(int nr, const volatile void * addr) |
| { |
| char retval; |
| |
| #ifdef CONFIG_COLDFIRE |
| __asm__ __volatile__ ("lea %1,%%a0; btst %2,(%%a0); sne %0" |
| : "=d" (retval) |
| : "m" (((const volatile char *)addr)[nr >> 3]), "d" (nr) |
| : "%a0"); |
| #else |
| __asm__ __volatile__ ("btst %2,%1; sne %0" |
| : "=d" (retval) |
| : "m" (((const volatile char *)addr)[nr >> 3]), "di" (nr) |
| /* No clobber */); |
| #endif |
| |
| return retval; |
| } |
| |
| #define ext2_find_first_zero_bit(addr, size) \ |
| ext2_find_next_zero_bit((addr), (size), 0) |
| |
| static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) |
| { |
| unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if(offset) { |
| /* We hold the little endian value in tmp, but then the |
| * shift is illegal. So we could keep a big endian value |
| * in tmp, like this: |
| * |
| * tmp = __swab32(*(p++)); |
| * tmp |= ~0UL >> (32-offset); |
| * |
| * but this would decrease preformance, so we change the |
| * shift: |
| */ |
| tmp = *(p++); |
| tmp |= __swab32(~0UL >> (32-offset)); |
| if(size < 32) |
| goto found_first; |
| if(~tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while(size & ~31UL) { |
| if(~(tmp = *(p++))) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if(!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| /* tmp is little endian, so we would have to swab the shift, |
| * see above. But then we have to swab tmp below for ffz, so |
| * we might as well do this here. |
| */ |
| return result + ffz(__swab32(tmp) | (~0UL << size)); |
| found_middle: |
| return result + ffz(__swab32(tmp)); |
| } |
| |
| /* Bitmap functions for the minix filesystem. */ |
| #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr) |
| #define minix_set_bit(nr,addr) __set_bit(nr,addr) |
| #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr) |
| #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| |
| /** |
| * hweightN - returns the hamming weight of a N-bit word |
| * @x: the word to weigh |
| * |
| * The Hamming Weight of a number is the total number of bits set in it. |
| */ |
| |
| #define hweight32(x) generic_hweight32(x) |
| #define hweight16(x) generic_hweight16(x) |
| #define hweight8(x) generic_hweight8(x) |
| |
| #endif /* __KERNEL__ */ |
| |
| /* |
| * fls: find last bit set. |
| */ |
| #define fls(x) generic_fls(x) |
| #define fls64(x) generic_fls64(x) |
| |
| #endif /* _M68KNOMMU_BITOPS_H */ |