| /* |
| * Copyright (C) 2010,2015 Broadcom |
| * Copyright (C) 2012 Stephen Warren |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| |
| /** |
| * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain) |
| * |
| * The clock tree on the 2835 has several levels. There's a root |
| * oscillator running at 19.2Mhz. After the oscillator there are 5 |
| * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays", |
| * and "HDMI displays". Those 5 PLLs each can divide their output to |
| * produce up to 4 channels. Finally, there is the level of clocks to |
| * be consumed by other hardware components (like "H264" or "HDMI |
| * state machine"), which divide off of some subset of the PLL |
| * channels. |
| * |
| * All of the clocks in the tree are exposed in the DT, because the DT |
| * may want to make assignments of the final layer of clocks to the |
| * PLL channels, and some components of the hardware will actually |
| * skip layers of the tree (for example, the pixel clock comes |
| * directly from the PLLH PIX channel without using a CM_*CTL clock |
| * generator). |
| */ |
| |
| #include <linux/clk-provider.h> |
| #include <linux/clkdev.h> |
| #include <linux/clk.h> |
| #include <linux/clk/bcm2835.h> |
| #include <linux/debugfs.h> |
| #include <linux/delay.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <dt-bindings/clock/bcm2835.h> |
| |
| #define CM_PASSWORD 0x5a000000 |
| |
| #define CM_GNRICCTL 0x000 |
| #define CM_GNRICDIV 0x004 |
| # define CM_DIV_FRAC_BITS 12 |
| # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0) |
| |
| #define CM_VPUCTL 0x008 |
| #define CM_VPUDIV 0x00c |
| #define CM_SYSCTL 0x010 |
| #define CM_SYSDIV 0x014 |
| #define CM_PERIACTL 0x018 |
| #define CM_PERIADIV 0x01c |
| #define CM_PERIICTL 0x020 |
| #define CM_PERIIDIV 0x024 |
| #define CM_H264CTL 0x028 |
| #define CM_H264DIV 0x02c |
| #define CM_ISPCTL 0x030 |
| #define CM_ISPDIV 0x034 |
| #define CM_V3DCTL 0x038 |
| #define CM_V3DDIV 0x03c |
| #define CM_CAM0CTL 0x040 |
| #define CM_CAM0DIV 0x044 |
| #define CM_CAM1CTL 0x048 |
| #define CM_CAM1DIV 0x04c |
| #define CM_CCP2CTL 0x050 |
| #define CM_CCP2DIV 0x054 |
| #define CM_DSI0ECTL 0x058 |
| #define CM_DSI0EDIV 0x05c |
| #define CM_DSI0PCTL 0x060 |
| #define CM_DSI0PDIV 0x064 |
| #define CM_DPICTL 0x068 |
| #define CM_DPIDIV 0x06c |
| #define CM_GP0CTL 0x070 |
| #define CM_GP0DIV 0x074 |
| #define CM_GP1CTL 0x078 |
| #define CM_GP1DIV 0x07c |
| #define CM_GP2CTL 0x080 |
| #define CM_GP2DIV 0x084 |
| #define CM_HSMCTL 0x088 |
| #define CM_HSMDIV 0x08c |
| #define CM_OTPCTL 0x090 |
| #define CM_OTPDIV 0x094 |
| #define CM_PCMCTL 0x098 |
| #define CM_PCMDIV 0x09c |
| #define CM_PWMCTL 0x0a0 |
| #define CM_PWMDIV 0x0a4 |
| #define CM_SLIMCTL 0x0a8 |
| #define CM_SLIMDIV 0x0ac |
| #define CM_SMICTL 0x0b0 |
| #define CM_SMIDIV 0x0b4 |
| /* no definition for 0x0b8 and 0x0bc */ |
| #define CM_TCNTCTL 0x0c0 |
| # define CM_TCNT_SRC1_SHIFT 12 |
| #define CM_TCNTCNT 0x0c4 |
| #define CM_TECCTL 0x0c8 |
| #define CM_TECDIV 0x0cc |
| #define CM_TD0CTL 0x0d0 |
| #define CM_TD0DIV 0x0d4 |
| #define CM_TD1CTL 0x0d8 |
| #define CM_TD1DIV 0x0dc |
| #define CM_TSENSCTL 0x0e0 |
| #define CM_TSENSDIV 0x0e4 |
| #define CM_TIMERCTL 0x0e8 |
| #define CM_TIMERDIV 0x0ec |
| #define CM_UARTCTL 0x0f0 |
| #define CM_UARTDIV 0x0f4 |
| #define CM_VECCTL 0x0f8 |
| #define CM_VECDIV 0x0fc |
| #define CM_PULSECTL 0x190 |
| #define CM_PULSEDIV 0x194 |
| #define CM_SDCCTL 0x1a8 |
| #define CM_SDCDIV 0x1ac |
| #define CM_ARMCTL 0x1b0 |
| #define CM_AVEOCTL 0x1b8 |
| #define CM_AVEODIV 0x1bc |
| #define CM_EMMCCTL 0x1c0 |
| #define CM_EMMCDIV 0x1c4 |
| |
| /* General bits for the CM_*CTL regs */ |
| # define CM_ENABLE BIT(4) |
| # define CM_KILL BIT(5) |
| # define CM_GATE_BIT 6 |
| # define CM_GATE BIT(CM_GATE_BIT) |
| # define CM_BUSY BIT(7) |
| # define CM_BUSYD BIT(8) |
| # define CM_FRAC BIT(9) |
| # define CM_SRC_SHIFT 0 |
| # define CM_SRC_BITS 4 |
| # define CM_SRC_MASK 0xf |
| # define CM_SRC_GND 0 |
| # define CM_SRC_OSC 1 |
| # define CM_SRC_TESTDEBUG0 2 |
| # define CM_SRC_TESTDEBUG1 3 |
| # define CM_SRC_PLLA_CORE 4 |
| # define CM_SRC_PLLA_PER 4 |
| # define CM_SRC_PLLC_CORE0 5 |
| # define CM_SRC_PLLC_PER 5 |
| # define CM_SRC_PLLC_CORE1 8 |
| # define CM_SRC_PLLD_CORE 6 |
| # define CM_SRC_PLLD_PER 6 |
| # define CM_SRC_PLLH_AUX 7 |
| # define CM_SRC_PLLC_CORE1 8 |
| # define CM_SRC_PLLC_CORE2 9 |
| |
| #define CM_OSCCOUNT 0x100 |
| |
| #define CM_PLLA 0x104 |
| # define CM_PLL_ANARST BIT(8) |
| # define CM_PLLA_HOLDPER BIT(7) |
| # define CM_PLLA_LOADPER BIT(6) |
| # define CM_PLLA_HOLDCORE BIT(5) |
| # define CM_PLLA_LOADCORE BIT(4) |
| # define CM_PLLA_HOLDCCP2 BIT(3) |
| # define CM_PLLA_LOADCCP2 BIT(2) |
| # define CM_PLLA_HOLDDSI0 BIT(1) |
| # define CM_PLLA_LOADDSI0 BIT(0) |
| |
| #define CM_PLLC 0x108 |
| # define CM_PLLC_HOLDPER BIT(7) |
| # define CM_PLLC_LOADPER BIT(6) |
| # define CM_PLLC_HOLDCORE2 BIT(5) |
| # define CM_PLLC_LOADCORE2 BIT(4) |
| # define CM_PLLC_HOLDCORE1 BIT(3) |
| # define CM_PLLC_LOADCORE1 BIT(2) |
| # define CM_PLLC_HOLDCORE0 BIT(1) |
| # define CM_PLLC_LOADCORE0 BIT(0) |
| |
| #define CM_PLLD 0x10c |
| # define CM_PLLD_HOLDPER BIT(7) |
| # define CM_PLLD_LOADPER BIT(6) |
| # define CM_PLLD_HOLDCORE BIT(5) |
| # define CM_PLLD_LOADCORE BIT(4) |
| # define CM_PLLD_HOLDDSI1 BIT(3) |
| # define CM_PLLD_LOADDSI1 BIT(2) |
| # define CM_PLLD_HOLDDSI0 BIT(1) |
| # define CM_PLLD_LOADDSI0 BIT(0) |
| |
| #define CM_PLLH 0x110 |
| # define CM_PLLH_LOADRCAL BIT(2) |
| # define CM_PLLH_LOADAUX BIT(1) |
| # define CM_PLLH_LOADPIX BIT(0) |
| |
| #define CM_LOCK 0x114 |
| # define CM_LOCK_FLOCKH BIT(12) |
| # define CM_LOCK_FLOCKD BIT(11) |
| # define CM_LOCK_FLOCKC BIT(10) |
| # define CM_LOCK_FLOCKB BIT(9) |
| # define CM_LOCK_FLOCKA BIT(8) |
| |
| #define CM_EVENT 0x118 |
| #define CM_DSI1ECTL 0x158 |
| #define CM_DSI1EDIV 0x15c |
| #define CM_DSI1PCTL 0x160 |
| #define CM_DSI1PDIV 0x164 |
| #define CM_DFTCTL 0x168 |
| #define CM_DFTDIV 0x16c |
| |
| #define CM_PLLB 0x170 |
| # define CM_PLLB_HOLDARM BIT(1) |
| # define CM_PLLB_LOADARM BIT(0) |
| |
| #define A2W_PLLA_CTRL 0x1100 |
| #define A2W_PLLC_CTRL 0x1120 |
| #define A2W_PLLD_CTRL 0x1140 |
| #define A2W_PLLH_CTRL 0x1160 |
| #define A2W_PLLB_CTRL 0x11e0 |
| # define A2W_PLL_CTRL_PRST_DISABLE BIT(17) |
| # define A2W_PLL_CTRL_PWRDN BIT(16) |
| # define A2W_PLL_CTRL_PDIV_MASK 0x000007000 |
| # define A2W_PLL_CTRL_PDIV_SHIFT 12 |
| # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff |
| # define A2W_PLL_CTRL_NDIV_SHIFT 0 |
| |
| #define A2W_PLLA_ANA0 0x1010 |
| #define A2W_PLLC_ANA0 0x1030 |
| #define A2W_PLLD_ANA0 0x1050 |
| #define A2W_PLLH_ANA0 0x1070 |
| #define A2W_PLLB_ANA0 0x10f0 |
| |
| #define A2W_PLL_KA_SHIFT 7 |
| #define A2W_PLL_KA_MASK GENMASK(9, 7) |
| #define A2W_PLL_KI_SHIFT 19 |
| #define A2W_PLL_KI_MASK GENMASK(21, 19) |
| #define A2W_PLL_KP_SHIFT 15 |
| #define A2W_PLL_KP_MASK GENMASK(18, 15) |
| |
| #define A2W_PLLH_KA_SHIFT 19 |
| #define A2W_PLLH_KA_MASK GENMASK(21, 19) |
| #define A2W_PLLH_KI_LOW_SHIFT 22 |
| #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22) |
| #define A2W_PLLH_KI_HIGH_SHIFT 0 |
| #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0) |
| #define A2W_PLLH_KP_SHIFT 1 |
| #define A2W_PLLH_KP_MASK GENMASK(4, 1) |
| |
| #define A2W_XOSC_CTRL 0x1190 |
| # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7) |
| # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6) |
| # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5) |
| # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4) |
| # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3) |
| # define A2W_XOSC_CTRL_USB_ENABLE BIT(2) |
| # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1) |
| # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0) |
| |
| #define A2W_PLLA_FRAC 0x1200 |
| #define A2W_PLLC_FRAC 0x1220 |
| #define A2W_PLLD_FRAC 0x1240 |
| #define A2W_PLLH_FRAC 0x1260 |
| #define A2W_PLLB_FRAC 0x12e0 |
| # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1) |
| # define A2W_PLL_FRAC_BITS 20 |
| |
| #define A2W_PLL_CHANNEL_DISABLE BIT(8) |
| #define A2W_PLL_DIV_BITS 8 |
| #define A2W_PLL_DIV_SHIFT 0 |
| |
| #define A2W_PLLA_DSI0 0x1300 |
| #define A2W_PLLA_CORE 0x1400 |
| #define A2W_PLLA_PER 0x1500 |
| #define A2W_PLLA_CCP2 0x1600 |
| |
| #define A2W_PLLC_CORE2 0x1320 |
| #define A2W_PLLC_CORE1 0x1420 |
| #define A2W_PLLC_PER 0x1520 |
| #define A2W_PLLC_CORE0 0x1620 |
| |
| #define A2W_PLLD_DSI0 0x1340 |
| #define A2W_PLLD_CORE 0x1440 |
| #define A2W_PLLD_PER 0x1540 |
| #define A2W_PLLD_DSI1 0x1640 |
| |
| #define A2W_PLLH_AUX 0x1360 |
| #define A2W_PLLH_RCAL 0x1460 |
| #define A2W_PLLH_PIX 0x1560 |
| #define A2W_PLLH_STS 0x1660 |
| |
| #define A2W_PLLH_CTRLR 0x1960 |
| #define A2W_PLLH_FRACR 0x1a60 |
| #define A2W_PLLH_AUXR 0x1b60 |
| #define A2W_PLLH_RCALR 0x1c60 |
| #define A2W_PLLH_PIXR 0x1d60 |
| #define A2W_PLLH_STSR 0x1e60 |
| |
| #define A2W_PLLB_ARM 0x13e0 |
| #define A2W_PLLB_SP0 0x14e0 |
| #define A2W_PLLB_SP1 0x15e0 |
| #define A2W_PLLB_SP2 0x16e0 |
| |
| #define LOCK_TIMEOUT_NS 100000000 |
| #define BCM2835_MAX_FB_RATE 1750000000u |
| |
| /* |
| * Names of clocks used within the driver that need to be replaced |
| * with an external parent's name. This array is in the order that |
| * the clocks node in the DT references external clocks. |
| */ |
| static const char *const cprman_parent_names[] = { |
| "xosc", |
| "dsi0_byte", |
| "dsi0_ddr2", |
| "dsi0_ddr", |
| "dsi1_byte", |
| "dsi1_ddr2", |
| "dsi1_ddr", |
| }; |
| |
| struct bcm2835_cprman { |
| struct device *dev; |
| void __iomem *regs; |
| spinlock_t regs_lock; /* spinlock for all clocks */ |
| |
| /* |
| * Real names of cprman clock parents looked up through |
| * of_clk_get_parent_name(), which will be used in the |
| * parent_names[] arrays for clock registration. |
| */ |
| const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)]; |
| |
| /* Must be last */ |
| struct clk_hw_onecell_data onecell; |
| }; |
| |
| static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val) |
| { |
| writel(CM_PASSWORD | val, cprman->regs + reg); |
| } |
| |
| static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg) |
| { |
| return readl(cprman->regs + reg); |
| } |
| |
| /* Does a cycle of measuring a clock through the TCNT clock, which may |
| * source from many other clocks in the system. |
| */ |
| static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman, |
| u32 tcnt_mux) |
| { |
| u32 osccount = 19200; /* 1ms */ |
| u32 count; |
| ktime_t timeout; |
| |
| spin_lock(&cprman->regs_lock); |
| |
| cprman_write(cprman, CM_TCNTCTL, CM_KILL); |
| |
| cprman_write(cprman, CM_TCNTCTL, |
| (tcnt_mux & CM_SRC_MASK) | |
| (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT); |
| |
| cprman_write(cprman, CM_OSCCOUNT, osccount); |
| |
| /* do a kind delay at the start */ |
| mdelay(1); |
| |
| /* Finish off whatever is left of OSCCOUNT */ |
| timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); |
| while (cprman_read(cprman, CM_OSCCOUNT)) { |
| if (ktime_after(ktime_get(), timeout)) { |
| dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n"); |
| count = 0; |
| goto out; |
| } |
| cpu_relax(); |
| } |
| |
| /* Wait for BUSY to clear. */ |
| timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); |
| while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) { |
| if (ktime_after(ktime_get(), timeout)) { |
| dev_err(cprman->dev, "timeout waiting for !BUSY\n"); |
| count = 0; |
| goto out; |
| } |
| cpu_relax(); |
| } |
| |
| count = cprman_read(cprman, CM_TCNTCNT); |
| |
| cprman_write(cprman, CM_TCNTCTL, 0); |
| |
| out: |
| spin_unlock(&cprman->regs_lock); |
| |
| return count * 1000; |
| } |
| |
| static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base, |
| struct debugfs_reg32 *regs, size_t nregs, |
| struct dentry *dentry) |
| { |
| struct dentry *regdump; |
| struct debugfs_regset32 *regset; |
| |
| regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL); |
| if (!regset) |
| return -ENOMEM; |
| |
| regset->regs = regs; |
| regset->nregs = nregs; |
| regset->base = cprman->regs + base; |
| |
| regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry, |
| regset); |
| |
| return regdump ? 0 : -ENOMEM; |
| } |
| |
| /* |
| * These are fixed clocks. They're probably not all root clocks and it may |
| * be possible to turn them on and off but until this is mapped out better |
| * it's the only way they can be used. |
| */ |
| void __init bcm2835_init_clocks(void) |
| { |
| struct clk_hw *hw; |
| int ret; |
| |
| hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000); |
| if (IS_ERR(hw)) |
| pr_err("apb_pclk not registered\n"); |
| |
| hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000); |
| if (IS_ERR(hw)) |
| pr_err("uart0_pclk not registered\n"); |
| ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart"); |
| if (ret) |
| pr_err("uart0_pclk alias not registered\n"); |
| |
| hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000); |
| if (IS_ERR(hw)) |
| pr_err("uart1_pclk not registered\n"); |
| ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart"); |
| if (ret) |
| pr_err("uart1_pclk alias not registered\n"); |
| } |
| |
| struct bcm2835_pll_data { |
| const char *name; |
| u32 cm_ctrl_reg; |
| u32 a2w_ctrl_reg; |
| u32 frac_reg; |
| u32 ana_reg_base; |
| u32 reference_enable_mask; |
| /* Bit in CM_LOCK to indicate when the PLL has locked. */ |
| u32 lock_mask; |
| |
| const struct bcm2835_pll_ana_bits *ana; |
| |
| unsigned long min_rate; |
| unsigned long max_rate; |
| /* |
| * Highest rate for the VCO before we have to use the |
| * pre-divide-by-2. |
| */ |
| unsigned long max_fb_rate; |
| }; |
| |
| struct bcm2835_pll_ana_bits { |
| u32 mask0; |
| u32 set0; |
| u32 mask1; |
| u32 set1; |
| u32 mask3; |
| u32 set3; |
| u32 fb_prediv_mask; |
| }; |
| |
| static const struct bcm2835_pll_ana_bits bcm2835_ana_default = { |
| .mask0 = 0, |
| .set0 = 0, |
| .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK, |
| .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT), |
| .mask3 = A2W_PLL_KA_MASK, |
| .set3 = (2 << A2W_PLL_KA_SHIFT), |
| .fb_prediv_mask = BIT(14), |
| }; |
| |
| static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = { |
| .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK, |
| .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT), |
| .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK, |
| .set1 = (6 << A2W_PLLH_KP_SHIFT), |
| .mask3 = 0, |
| .set3 = 0, |
| .fb_prediv_mask = BIT(11), |
| }; |
| |
| struct bcm2835_pll_divider_data { |
| const char *name; |
| const char *source_pll; |
| |
| u32 cm_reg; |
| u32 a2w_reg; |
| |
| u32 load_mask; |
| u32 hold_mask; |
| u32 fixed_divider; |
| u32 flags; |
| }; |
| |
| struct bcm2835_clock_data { |
| const char *name; |
| |
| const char *const *parents; |
| int num_mux_parents; |
| |
| /* Bitmap encoding which parents accept rate change propagation. */ |
| unsigned int set_rate_parent; |
| |
| u32 ctl_reg; |
| u32 div_reg; |
| |
| /* Number of integer bits in the divider */ |
| u32 int_bits; |
| /* Number of fractional bits in the divider */ |
| u32 frac_bits; |
| |
| u32 flags; |
| |
| bool is_vpu_clock; |
| bool is_mash_clock; |
| bool low_jitter; |
| |
| u32 tcnt_mux; |
| }; |
| |
| struct bcm2835_gate_data { |
| const char *name; |
| const char *parent; |
| |
| u32 ctl_reg; |
| }; |
| |
| struct bcm2835_pll { |
| struct clk_hw hw; |
| struct bcm2835_cprman *cprman; |
| const struct bcm2835_pll_data *data; |
| }; |
| |
| static int bcm2835_pll_is_on(struct clk_hw *hw) |
| { |
| struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); |
| struct bcm2835_cprman *cprman = pll->cprman; |
| const struct bcm2835_pll_data *data = pll->data; |
| |
| return cprman_read(cprman, data->a2w_ctrl_reg) & |
| A2W_PLL_CTRL_PRST_DISABLE; |
| } |
| |
| static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate, |
| unsigned long parent_rate, |
| u32 *ndiv, u32 *fdiv) |
| { |
| u64 div; |
| |
| div = (u64)rate << A2W_PLL_FRAC_BITS; |
| do_div(div, parent_rate); |
| |
| *ndiv = div >> A2W_PLL_FRAC_BITS; |
| *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1); |
| } |
| |
| static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate, |
| u32 ndiv, u32 fdiv, u32 pdiv) |
| { |
| u64 rate; |
| |
| if (pdiv == 0) |
| return 0; |
| |
| rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv); |
| do_div(rate, pdiv); |
| return rate >> A2W_PLL_FRAC_BITS; |
| } |
| |
| static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long *parent_rate) |
| { |
| struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); |
| const struct bcm2835_pll_data *data = pll->data; |
| u32 ndiv, fdiv; |
| |
| rate = clamp(rate, data->min_rate, data->max_rate); |
| |
| bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv); |
| |
| return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1); |
| } |
| |
| static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw, |
| unsigned long parent_rate) |
| { |
| struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); |
| struct bcm2835_cprman *cprman = pll->cprman; |
| const struct bcm2835_pll_data *data = pll->data; |
| u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg); |
| u32 ndiv, pdiv, fdiv; |
| bool using_prediv; |
| |
| if (parent_rate == 0) |
| return 0; |
| |
| fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK; |
| ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT; |
| pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT; |
| using_prediv = cprman_read(cprman, data->ana_reg_base + 4) & |
| data->ana->fb_prediv_mask; |
| |
| if (using_prediv) { |
| ndiv *= 2; |
| fdiv *= 2; |
| } |
| |
| return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv); |
| } |
| |
| static void bcm2835_pll_off(struct clk_hw *hw) |
| { |
| struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); |
| struct bcm2835_cprman *cprman = pll->cprman; |
| const struct bcm2835_pll_data *data = pll->data; |
| |
| spin_lock(&cprman->regs_lock); |
| cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST); |
| cprman_write(cprman, data->a2w_ctrl_reg, |
| cprman_read(cprman, data->a2w_ctrl_reg) | |
| A2W_PLL_CTRL_PWRDN); |
| spin_unlock(&cprman->regs_lock); |
| } |
| |
| static int bcm2835_pll_on(struct clk_hw *hw) |
| { |
| struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); |
| struct bcm2835_cprman *cprman = pll->cprman; |
| const struct bcm2835_pll_data *data = pll->data; |
| ktime_t timeout; |
| |
| cprman_write(cprman, data->a2w_ctrl_reg, |
| cprman_read(cprman, data->a2w_ctrl_reg) & |
| ~A2W_PLL_CTRL_PWRDN); |
| |
| /* Take the PLL out of reset. */ |
| spin_lock(&cprman->regs_lock); |
| cprman_write(cprman, data->cm_ctrl_reg, |
| cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST); |
| spin_unlock(&cprman->regs_lock); |
| |
| /* Wait for the PLL to lock. */ |
| timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); |
| while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) { |
| if (ktime_after(ktime_get(), timeout)) { |
| dev_err(cprman->dev, "%s: couldn't lock PLL\n", |
| clk_hw_get_name(hw)); |
| return -ETIMEDOUT; |
| } |
| |
| cpu_relax(); |
| } |
| |
| cprman_write(cprman, data->a2w_ctrl_reg, |
| cprman_read(cprman, data->a2w_ctrl_reg) | |
| A2W_PLL_CTRL_PRST_DISABLE); |
| |
| return 0; |
| } |
| |
| static void |
| bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana) |
| { |
| int i; |
| |
| /* |
| * ANA register setup is done as a series of writes to |
| * ANA3-ANA0, in that order. This lets us write all 4 |
| * registers as a single cycle of the serdes interface (taking |
| * 100 xosc clocks), whereas if we were to update ana0, 1, and |
| * 3 individually through their partial-write registers, each |
| * would be their own serdes cycle. |
| */ |
| for (i = 3; i >= 0; i--) |
| cprman_write(cprman, ana_reg_base + i * 4, ana[i]); |
| } |
| |
| static int bcm2835_pll_set_rate(struct clk_hw *hw, |
| unsigned long rate, unsigned long parent_rate) |
| { |
| struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); |
| struct bcm2835_cprman *cprman = pll->cprman; |
| const struct bcm2835_pll_data *data = pll->data; |
| bool was_using_prediv, use_fb_prediv, do_ana_setup_first; |
| u32 ndiv, fdiv, a2w_ctl; |
| u32 ana[4]; |
| int i; |
| |
| if (rate > data->max_fb_rate) { |
| use_fb_prediv = true; |
| rate /= 2; |
| } else { |
| use_fb_prediv = false; |
| } |
| |
| bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv); |
| |
| for (i = 3; i >= 0; i--) |
| ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4); |
| |
| was_using_prediv = ana[1] & data->ana->fb_prediv_mask; |
| |
| ana[0] &= ~data->ana->mask0; |
| ana[0] |= data->ana->set0; |
| ana[1] &= ~data->ana->mask1; |
| ana[1] |= data->ana->set1; |
| ana[3] &= ~data->ana->mask3; |
| ana[3] |= data->ana->set3; |
| |
| if (was_using_prediv && !use_fb_prediv) { |
| ana[1] &= ~data->ana->fb_prediv_mask; |
| do_ana_setup_first = true; |
| } else if (!was_using_prediv && use_fb_prediv) { |
| ana[1] |= data->ana->fb_prediv_mask; |
| do_ana_setup_first = false; |
| } else { |
| do_ana_setup_first = true; |
| } |
| |
| /* Unmask the reference clock from the oscillator. */ |
| spin_lock(&cprman->regs_lock); |
| cprman_write(cprman, A2W_XOSC_CTRL, |
| cprman_read(cprman, A2W_XOSC_CTRL) | |
| data->reference_enable_mask); |
| spin_unlock(&cprman->regs_lock); |
| |
| if (do_ana_setup_first) |
| bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); |
| |
| /* Set the PLL multiplier from the oscillator. */ |
| cprman_write(cprman, data->frac_reg, fdiv); |
| |
| a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg); |
| a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK; |
| a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT; |
| a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK; |
| a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT; |
| cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl); |
| |
| if (!do_ana_setup_first) |
| bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); |
| |
| return 0; |
| } |
| |
| static int bcm2835_pll_debug_init(struct clk_hw *hw, |
| struct dentry *dentry) |
| { |
| struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); |
| struct bcm2835_cprman *cprman = pll->cprman; |
| const struct bcm2835_pll_data *data = pll->data; |
| struct debugfs_reg32 *regs; |
| |
| regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL); |
| if (!regs) |
| return -ENOMEM; |
| |
| regs[0].name = "cm_ctrl"; |
| regs[0].offset = data->cm_ctrl_reg; |
| regs[1].name = "a2w_ctrl"; |
| regs[1].offset = data->a2w_ctrl_reg; |
| regs[2].name = "frac"; |
| regs[2].offset = data->frac_reg; |
| regs[3].name = "ana0"; |
| regs[3].offset = data->ana_reg_base + 0 * 4; |
| regs[4].name = "ana1"; |
| regs[4].offset = data->ana_reg_base + 1 * 4; |
| regs[5].name = "ana2"; |
| regs[5].offset = data->ana_reg_base + 2 * 4; |
| regs[6].name = "ana3"; |
| regs[6].offset = data->ana_reg_base + 3 * 4; |
| |
| return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry); |
| } |
| |
| static const struct clk_ops bcm2835_pll_clk_ops = { |
| .is_prepared = bcm2835_pll_is_on, |
| .prepare = bcm2835_pll_on, |
| .unprepare = bcm2835_pll_off, |
| .recalc_rate = bcm2835_pll_get_rate, |
| .set_rate = bcm2835_pll_set_rate, |
| .round_rate = bcm2835_pll_round_rate, |
| .debug_init = bcm2835_pll_debug_init, |
| }; |
| |
| struct bcm2835_pll_divider { |
| struct clk_divider div; |
| struct bcm2835_cprman *cprman; |
| const struct bcm2835_pll_divider_data *data; |
| }; |
| |
| static struct bcm2835_pll_divider * |
| bcm2835_pll_divider_from_hw(struct clk_hw *hw) |
| { |
| return container_of(hw, struct bcm2835_pll_divider, div.hw); |
| } |
| |
| static int bcm2835_pll_divider_is_on(struct clk_hw *hw) |
| { |
| struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); |
| struct bcm2835_cprman *cprman = divider->cprman; |
| const struct bcm2835_pll_divider_data *data = divider->data; |
| |
| return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE); |
| } |
| |
| static long bcm2835_pll_divider_round_rate(struct clk_hw *hw, |
| unsigned long rate, |
| unsigned long *parent_rate) |
| { |
| return clk_divider_ops.round_rate(hw, rate, parent_rate); |
| } |
| |
| static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw, |
| unsigned long parent_rate) |
| { |
| return clk_divider_ops.recalc_rate(hw, parent_rate); |
| } |
| |
| static void bcm2835_pll_divider_off(struct clk_hw *hw) |
| { |
| struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); |
| struct bcm2835_cprman *cprman = divider->cprman; |
| const struct bcm2835_pll_divider_data *data = divider->data; |
| |
| spin_lock(&cprman->regs_lock); |
| cprman_write(cprman, data->cm_reg, |
| (cprman_read(cprman, data->cm_reg) & |
| ~data->load_mask) | data->hold_mask); |
| cprman_write(cprman, data->a2w_reg, |
| cprman_read(cprman, data->a2w_reg) | |
| A2W_PLL_CHANNEL_DISABLE); |
| spin_unlock(&cprman->regs_lock); |
| } |
| |
| static int bcm2835_pll_divider_on(struct clk_hw *hw) |
| { |
| struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); |
| struct bcm2835_cprman *cprman = divider->cprman; |
| const struct bcm2835_pll_divider_data *data = divider->data; |
| |
| spin_lock(&cprman->regs_lock); |
| cprman_write(cprman, data->a2w_reg, |
| cprman_read(cprman, data->a2w_reg) & |
| ~A2W_PLL_CHANNEL_DISABLE); |
| |
| cprman_write(cprman, data->cm_reg, |
| cprman_read(cprman, data->cm_reg) & ~data->hold_mask); |
| spin_unlock(&cprman->regs_lock); |
| |
| return 0; |
| } |
| |
| static int bcm2835_pll_divider_set_rate(struct clk_hw *hw, |
| unsigned long rate, |
| unsigned long parent_rate) |
| { |
| struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); |
| struct bcm2835_cprman *cprman = divider->cprman; |
| const struct bcm2835_pll_divider_data *data = divider->data; |
| u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS; |
| |
| div = DIV_ROUND_UP_ULL(parent_rate, rate); |
| |
| div = min(div, max_div); |
| if (div == max_div) |
| div = 0; |
| |
| cprman_write(cprman, data->a2w_reg, div); |
| cm = cprman_read(cprman, data->cm_reg); |
| cprman_write(cprman, data->cm_reg, cm | data->load_mask); |
| cprman_write(cprman, data->cm_reg, cm & ~data->load_mask); |
| |
| return 0; |
| } |
| |
| static int bcm2835_pll_divider_debug_init(struct clk_hw *hw, |
| struct dentry *dentry) |
| { |
| struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); |
| struct bcm2835_cprman *cprman = divider->cprman; |
| const struct bcm2835_pll_divider_data *data = divider->data; |
| struct debugfs_reg32 *regs; |
| |
| regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL); |
| if (!regs) |
| return -ENOMEM; |
| |
| regs[0].name = "cm"; |
| regs[0].offset = data->cm_reg; |
| regs[1].name = "a2w"; |
| regs[1].offset = data->a2w_reg; |
| |
| return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry); |
| } |
| |
| static const struct clk_ops bcm2835_pll_divider_clk_ops = { |
| .is_prepared = bcm2835_pll_divider_is_on, |
| .prepare = bcm2835_pll_divider_on, |
| .unprepare = bcm2835_pll_divider_off, |
| .recalc_rate = bcm2835_pll_divider_get_rate, |
| .set_rate = bcm2835_pll_divider_set_rate, |
| .round_rate = bcm2835_pll_divider_round_rate, |
| .debug_init = bcm2835_pll_divider_debug_init, |
| }; |
| |
| /* |
| * The CM dividers do fixed-point division, so we can't use the |
| * generic integer divider code like the PLL dividers do (and we can't |
| * fake it by having some fixed shifts preceding it in the clock tree, |
| * because we'd run out of bits in a 32-bit unsigned long). |
| */ |
| struct bcm2835_clock { |
| struct clk_hw hw; |
| struct bcm2835_cprman *cprman; |
| const struct bcm2835_clock_data *data; |
| }; |
| |
| static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw) |
| { |
| return container_of(hw, struct bcm2835_clock, hw); |
| } |
| |
| static int bcm2835_clock_is_on(struct clk_hw *hw) |
| { |
| struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| struct bcm2835_cprman *cprman = clock->cprman; |
| const struct bcm2835_clock_data *data = clock->data; |
| |
| return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0; |
| } |
| |
| static u32 bcm2835_clock_choose_div(struct clk_hw *hw, |
| unsigned long rate, |
| unsigned long parent_rate, |
| bool round_up) |
| { |
| struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| const struct bcm2835_clock_data *data = clock->data; |
| u32 unused_frac_mask = |
| GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1; |
| u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS; |
| u64 rem; |
| u32 div, mindiv, maxdiv; |
| |
| rem = do_div(temp, rate); |
| div = temp; |
| |
| /* Round up and mask off the unused bits */ |
| if (round_up && ((div & unused_frac_mask) != 0 || rem != 0)) |
| div += unused_frac_mask + 1; |
| div &= ~unused_frac_mask; |
| |
| /* different clamping limits apply for a mash clock */ |
| if (data->is_mash_clock) { |
| /* clamp to min divider of 2 */ |
| mindiv = 2 << CM_DIV_FRAC_BITS; |
| /* clamp to the highest possible integer divider */ |
| maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS; |
| } else { |
| /* clamp to min divider of 1 */ |
| mindiv = 1 << CM_DIV_FRAC_BITS; |
| /* clamp to the highest possible fractional divider */ |
| maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1, |
| CM_DIV_FRAC_BITS - data->frac_bits); |
| } |
| |
| /* apply the clamping limits */ |
| div = max_t(u32, div, mindiv); |
| div = min_t(u32, div, maxdiv); |
| |
| return div; |
| } |
| |
| static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock, |
| unsigned long parent_rate, |
| u32 div) |
| { |
| const struct bcm2835_clock_data *data = clock->data; |
| u64 temp; |
| |
| if (data->int_bits == 0 && data->frac_bits == 0) |
| return parent_rate; |
| |
| /* |
| * The divisor is a 12.12 fixed point field, but only some of |
| * the bits are populated in any given clock. |
| */ |
| div >>= CM_DIV_FRAC_BITS - data->frac_bits; |
| div &= (1 << (data->int_bits + data->frac_bits)) - 1; |
| |
| if (div == 0) |
| return 0; |
| |
| temp = (u64)parent_rate << data->frac_bits; |
| |
| do_div(temp, div); |
| |
| return temp; |
| } |
| |
| static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw, |
| unsigned long parent_rate) |
| { |
| struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| struct bcm2835_cprman *cprman = clock->cprman; |
| const struct bcm2835_clock_data *data = clock->data; |
| u32 div; |
| |
| if (data->int_bits == 0 && data->frac_bits == 0) |
| return parent_rate; |
| |
| div = cprman_read(cprman, data->div_reg); |
| |
| return bcm2835_clock_rate_from_divisor(clock, parent_rate, div); |
| } |
| |
| static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock) |
| { |
| struct bcm2835_cprman *cprman = clock->cprman; |
| const struct bcm2835_clock_data *data = clock->data; |
| ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); |
| |
| while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) { |
| if (ktime_after(ktime_get(), timeout)) { |
| dev_err(cprman->dev, "%s: couldn't lock PLL\n", |
| clk_hw_get_name(&clock->hw)); |
| return; |
| } |
| cpu_relax(); |
| } |
| } |
| |
| static void bcm2835_clock_off(struct clk_hw *hw) |
| { |
| struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| struct bcm2835_cprman *cprman = clock->cprman; |
| const struct bcm2835_clock_data *data = clock->data; |
| |
| spin_lock(&cprman->regs_lock); |
| cprman_write(cprman, data->ctl_reg, |
| cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE); |
| spin_unlock(&cprman->regs_lock); |
| |
| /* BUSY will remain high until the divider completes its cycle. */ |
| bcm2835_clock_wait_busy(clock); |
| } |
| |
| static int bcm2835_clock_on(struct clk_hw *hw) |
| { |
| struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| struct bcm2835_cprman *cprman = clock->cprman; |
| const struct bcm2835_clock_data *data = clock->data; |
| |
| spin_lock(&cprman->regs_lock); |
| cprman_write(cprman, data->ctl_reg, |
| cprman_read(cprman, data->ctl_reg) | |
| CM_ENABLE | |
| CM_GATE); |
| spin_unlock(&cprman->regs_lock); |
| |
| /* Debug code to measure the clock once it's turned on to see |
| * if it's ticking at the rate we expect. |
| */ |
| if (data->tcnt_mux && false) { |
| dev_info(cprman->dev, |
| "clk %s: rate %ld, measure %ld\n", |
| data->name, |
| clk_hw_get_rate(hw), |
| bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux)); |
| } |
| |
| return 0; |
| } |
| |
| static int bcm2835_clock_set_rate(struct clk_hw *hw, |
| unsigned long rate, unsigned long parent_rate) |
| { |
| struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| struct bcm2835_cprman *cprman = clock->cprman; |
| const struct bcm2835_clock_data *data = clock->data; |
| u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false); |
| u32 ctl; |
| |
| spin_lock(&cprman->regs_lock); |
| |
| /* |
| * Setting up frac support |
| * |
| * In principle it is recommended to stop/start the clock first, |
| * but as we set CLK_SET_RATE_GATE during registration of the |
| * clock this requirement should be take care of by the |
| * clk-framework. |
| */ |
| ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC; |
| ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0; |
| cprman_write(cprman, data->ctl_reg, ctl); |
| |
| cprman_write(cprman, data->div_reg, div); |
| |
| spin_unlock(&cprman->regs_lock); |
| |
| return 0; |
| } |
| |
| static bool |
| bcm2835_clk_is_pllc(struct clk_hw *hw) |
| { |
| if (!hw) |
| return false; |
| |
| return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0; |
| } |
| |
| static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw, |
| int parent_idx, |
| unsigned long rate, |
| u32 *div, |
| unsigned long *prate, |
| unsigned long *avgrate) |
| { |
| struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| struct bcm2835_cprman *cprman = clock->cprman; |
| const struct bcm2835_clock_data *data = clock->data; |
| unsigned long best_rate = 0; |
| u32 curdiv, mindiv, maxdiv; |
| struct clk_hw *parent; |
| |
| parent = clk_hw_get_parent_by_index(hw, parent_idx); |
| |
| if (!(BIT(parent_idx) & data->set_rate_parent)) { |
| *prate = clk_hw_get_rate(parent); |
| *div = bcm2835_clock_choose_div(hw, rate, *prate, true); |
| |
| *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div); |
| |
| if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) { |
| unsigned long high, low; |
| u32 int_div = *div & ~CM_DIV_FRAC_MASK; |
| |
| high = bcm2835_clock_rate_from_divisor(clock, *prate, |
| int_div); |
| int_div += CM_DIV_FRAC_MASK + 1; |
| low = bcm2835_clock_rate_from_divisor(clock, *prate, |
| int_div); |
| |
| /* |
| * Return a value which is the maximum deviation |
| * below the ideal rate, for use as a metric. |
| */ |
| return *avgrate - max(*avgrate - low, high - *avgrate); |
| } |
| return *avgrate; |
| } |
| |
| if (data->frac_bits) |
| dev_warn(cprman->dev, |
| "frac bits are not used when propagating rate change"); |
| |
| /* clamp to min divider of 2 if we're dealing with a mash clock */ |
| mindiv = data->is_mash_clock ? 2 : 1; |
| maxdiv = BIT(data->int_bits) - 1; |
| |
| /* TODO: Be smart, and only test a subset of the available divisors. */ |
| for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) { |
| unsigned long tmp_rate; |
| |
| tmp_rate = clk_hw_round_rate(parent, rate * curdiv); |
| tmp_rate /= curdiv; |
| if (curdiv == mindiv || |
| (tmp_rate > best_rate && tmp_rate <= rate)) |
| best_rate = tmp_rate; |
| |
| if (best_rate == rate) |
| break; |
| } |
| |
| *div = curdiv << CM_DIV_FRAC_BITS; |
| *prate = curdiv * best_rate; |
| *avgrate = best_rate; |
| |
| return best_rate; |
| } |
| |
| static int bcm2835_clock_determine_rate(struct clk_hw *hw, |
| struct clk_rate_request *req) |
| { |
| struct clk_hw *parent, *best_parent = NULL; |
| bool current_parent_is_pllc; |
| unsigned long rate, best_rate = 0; |
| unsigned long prate, best_prate = 0; |
| unsigned long avgrate, best_avgrate = 0; |
| size_t i; |
| u32 div; |
| |
| current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw)); |
| |
| /* |
| * Select parent clock that results in the closest but lower rate |
| */ |
| for (i = 0; i < clk_hw_get_num_parents(hw); ++i) { |
| parent = clk_hw_get_parent_by_index(hw, i); |
| if (!parent) |
| continue; |
| |
| /* |
| * Don't choose a PLLC-derived clock as our parent |
| * unless it had been manually set that way. PLLC's |
| * frequency gets adjusted by the firmware due to |
| * over-temp or under-voltage conditions, without |
| * prior notification to our clock consumer. |
| */ |
| if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc) |
| continue; |
| |
| rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate, |
| &div, &prate, |
| &avgrate); |
| if (rate > best_rate && rate <= req->rate) { |
| best_parent = parent; |
| best_prate = prate; |
| best_rate = rate; |
| best_avgrate = avgrate; |
| } |
| } |
| |
| if (!best_parent) |
| return -EINVAL; |
| |
| req->best_parent_hw = best_parent; |
| req->best_parent_rate = best_prate; |
| |
| req->rate = best_avgrate; |
| |
| return 0; |
| } |
| |
| static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index) |
| { |
| struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| struct bcm2835_cprman *cprman = clock->cprman; |
| const struct bcm2835_clock_data *data = clock->data; |
| u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK; |
| |
| cprman_write(cprman, data->ctl_reg, src); |
| return 0; |
| } |
| |
| static u8 bcm2835_clock_get_parent(struct clk_hw *hw) |
| { |
| struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| struct bcm2835_cprman *cprman = clock->cprman; |
| const struct bcm2835_clock_data *data = clock->data; |
| u32 src = cprman_read(cprman, data->ctl_reg); |
| |
| return (src & CM_SRC_MASK) >> CM_SRC_SHIFT; |
| } |
| |
| static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = { |
| { |
| .name = "ctl", |
| .offset = 0, |
| }, |
| { |
| .name = "div", |
| .offset = 4, |
| }, |
| }; |
| |
| static int bcm2835_clock_debug_init(struct clk_hw *hw, |
| struct dentry *dentry) |
| { |
| struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| struct bcm2835_cprman *cprman = clock->cprman; |
| const struct bcm2835_clock_data *data = clock->data; |
| |
| return bcm2835_debugfs_regset( |
| cprman, data->ctl_reg, |
| bcm2835_debugfs_clock_reg32, |
| ARRAY_SIZE(bcm2835_debugfs_clock_reg32), |
| dentry); |
| } |
| |
| static const struct clk_ops bcm2835_clock_clk_ops = { |
| .is_prepared = bcm2835_clock_is_on, |
| .prepare = bcm2835_clock_on, |
| .unprepare = bcm2835_clock_off, |
| .recalc_rate = bcm2835_clock_get_rate, |
| .set_rate = bcm2835_clock_set_rate, |
| .determine_rate = bcm2835_clock_determine_rate, |
| .set_parent = bcm2835_clock_set_parent, |
| .get_parent = bcm2835_clock_get_parent, |
| .debug_init = bcm2835_clock_debug_init, |
| }; |
| |
| static int bcm2835_vpu_clock_is_on(struct clk_hw *hw) |
| { |
| return true; |
| } |
| |
| /* |
| * The VPU clock can never be disabled (it doesn't have an ENABLE |
| * bit), so it gets its own set of clock ops. |
| */ |
| static const struct clk_ops bcm2835_vpu_clock_clk_ops = { |
| .is_prepared = bcm2835_vpu_clock_is_on, |
| .recalc_rate = bcm2835_clock_get_rate, |
| .set_rate = bcm2835_clock_set_rate, |
| .determine_rate = bcm2835_clock_determine_rate, |
| .set_parent = bcm2835_clock_set_parent, |
| .get_parent = bcm2835_clock_get_parent, |
| .debug_init = bcm2835_clock_debug_init, |
| }; |
| |
| static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman, |
| const struct bcm2835_pll_data *data) |
| { |
| struct bcm2835_pll *pll; |
| struct clk_init_data init; |
| int ret; |
| |
| memset(&init, 0, sizeof(init)); |
| |
| /* All of the PLLs derive from the external oscillator. */ |
| init.parent_names = &cprman->real_parent_names[0]; |
| init.num_parents = 1; |
| init.name = data->name; |
| init.ops = &bcm2835_pll_clk_ops; |
| init.flags = CLK_IGNORE_UNUSED; |
| |
| pll = kzalloc(sizeof(*pll), GFP_KERNEL); |
| if (!pll) |
| return NULL; |
| |
| pll->cprman = cprman; |
| pll->data = data; |
| pll->hw.init = &init; |
| |
| ret = devm_clk_hw_register(cprman->dev, &pll->hw); |
| if (ret) { |
| kfree(pll); |
| return NULL; |
| } |
| return &pll->hw; |
| } |
| |
| static struct clk_hw * |
| bcm2835_register_pll_divider(struct bcm2835_cprman *cprman, |
| const struct bcm2835_pll_divider_data *data) |
| { |
| struct bcm2835_pll_divider *divider; |
| struct clk_init_data init; |
| const char *divider_name; |
| int ret; |
| |
| if (data->fixed_divider != 1) { |
| divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL, |
| "%s_prediv", data->name); |
| if (!divider_name) |
| return NULL; |
| } else { |
| divider_name = data->name; |
| } |
| |
| memset(&init, 0, sizeof(init)); |
| |
| init.parent_names = &data->source_pll; |
| init.num_parents = 1; |
| init.name = divider_name; |
| init.ops = &bcm2835_pll_divider_clk_ops; |
| init.flags = data->flags | CLK_IGNORE_UNUSED; |
| |
| divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL); |
| if (!divider) |
| return NULL; |
| |
| divider->div.reg = cprman->regs + data->a2w_reg; |
| divider->div.shift = A2W_PLL_DIV_SHIFT; |
| divider->div.width = A2W_PLL_DIV_BITS; |
| divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO; |
| divider->div.lock = &cprman->regs_lock; |
| divider->div.hw.init = &init; |
| divider->div.table = NULL; |
| |
| divider->cprman = cprman; |
| divider->data = data; |
| |
| ret = devm_clk_hw_register(cprman->dev, ÷r->div.hw); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| /* |
| * PLLH's channels have a fixed divide by 10 afterwards, which |
| * is what our consumers are actually using. |
| */ |
| if (data->fixed_divider != 1) { |
| return clk_hw_register_fixed_factor(cprman->dev, data->name, |
| divider_name, |
| CLK_SET_RATE_PARENT, |
| 1, |
| data->fixed_divider); |
| } |
| |
| return ÷r->div.hw; |
| } |
| |
| static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman, |
| const struct bcm2835_clock_data *data) |
| { |
| struct bcm2835_clock *clock; |
| struct clk_init_data init; |
| const char *parents[1 << CM_SRC_BITS]; |
| size_t i, j; |
| int ret; |
| |
| /* |
| * Replace our strings referencing parent clocks with the |
| * actual clock-output-name of the parent. |
| */ |
| for (i = 0; i < data->num_mux_parents; i++) { |
| parents[i] = data->parents[i]; |
| |
| for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) { |
| if (strcmp(parents[i], cprman_parent_names[j]) == 0) { |
| parents[i] = cprman->real_parent_names[j]; |
| break; |
| } |
| } |
| } |
| |
| memset(&init, 0, sizeof(init)); |
| init.parent_names = parents; |
| init.num_parents = data->num_mux_parents; |
| init.name = data->name; |
| init.flags = data->flags | CLK_IGNORE_UNUSED; |
| |
| /* |
| * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate |
| * rate changes on at least of the parents. |
| */ |
| if (data->set_rate_parent) |
| init.flags |= CLK_SET_RATE_PARENT; |
| |
| if (data->is_vpu_clock) { |
| init.ops = &bcm2835_vpu_clock_clk_ops; |
| } else { |
| init.ops = &bcm2835_clock_clk_ops; |
| init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE; |
| |
| /* If the clock wasn't actually enabled at boot, it's not |
| * critical. |
| */ |
| if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE)) |
| init.flags &= ~CLK_IS_CRITICAL; |
| } |
| |
| clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL); |
| if (!clock) |
| return NULL; |
| |
| clock->cprman = cprman; |
| clock->data = data; |
| clock->hw.init = &init; |
| |
| ret = devm_clk_hw_register(cprman->dev, &clock->hw); |
| if (ret) |
| return ERR_PTR(ret); |
| return &clock->hw; |
| } |
| |
| static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman, |
| const struct bcm2835_gate_data *data) |
| { |
| return clk_hw_register_gate(cprman->dev, data->name, data->parent, |
| CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE, |
| cprman->regs + data->ctl_reg, |
| CM_GATE_BIT, 0, &cprman->regs_lock); |
| } |
| |
| typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman, |
| const void *data); |
| struct bcm2835_clk_desc { |
| bcm2835_clk_register clk_register; |
| const void *data; |
| }; |
| |
| /* assignment helper macros for different clock types */ |
| #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \ |
| .data = __VA_ARGS__ } |
| #define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \ |
| &(struct bcm2835_pll_data) \ |
| {__VA_ARGS__}) |
| #define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \ |
| &(struct bcm2835_pll_divider_data) \ |
| {__VA_ARGS__}) |
| #define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \ |
| &(struct bcm2835_clock_data) \ |
| {__VA_ARGS__}) |
| #define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \ |
| &(struct bcm2835_gate_data) \ |
| {__VA_ARGS__}) |
| |
| /* parent mux arrays plus helper macros */ |
| |
| /* main oscillator parent mux */ |
| static const char *const bcm2835_clock_osc_parents[] = { |
| "gnd", |
| "xosc", |
| "testdebug0", |
| "testdebug1" |
| }; |
| |
| #define REGISTER_OSC_CLK(...) REGISTER_CLK( \ |
| .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \ |
| .parents = bcm2835_clock_osc_parents, \ |
| __VA_ARGS__) |
| |
| /* main peripherial parent mux */ |
| static const char *const bcm2835_clock_per_parents[] = { |
| "gnd", |
| "xosc", |
| "testdebug0", |
| "testdebug1", |
| "plla_per", |
| "pllc_per", |
| "plld_per", |
| "pllh_aux", |
| }; |
| |
| #define REGISTER_PER_CLK(...) REGISTER_CLK( \ |
| .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \ |
| .parents = bcm2835_clock_per_parents, \ |
| __VA_ARGS__) |
| |
| /* |
| * Restrict clock sources for the PCM peripheral to the oscillator and |
| * PLLD_PER because other source may have varying rates or be switched |
| * off. |
| * |
| * Prevent other sources from being selected by replacing their names in |
| * the list of potential parents with dummy entries (entry index is |
| * significant). |
| */ |
| static const char *const bcm2835_pcm_per_parents[] = { |
| "-", |
| "xosc", |
| "-", |
| "-", |
| "-", |
| "-", |
| "plld_per", |
| "-", |
| }; |
| |
| #define REGISTER_PCM_CLK(...) REGISTER_CLK( \ |
| .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \ |
| .parents = bcm2835_pcm_per_parents, \ |
| __VA_ARGS__) |
| |
| /* main vpu parent mux */ |
| static const char *const bcm2835_clock_vpu_parents[] = { |
| "gnd", |
| "xosc", |
| "testdebug0", |
| "testdebug1", |
| "plla_core", |
| "pllc_core0", |
| "plld_core", |
| "pllh_aux", |
| "pllc_core1", |
| "pllc_core2", |
| }; |
| |
| #define REGISTER_VPU_CLK(...) REGISTER_CLK( \ |
| .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \ |
| .parents = bcm2835_clock_vpu_parents, \ |
| __VA_ARGS__) |
| |
| /* |
| * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI |
| * analog PHY. The _inv variants are generated internally to cprman, |
| * but we don't use them so they aren't hooked up. |
| */ |
| static const char *const bcm2835_clock_dsi0_parents[] = { |
| "gnd", |
| "xosc", |
| "testdebug0", |
| "testdebug1", |
| "dsi0_ddr", |
| "dsi0_ddr_inv", |
| "dsi0_ddr2", |
| "dsi0_ddr2_inv", |
| "dsi0_byte", |
| "dsi0_byte_inv", |
| }; |
| |
| static const char *const bcm2835_clock_dsi1_parents[] = { |
| "gnd", |
| "xosc", |
| "testdebug0", |
| "testdebug1", |
| "dsi1_ddr", |
| "dsi1_ddr_inv", |
| "dsi1_ddr2", |
| "dsi1_ddr2_inv", |
| "dsi1_byte", |
| "dsi1_byte_inv", |
| }; |
| |
| #define REGISTER_DSI0_CLK(...) REGISTER_CLK( \ |
| .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \ |
| .parents = bcm2835_clock_dsi0_parents, \ |
| __VA_ARGS__) |
| |
| #define REGISTER_DSI1_CLK(...) REGISTER_CLK( \ |
| .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \ |
| .parents = bcm2835_clock_dsi1_parents, \ |
| __VA_ARGS__) |
| |
| /* |
| * the real definition of all the pll, pll_dividers and clocks |
| * these make use of the above REGISTER_* macros |
| */ |
| static const struct bcm2835_clk_desc clk_desc_array[] = { |
| /* the PLL + PLL dividers */ |
| |
| /* |
| * PLLA is the auxiliary PLL, used to drive the CCP2 |
| * (Compact Camera Port 2) transmitter clock. |
| * |
| * It is in the PX LDO power domain, which is on when the |
| * AUDIO domain is on. |
| */ |
| [BCM2835_PLLA] = REGISTER_PLL( |
| .name = "plla", |
| .cm_ctrl_reg = CM_PLLA, |
| .a2w_ctrl_reg = A2W_PLLA_CTRL, |
| .frac_reg = A2W_PLLA_FRAC, |
| .ana_reg_base = A2W_PLLA_ANA0, |
| .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE, |
| .lock_mask = CM_LOCK_FLOCKA, |
| |
| .ana = &bcm2835_ana_default, |
| |
| .min_rate = 600000000u, |
| .max_rate = 2400000000u, |
| .max_fb_rate = BCM2835_MAX_FB_RATE), |
| [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV( |
| .name = "plla_core", |
| .source_pll = "plla", |
| .cm_reg = CM_PLLA, |
| .a2w_reg = A2W_PLLA_CORE, |
| .load_mask = CM_PLLA_LOADCORE, |
| .hold_mask = CM_PLLA_HOLDCORE, |
| .fixed_divider = 1, |
| .flags = CLK_SET_RATE_PARENT), |
| [BCM2835_PLLA_PER] = REGISTER_PLL_DIV( |
| .name = "plla_per", |
| .source_pll = "plla", |
| .cm_reg = CM_PLLA, |
| .a2w_reg = A2W_PLLA_PER, |
| .load_mask = CM_PLLA_LOADPER, |
| .hold_mask = CM_PLLA_HOLDPER, |
| .fixed_divider = 1, |
| .flags = CLK_SET_RATE_PARENT), |
| [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV( |
| .name = "plla_dsi0", |
| .source_pll = "plla", |
| .cm_reg = CM_PLLA, |
| .a2w_reg = A2W_PLLA_DSI0, |
| .load_mask = CM_PLLA_LOADDSI0, |
| .hold_mask = CM_PLLA_HOLDDSI0, |
| .fixed_divider = 1), |
| [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV( |
| .name = "plla_ccp2", |
| .source_pll = "plla", |
| .cm_reg = CM_PLLA, |
| .a2w_reg = A2W_PLLA_CCP2, |
| .load_mask = CM_PLLA_LOADCCP2, |
| .hold_mask = CM_PLLA_HOLDCCP2, |
| .fixed_divider = 1, |
| .flags = CLK_SET_RATE_PARENT), |
| |
| /* PLLB is used for the ARM's clock. */ |
| [BCM2835_PLLB] = REGISTER_PLL( |
| .name = "pllb", |
| .cm_ctrl_reg = CM_PLLB, |
| .a2w_ctrl_reg = A2W_PLLB_CTRL, |
| .frac_reg = A2W_PLLB_FRAC, |
| .ana_reg_base = A2W_PLLB_ANA0, |
| .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE, |
| .lock_mask = CM_LOCK_FLOCKB, |
| |
| .ana = &bcm2835_ana_default, |
| |
| .min_rate = 600000000u, |
| .max_rate = 3000000000u, |
| .max_fb_rate = BCM2835_MAX_FB_RATE), |
| [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV( |
| .name = "pllb_arm", |
| .source_pll = "pllb", |
| .cm_reg = CM_PLLB, |
| .a2w_reg = A2W_PLLB_ARM, |
| .load_mask = CM_PLLB_LOADARM, |
| .hold_mask = CM_PLLB_HOLDARM, |
| .fixed_divider = 1, |
| .flags = CLK_SET_RATE_PARENT), |
| |
| /* |
| * PLLC is the core PLL, used to drive the core VPU clock. |
| * |
| * It is in the PX LDO power domain, which is on when the |
| * AUDIO domain is on. |
| */ |
| [BCM2835_PLLC] = REGISTER_PLL( |
| .name = "pllc", |
| .cm_ctrl_reg = CM_PLLC, |
| .a2w_ctrl_reg = A2W_PLLC_CTRL, |
| .frac_reg = A2W_PLLC_FRAC, |
| .ana_reg_base = A2W_PLLC_ANA0, |
| .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, |
| .lock_mask = CM_LOCK_FLOCKC, |
| |
| .ana = &bcm2835_ana_default, |
| |
| .min_rate = 600000000u, |
| .max_rate = 3000000000u, |
| .max_fb_rate = BCM2835_MAX_FB_RATE), |
| [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV( |
| .name = "pllc_core0", |
| .source_pll = "pllc", |
| .cm_reg = CM_PLLC, |
| .a2w_reg = A2W_PLLC_CORE0, |
| .load_mask = CM_PLLC_LOADCORE0, |
| .hold_mask = CM_PLLC_HOLDCORE0, |
| .fixed_divider = 1, |
| .flags = CLK_SET_RATE_PARENT), |
| [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV( |
| .name = "pllc_core1", |
| .source_pll = "pllc", |
| .cm_reg = CM_PLLC, |
| .a2w_reg = A2W_PLLC_CORE1, |
| .load_mask = CM_PLLC_LOADCORE1, |
| .hold_mask = CM_PLLC_HOLDCORE1, |
| .fixed_divider = 1, |
| .flags = CLK_SET_RATE_PARENT), |
| [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV( |
| .name = "pllc_core2", |
| .source_pll = "pllc", |
| .cm_reg = CM_PLLC, |
| .a2w_reg = A2W_PLLC_CORE2, |
| .load_mask = CM_PLLC_LOADCORE2, |
| .hold_mask = CM_PLLC_HOLDCORE2, |
| .fixed_divider = 1, |
| .flags = CLK_SET_RATE_PARENT), |
| [BCM2835_PLLC_PER] = REGISTER_PLL_DIV( |
| .name = "pllc_per", |
| .source_pll = "pllc", |
| .cm_reg = CM_PLLC, |
| .a2w_reg = A2W_PLLC_PER, |
| .load_mask = CM_PLLC_LOADPER, |
| .hold_mask = CM_PLLC_HOLDPER, |
| .fixed_divider = 1, |
| .flags = CLK_SET_RATE_PARENT), |
| |
| /* |
| * PLLD is the display PLL, used to drive DSI display panels. |
| * |
| * It is in the PX LDO power domain, which is on when the |
| * AUDIO domain is on. |
| */ |
| [BCM2835_PLLD] = REGISTER_PLL( |
| .name = "plld", |
| .cm_ctrl_reg = CM_PLLD, |
| .a2w_ctrl_reg = A2W_PLLD_CTRL, |
| .frac_reg = A2W_PLLD_FRAC, |
| .ana_reg_base = A2W_PLLD_ANA0, |
| .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE, |
| .lock_mask = CM_LOCK_FLOCKD, |
| |
| .ana = &bcm2835_ana_default, |
| |
| .min_rate = 600000000u, |
| .max_rate = 2400000000u, |
| .max_fb_rate = BCM2835_MAX_FB_RATE), |
| [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV( |
| .name = "plld_core", |
| .source_pll = "plld", |
| .cm_reg = CM_PLLD, |
| .a2w_reg = A2W_PLLD_CORE, |
| .load_mask = CM_PLLD_LOADCORE, |
| .hold_mask = CM_PLLD_HOLDCORE, |
| .fixed_divider = 1, |
| .flags = CLK_SET_RATE_PARENT), |
| [BCM2835_PLLD_PER] = REGISTER_PLL_DIV( |
| .name = "plld_per", |
| .source_pll = "plld", |
| .cm_reg = CM_PLLD, |
| .a2w_reg = A2W_PLLD_PER, |
| .load_mask = CM_PLLD_LOADPER, |
| .hold_mask = CM_PLLD_HOLDPER, |
| .fixed_divider = 1, |
| .flags = CLK_SET_RATE_PARENT), |
| [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV( |
| .name = "plld_dsi0", |
| .source_pll = "plld", |
| .cm_reg = CM_PLLD, |
| .a2w_reg = A2W_PLLD_DSI0, |
| .load_mask = CM_PLLD_LOADDSI0, |
| .hold_mask = CM_PLLD_HOLDDSI0, |
| .fixed_divider = 1), |
| [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV( |
| .name = "plld_dsi1", |
| .source_pll = "plld", |
| .cm_reg = CM_PLLD, |
| .a2w_reg = A2W_PLLD_DSI1, |
| .load_mask = CM_PLLD_LOADDSI1, |
| .hold_mask = CM_PLLD_HOLDDSI1, |
| .fixed_divider = 1), |
| |
| /* |
| * PLLH is used to supply the pixel clock or the AUX clock for the |
| * TV encoder. |
| * |
| * It is in the HDMI power domain. |
| */ |
| [BCM2835_PLLH] = REGISTER_PLL( |
| "pllh", |
| .cm_ctrl_reg = CM_PLLH, |
| .a2w_ctrl_reg = A2W_PLLH_CTRL, |
| .frac_reg = A2W_PLLH_FRAC, |
| .ana_reg_base = A2W_PLLH_ANA0, |
| .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, |
| .lock_mask = CM_LOCK_FLOCKH, |
| |
| .ana = &bcm2835_ana_pllh, |
| |
| .min_rate = 600000000u, |
| .max_rate = 3000000000u, |
| .max_fb_rate = BCM2835_MAX_FB_RATE), |
| [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV( |
| .name = "pllh_rcal", |
| .source_pll = "pllh", |
| .cm_reg = CM_PLLH, |
| .a2w_reg = A2W_PLLH_RCAL, |
| .load_mask = CM_PLLH_LOADRCAL, |
| .hold_mask = 0, |
| .fixed_divider = 10, |
| .flags = CLK_SET_RATE_PARENT), |
| [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV( |
| .name = "pllh_aux", |
| .source_pll = "pllh", |
| .cm_reg = CM_PLLH, |
| .a2w_reg = A2W_PLLH_AUX, |
| .load_mask = CM_PLLH_LOADAUX, |
| .hold_mask = 0, |
| .fixed_divider = 1, |
| .flags = CLK_SET_RATE_PARENT), |
| [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV( |
| .name = "pllh_pix", |
| .source_pll = "pllh", |
| .cm_reg = CM_PLLH, |
| .a2w_reg = A2W_PLLH_PIX, |
| .load_mask = CM_PLLH_LOADPIX, |
| .hold_mask = 0, |
| .fixed_divider = 10, |
| .flags = CLK_SET_RATE_PARENT), |
| |
| /* the clocks */ |
| |
| /* clocks with oscillator parent mux */ |
| |
| /* One Time Programmable Memory clock. Maximum 10Mhz. */ |
| [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK( |
| .name = "otp", |
| .ctl_reg = CM_OTPCTL, |
| .div_reg = CM_OTPDIV, |
| .int_bits = 4, |
| .frac_bits = 0, |
| .tcnt_mux = 6), |
| /* |
| * Used for a 1Mhz clock for the system clocksource, and also used |
| * bythe watchdog timer and the camera pulse generator. |
| */ |
| [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK( |
| .name = "timer", |
| .ctl_reg = CM_TIMERCTL, |
| .div_reg = CM_TIMERDIV, |
| .int_bits = 6, |
| .frac_bits = 12), |
| /* |
| * Clock for the temperature sensor. |
| * Generally run at 2Mhz, max 5Mhz. |
| */ |
| [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK( |
| .name = "tsens", |
| .ctl_reg = CM_TSENSCTL, |
| .div_reg = CM_TSENSDIV, |
| .int_bits = 5, |
| .frac_bits = 0), |
| [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK( |
| .name = "tec", |
| .ctl_reg = CM_TECCTL, |
| .div_reg = CM_TECDIV, |
| .int_bits = 6, |
| .frac_bits = 0), |
| |
| /* clocks with vpu parent mux */ |
| [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK( |
| .name = "h264", |
| .ctl_reg = CM_H264CTL, |
| .div_reg = CM_H264DIV, |
| .int_bits = 4, |
| .frac_bits = 8, |
| .tcnt_mux = 1), |
| [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK( |
| .name = "isp", |
| .ctl_reg = CM_ISPCTL, |
| .div_reg = CM_ISPDIV, |
| .int_bits = 4, |
| .frac_bits = 8, |
| .tcnt_mux = 2), |
| |
| /* |
| * Secondary SDRAM clock. Used for low-voltage modes when the PLL |
| * in the SDRAM controller can't be used. |
| */ |
| [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK( |
| .name = "sdram", |
| .ctl_reg = CM_SDCCTL, |
| .div_reg = CM_SDCDIV, |
| .int_bits = 6, |
| .frac_bits = 0, |
| .tcnt_mux = 3), |
| [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK( |
| .name = "v3d", |
| .ctl_reg = CM_V3DCTL, |
| .div_reg = CM_V3DDIV, |
| .int_bits = 4, |
| .frac_bits = 8, |
| .tcnt_mux = 4), |
| /* |
| * VPU clock. This doesn't have an enable bit, since it drives |
| * the bus for everything else, and is special so it doesn't need |
| * to be gated for rate changes. It is also known as "clk_audio" |
| * in various hardware documentation. |
| */ |
| [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK( |
| .name = "vpu", |
| .ctl_reg = CM_VPUCTL, |
| .div_reg = CM_VPUDIV, |
| .int_bits = 12, |
| .frac_bits = 8, |
| .flags = CLK_IS_CRITICAL, |
| .is_vpu_clock = true, |
| .tcnt_mux = 5), |
| |
| /* clocks with per parent mux */ |
| [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK( |
| .name = "aveo", |
| .ctl_reg = CM_AVEOCTL, |
| .div_reg = CM_AVEODIV, |
| .int_bits = 4, |
| .frac_bits = 0, |
| .tcnt_mux = 38), |
| [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK( |
| .name = "cam0", |
| .ctl_reg = CM_CAM0CTL, |
| .div_reg = CM_CAM0DIV, |
| .int_bits = 4, |
| .frac_bits = 8, |
| .tcnt_mux = 14), |
| [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK( |
| .name = "cam1", |
| .ctl_reg = CM_CAM1CTL, |
| .div_reg = CM_CAM1DIV, |
| .int_bits = 4, |
| .frac_bits = 8, |
| .tcnt_mux = 15), |
| [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK( |
| .name = "dft", |
| .ctl_reg = CM_DFTCTL, |
| .div_reg = CM_DFTDIV, |
| .int_bits = 5, |
| .frac_bits = 0), |
| [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK( |
| .name = "dpi", |
| .ctl_reg = CM_DPICTL, |
| .div_reg = CM_DPIDIV, |
| .int_bits = 4, |
| .frac_bits = 8, |
| .tcnt_mux = 17), |
| |
| /* Arasan EMMC clock */ |
| [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK( |
| .name = "emmc", |
| .ctl_reg = CM_EMMCCTL, |
| .div_reg = CM_EMMCDIV, |
| .int_bits = 4, |
| .frac_bits = 8, |
| .tcnt_mux = 39), |
| |
| /* General purpose (GPIO) clocks */ |
| [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK( |
| .name = "gp0", |
| .ctl_reg = CM_GP0CTL, |
| .div_reg = CM_GP0DIV, |
| .int_bits = 12, |
| .frac_bits = 12, |
| .is_mash_clock = true, |
| .tcnt_mux = 20), |
| [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK( |
| .name = "gp1", |
| .ctl_reg = CM_GP1CTL, |
| .div_reg = CM_GP1DIV, |
| .int_bits = 12, |
| .frac_bits = 12, |
| .flags = CLK_IS_CRITICAL, |
| .is_mash_clock = true, |
| .tcnt_mux = 21), |
| [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK( |
| .name = "gp2", |
| .ctl_reg = CM_GP2CTL, |
| .div_reg = CM_GP2DIV, |
| .int_bits = 12, |
| .frac_bits = 12, |
| .flags = CLK_IS_CRITICAL), |
| |
| /* HDMI state machine */ |
| [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK( |
| .name = "hsm", |
| .ctl_reg = CM_HSMCTL, |
| .div_reg = CM_HSMDIV, |
| .int_bits = 4, |
| .frac_bits = 8, |
| .tcnt_mux = 22), |
| [BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK( |
| .name = "pcm", |
| .ctl_reg = CM_PCMCTL, |
| .div_reg = CM_PCMDIV, |
| .int_bits = 12, |
| .frac_bits = 12, |
| .is_mash_clock = true, |
| .low_jitter = true, |
| .tcnt_mux = 23), |
| [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK( |
| .name = "pwm", |
| .ctl_reg = CM_PWMCTL, |
| .div_reg = CM_PWMDIV, |
| .int_bits = 12, |
| .frac_bits = 12, |
| .is_mash_clock = true, |
| .tcnt_mux = 24), |
| [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK( |
| .name = "slim", |
| .ctl_reg = CM_SLIMCTL, |
| .div_reg = CM_SLIMDIV, |
| .int_bits = 12, |
| .frac_bits = 12, |
| .is_mash_clock = true, |
| .tcnt_mux = 25), |
| [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK( |
| .name = "smi", |
| .ctl_reg = CM_SMICTL, |
| .div_reg = CM_SMIDIV, |
| .int_bits = 4, |
| .frac_bits = 8, |
| .tcnt_mux = 27), |
| [BCM2835_CLOCK_UART] = REGISTER_PER_CLK( |
| .name = "uart", |
| .ctl_reg = CM_UARTCTL, |
| .div_reg = CM_UARTDIV, |
| .int_bits = 10, |
| .frac_bits = 12, |
| .tcnt_mux = 28), |
| |
| /* TV encoder clock. Only operating frequency is 108Mhz. */ |
| [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK( |
| .name = "vec", |
| .ctl_reg = CM_VECCTL, |
| .div_reg = CM_VECDIV, |
| .int_bits = 4, |
| .frac_bits = 0, |
| /* |
| * Allow rate change propagation only on PLLH_AUX which is |
| * assigned index 7 in the parent array. |
| */ |
| .set_rate_parent = BIT(7), |
| .tcnt_mux = 29), |
| |
| /* dsi clocks */ |
| [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK( |
| .name = "dsi0e", |
| .ctl_reg = CM_DSI0ECTL, |
| .div_reg = CM_DSI0EDIV, |
| .int_bits = 4, |
| .frac_bits = 8, |
| .tcnt_mux = 18), |
| [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK( |
| .name = "dsi1e", |
| .ctl_reg = CM_DSI1ECTL, |
| .div_reg = CM_DSI1EDIV, |
| .int_bits = 4, |
| .frac_bits = 8, |
| .tcnt_mux = 19), |
| [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK( |
| .name = "dsi0p", |
| .ctl_reg = CM_DSI0PCTL, |
| .div_reg = CM_DSI0PDIV, |
| .int_bits = 0, |
| .frac_bits = 0, |
| .tcnt_mux = 12), |
| [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK( |
| .name = "dsi1p", |
| .ctl_reg = CM_DSI1PCTL, |
| .div_reg = CM_DSI1PDIV, |
| .int_bits = 0, |
| .frac_bits = 0, |
| .tcnt_mux = 13), |
| |
| /* the gates */ |
| |
| /* |
| * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if |
| * you have the debug bit set in the power manager, which we |
| * don't bother exposing) are individual gates off of the |
| * non-stop vpu clock. |
| */ |
| [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE( |
| .name = "peri_image", |
| .parent = "vpu", |
| .ctl_reg = CM_PERIICTL), |
| }; |
| |
| /* |
| * Permanently take a reference on the parent of the SDRAM clock. |
| * |
| * While the SDRAM is being driven by its dedicated PLL most of the |
| * time, there is a little loop running in the firmware that |
| * periodically switches the SDRAM to using our CM clock to do PVT |
| * recalibration, with the assumption that the previously configured |
| * SDRAM parent is still enabled and running. |
| */ |
| static int bcm2835_mark_sdc_parent_critical(struct clk *sdc) |
| { |
| struct clk *parent = clk_get_parent(sdc); |
| |
| if (IS_ERR(parent)) |
| return PTR_ERR(parent); |
| |
| return clk_prepare_enable(parent); |
| } |
| |
| static int bcm2835_clk_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct clk_hw **hws; |
| struct bcm2835_cprman *cprman; |
| struct resource *res; |
| const struct bcm2835_clk_desc *desc; |
| const size_t asize = ARRAY_SIZE(clk_desc_array); |
| size_t i; |
| int ret; |
| |
| cprman = devm_kzalloc(dev, sizeof(*cprman) + |
| sizeof(*cprman->onecell.hws) * asize, |
| GFP_KERNEL); |
| if (!cprman) |
| return -ENOMEM; |
| |
| spin_lock_init(&cprman->regs_lock); |
| cprman->dev = dev; |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| cprman->regs = devm_ioremap_resource(dev, res); |
| if (IS_ERR(cprman->regs)) |
| return PTR_ERR(cprman->regs); |
| |
| memcpy(cprman->real_parent_names, cprman_parent_names, |
| sizeof(cprman_parent_names)); |
| of_clk_parent_fill(dev->of_node, cprman->real_parent_names, |
| ARRAY_SIZE(cprman_parent_names)); |
| |
| /* |
| * Make sure the external oscillator has been registered. |
| * |
| * The other (DSI) clocks are not present on older device |
| * trees, which we still need to support for backwards |
| * compatibility. |
| */ |
| if (!cprman->real_parent_names[0]) |
| return -ENODEV; |
| |
| platform_set_drvdata(pdev, cprman); |
| |
| cprman->onecell.num = asize; |
| hws = cprman->onecell.hws; |
| |
| for (i = 0; i < asize; i++) { |
| desc = &clk_desc_array[i]; |
| if (desc->clk_register && desc->data) |
| hws[i] = desc->clk_register(cprman, desc->data); |
| } |
| |
| ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk); |
| if (ret) |
| return ret; |
| |
| return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get, |
| &cprman->onecell); |
| } |
| |
| static const struct of_device_id bcm2835_clk_of_match[] = { |
| { .compatible = "brcm,bcm2835-cprman", }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match); |
| |
| static struct platform_driver bcm2835_clk_driver = { |
| .driver = { |
| .name = "bcm2835-clk", |
| .of_match_table = bcm2835_clk_of_match, |
| }, |
| .probe = bcm2835_clk_probe, |
| }; |
| |
| builtin_platform_driver(bcm2835_clk_driver); |
| |
| MODULE_AUTHOR("Eric Anholt <eric@anholt.net>"); |
| MODULE_DESCRIPTION("BCM2835 clock driver"); |
| MODULE_LICENSE("GPL v2"); |