| /* |
| * Copyright (C) 1995 Linus Torvalds |
| * |
| * Pentium III FXSR, SSE support |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| */ |
| |
| /* |
| * This file handles the architecture-dependent parts of process handling.. |
| */ |
| |
| #include <stdarg.h> |
| |
| #include <linux/cpu.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/fs.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/elfcore.h> |
| #include <linux/smp.h> |
| #include <linux/stddef.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/user.h> |
| #include <linux/a.out.h> |
| #include <linux/interrupt.h> |
| #include <linux/utsname.h> |
| #include <linux/delay.h> |
| #include <linux/reboot.h> |
| #include <linux/init.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/module.h> |
| #include <linux/kallsyms.h> |
| #include <linux/ptrace.h> |
| #include <linux/random.h> |
| #include <linux/personality.h> |
| #include <linux/tick.h> |
| #include <linux/percpu.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/pgtable.h> |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/ldt.h> |
| #include <asm/processor.h> |
| #include <asm/i387.h> |
| #include <asm/desc.h> |
| #include <asm/vm86.h> |
| #ifdef CONFIG_MATH_EMULATION |
| #include <asm/math_emu.h> |
| #endif |
| |
| #include <linux/err.h> |
| |
| #include <asm/tlbflush.h> |
| #include <asm/cpu.h> |
| #include <asm/kdebug.h> |
| |
| asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); |
| |
| static int hlt_counter; |
| |
| unsigned long boot_option_idle_override = 0; |
| EXPORT_SYMBOL(boot_option_idle_override); |
| |
| DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; |
| EXPORT_PER_CPU_SYMBOL(current_task); |
| |
| DEFINE_PER_CPU(int, cpu_number); |
| EXPORT_PER_CPU_SYMBOL(cpu_number); |
| |
| /* |
| * Return saved PC of a blocked thread. |
| */ |
| unsigned long thread_saved_pc(struct task_struct *tsk) |
| { |
| return ((unsigned long *)tsk->thread.sp)[3]; |
| } |
| |
| /* |
| * Powermanagement idle function, if any.. |
| */ |
| void (*pm_idle)(void); |
| EXPORT_SYMBOL(pm_idle); |
| static DEFINE_PER_CPU(unsigned int, cpu_idle_state); |
| |
| void disable_hlt(void) |
| { |
| hlt_counter++; |
| } |
| |
| EXPORT_SYMBOL(disable_hlt); |
| |
| void enable_hlt(void) |
| { |
| hlt_counter--; |
| } |
| |
| EXPORT_SYMBOL(enable_hlt); |
| |
| /* |
| * We use this if we don't have any better |
| * idle routine.. |
| */ |
| void default_idle(void) |
| { |
| if (!hlt_counter && boot_cpu_data.hlt_works_ok) { |
| current_thread_info()->status &= ~TS_POLLING; |
| /* |
| * TS_POLLING-cleared state must be visible before we |
| * test NEED_RESCHED: |
| */ |
| smp_mb(); |
| |
| local_irq_disable(); |
| if (!need_resched()) { |
| ktime_t t0, t1; |
| u64 t0n, t1n; |
| |
| t0 = ktime_get(); |
| t0n = ktime_to_ns(t0); |
| safe_halt(); /* enables interrupts racelessly */ |
| local_irq_disable(); |
| t1 = ktime_get(); |
| t1n = ktime_to_ns(t1); |
| sched_clock_idle_wakeup_event(t1n - t0n); |
| } |
| local_irq_enable(); |
| current_thread_info()->status |= TS_POLLING; |
| } else { |
| /* loop is done by the caller */ |
| cpu_relax(); |
| } |
| } |
| #ifdef CONFIG_APM_MODULE |
| EXPORT_SYMBOL(default_idle); |
| #endif |
| |
| /* |
| * On SMP it's slightly faster (but much more power-consuming!) |
| * to poll the ->work.need_resched flag instead of waiting for the |
| * cross-CPU IPI to arrive. Use this option with caution. |
| */ |
| static void poll_idle(void) |
| { |
| cpu_relax(); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| #include <asm/nmi.h> |
| /* We don't actually take CPU down, just spin without interrupts. */ |
| static inline void play_dead(void) |
| { |
| /* This must be done before dead CPU ack */ |
| cpu_exit_clear(); |
| wbinvd(); |
| mb(); |
| /* Ack it */ |
| __get_cpu_var(cpu_state) = CPU_DEAD; |
| |
| /* |
| * With physical CPU hotplug, we should halt the cpu |
| */ |
| local_irq_disable(); |
| while (1) |
| halt(); |
| } |
| #else |
| static inline void play_dead(void) |
| { |
| BUG(); |
| } |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| /* |
| * The idle thread. There's no useful work to be |
| * done, so just try to conserve power and have a |
| * low exit latency (ie sit in a loop waiting for |
| * somebody to say that they'd like to reschedule) |
| */ |
| void cpu_idle(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| current_thread_info()->status |= TS_POLLING; |
| |
| /* endless idle loop with no priority at all */ |
| while (1) { |
| tick_nohz_stop_sched_tick(); |
| while (!need_resched()) { |
| void (*idle)(void); |
| |
| if (__get_cpu_var(cpu_idle_state)) |
| __get_cpu_var(cpu_idle_state) = 0; |
| |
| check_pgt_cache(); |
| rmb(); |
| idle = pm_idle; |
| |
| if (!idle) |
| idle = default_idle; |
| |
| if (cpu_is_offline(cpu)) |
| play_dead(); |
| |
| __get_cpu_var(irq_stat).idle_timestamp = jiffies; |
| idle(); |
| } |
| tick_nohz_restart_sched_tick(); |
| preempt_enable_no_resched(); |
| schedule(); |
| preempt_disable(); |
| } |
| } |
| |
| static void do_nothing(void *unused) |
| { |
| } |
| |
| void cpu_idle_wait(void) |
| { |
| unsigned int cpu, this_cpu = get_cpu(); |
| cpumask_t map, tmp = current->cpus_allowed; |
| |
| set_cpus_allowed(current, cpumask_of_cpu(this_cpu)); |
| put_cpu(); |
| |
| cpus_clear(map); |
| for_each_online_cpu(cpu) { |
| per_cpu(cpu_idle_state, cpu) = 1; |
| cpu_set(cpu, map); |
| } |
| |
| __get_cpu_var(cpu_idle_state) = 0; |
| |
| wmb(); |
| do { |
| ssleep(1); |
| for_each_online_cpu(cpu) { |
| if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu)) |
| cpu_clear(cpu, map); |
| } |
| cpus_and(map, map, cpu_online_map); |
| /* |
| * We waited 1 sec, if a CPU still did not call idle |
| * it may be because it is in idle and not waking up |
| * because it has nothing to do. |
| * Give all the remaining CPUS a kick. |
| */ |
| smp_call_function_mask(map, do_nothing, 0, 0); |
| } while (!cpus_empty(map)); |
| |
| set_cpus_allowed(current, tmp); |
| } |
| EXPORT_SYMBOL_GPL(cpu_idle_wait); |
| |
| /* |
| * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, |
| * which can obviate IPI to trigger checking of need_resched. |
| * We execute MONITOR against need_resched and enter optimized wait state |
| * through MWAIT. Whenever someone changes need_resched, we would be woken |
| * up from MWAIT (without an IPI). |
| * |
| * New with Core Duo processors, MWAIT can take some hints based on CPU |
| * capability. |
| */ |
| void mwait_idle_with_hints(unsigned long ax, unsigned long cx) |
| { |
| if (!need_resched()) { |
| __monitor((void *)¤t_thread_info()->flags, 0, 0); |
| smp_mb(); |
| if (!need_resched()) |
| __mwait(ax, cx); |
| } |
| } |
| |
| /* Default MONITOR/MWAIT with no hints, used for default C1 state */ |
| static void mwait_idle(void) |
| { |
| local_irq_enable(); |
| mwait_idle_with_hints(0, 0); |
| } |
| |
| void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) |
| { |
| if (cpu_has(c, X86_FEATURE_MWAIT)) { |
| printk("monitor/mwait feature present.\n"); |
| /* |
| * Skip, if setup has overridden idle. |
| * One CPU supports mwait => All CPUs supports mwait |
| */ |
| if (!pm_idle) { |
| printk("using mwait in idle threads.\n"); |
| pm_idle = mwait_idle; |
| } |
| } |
| } |
| |
| static int __init idle_setup(char *str) |
| { |
| if (!strcmp(str, "poll")) { |
| printk("using polling idle threads.\n"); |
| pm_idle = poll_idle; |
| #ifdef CONFIG_X86_SMP |
| if (smp_num_siblings > 1) |
| printk("WARNING: polling idle and HT enabled, performance may degrade.\n"); |
| #endif |
| } else if (!strcmp(str, "mwait")) |
| force_mwait = 1; |
| else |
| return -1; |
| |
| boot_option_idle_override = 1; |
| return 0; |
| } |
| early_param("idle", idle_setup); |
| |
| void __show_registers(struct pt_regs *regs, int all) |
| { |
| unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; |
| unsigned long d0, d1, d2, d3, d6, d7; |
| unsigned long sp; |
| unsigned short ss, gs; |
| |
| if (user_mode_vm(regs)) { |
| sp = regs->sp; |
| ss = regs->ss & 0xffff; |
| savesegment(gs, gs); |
| } else { |
| sp = (unsigned long) (®s->sp); |
| savesegment(ss, ss); |
| savesegment(gs, gs); |
| } |
| |
| printk("\n"); |
| printk("Pid: %d, comm: %s %s (%s %.*s)\n", |
| task_pid_nr(current), current->comm, |
| print_tainted(), init_utsname()->release, |
| (int)strcspn(init_utsname()->version, " "), |
| init_utsname()->version); |
| |
| printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n", |
| 0xffff & regs->cs, regs->ip, regs->flags, |
| smp_processor_id()); |
| print_symbol("EIP is at %s\n", regs->ip); |
| |
| printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", |
| regs->ax, regs->bx, regs->cx, regs->dx); |
| printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n", |
| regs->si, regs->di, regs->bp, sp); |
| printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n", |
| regs->ds & 0xffff, regs->es & 0xffff, |
| regs->fs & 0xffff, gs, ss); |
| |
| if (!all) |
| return; |
| |
| cr0 = read_cr0(); |
| cr2 = read_cr2(); |
| cr3 = read_cr3(); |
| cr4 = read_cr4_safe(); |
| printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", |
| cr0, cr2, cr3, cr4); |
| |
| get_debugreg(d0, 0); |
| get_debugreg(d1, 1); |
| get_debugreg(d2, 2); |
| get_debugreg(d3, 3); |
| printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", |
| d0, d1, d2, d3); |
| |
| get_debugreg(d6, 6); |
| get_debugreg(d7, 7); |
| printk("DR6: %08lx DR7: %08lx\n", |
| d6, d7); |
| } |
| |
| void show_regs(struct pt_regs *regs) |
| { |
| __show_registers(regs, 1); |
| show_trace(NULL, regs, ®s->sp); |
| } |
| |
| /* |
| * This gets run with %bx containing the |
| * function to call, and %dx containing |
| * the "args". |
| */ |
| extern void kernel_thread_helper(void); |
| |
| /* |
| * Create a kernel thread |
| */ |
| int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) |
| { |
| struct pt_regs regs; |
| |
| memset(®s, 0, sizeof(regs)); |
| |
| regs.bx = (unsigned long) fn; |
| regs.dx = (unsigned long) arg; |
| |
| regs.ds = __USER_DS; |
| regs.es = __USER_DS; |
| regs.fs = __KERNEL_PERCPU; |
| regs.orig_ax = -1; |
| regs.ip = (unsigned long) kernel_thread_helper; |
| regs.cs = __KERNEL_CS | get_kernel_rpl(); |
| regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2; |
| |
| /* Ok, create the new process.. */ |
| return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); |
| } |
| EXPORT_SYMBOL(kernel_thread); |
| |
| /* |
| * Free current thread data structures etc.. |
| */ |
| void exit_thread(void) |
| { |
| /* The process may have allocated an io port bitmap... nuke it. */ |
| if (unlikely(test_thread_flag(TIF_IO_BITMAP))) { |
| struct task_struct *tsk = current; |
| struct thread_struct *t = &tsk->thread; |
| int cpu = get_cpu(); |
| struct tss_struct *tss = &per_cpu(init_tss, cpu); |
| |
| kfree(t->io_bitmap_ptr); |
| t->io_bitmap_ptr = NULL; |
| clear_thread_flag(TIF_IO_BITMAP); |
| /* |
| * Careful, clear this in the TSS too: |
| */ |
| memset(tss->io_bitmap, 0xff, tss->io_bitmap_max); |
| t->io_bitmap_max = 0; |
| tss->io_bitmap_owner = NULL; |
| tss->io_bitmap_max = 0; |
| tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; |
| put_cpu(); |
| } |
| } |
| |
| void flush_thread(void) |
| { |
| struct task_struct *tsk = current; |
| |
| tsk->thread.debugreg0 = 0; |
| tsk->thread.debugreg1 = 0; |
| tsk->thread.debugreg2 = 0; |
| tsk->thread.debugreg3 = 0; |
| tsk->thread.debugreg6 = 0; |
| tsk->thread.debugreg7 = 0; |
| memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); |
| clear_tsk_thread_flag(tsk, TIF_DEBUG); |
| /* |
| * Forget coprocessor state.. |
| */ |
| clear_fpu(tsk); |
| clear_used_math(); |
| } |
| |
| void release_thread(struct task_struct *dead_task) |
| { |
| BUG_ON(dead_task->mm); |
| release_vm86_irqs(dead_task); |
| } |
| |
| /* |
| * This gets called before we allocate a new thread and copy |
| * the current task into it. |
| */ |
| void prepare_to_copy(struct task_struct *tsk) |
| { |
| unlazy_fpu(tsk); |
| } |
| |
| int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, |
| unsigned long unused, |
| struct task_struct * p, struct pt_regs * regs) |
| { |
| struct pt_regs * childregs; |
| struct task_struct *tsk; |
| int err; |
| |
| childregs = task_pt_regs(p); |
| *childregs = *regs; |
| childregs->ax = 0; |
| childregs->sp = sp; |
| |
| p->thread.sp = (unsigned long) childregs; |
| p->thread.sp0 = (unsigned long) (childregs+1); |
| |
| p->thread.ip = (unsigned long) ret_from_fork; |
| |
| savesegment(gs, p->thread.gs); |
| |
| tsk = current; |
| if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) { |
| p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr, |
| IO_BITMAP_BYTES, GFP_KERNEL); |
| if (!p->thread.io_bitmap_ptr) { |
| p->thread.io_bitmap_max = 0; |
| return -ENOMEM; |
| } |
| set_tsk_thread_flag(p, TIF_IO_BITMAP); |
| } |
| |
| err = 0; |
| |
| /* |
| * Set a new TLS for the child thread? |
| */ |
| if (clone_flags & CLONE_SETTLS) |
| err = do_set_thread_area(p, -1, |
| (struct user_desc __user *)childregs->si, 0); |
| |
| if (err && p->thread.io_bitmap_ptr) { |
| kfree(p->thread.io_bitmap_ptr); |
| p->thread.io_bitmap_max = 0; |
| } |
| return err; |
| } |
| |
| /* |
| * fill in the user structure for a core dump.. |
| */ |
| void dump_thread(struct pt_regs * regs, struct user * dump) |
| { |
| u16 gs; |
| |
| /* changed the size calculations - should hopefully work better. lbt */ |
| dump->magic = CMAGIC; |
| dump->start_code = 0; |
| dump->start_stack = regs->sp & ~(PAGE_SIZE - 1); |
| dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT; |
| dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT; |
| dump->u_dsize -= dump->u_tsize; |
| dump->u_ssize = 0; |
| dump->u_debugreg[0] = current->thread.debugreg0; |
| dump->u_debugreg[1] = current->thread.debugreg1; |
| dump->u_debugreg[2] = current->thread.debugreg2; |
| dump->u_debugreg[3] = current->thread.debugreg3; |
| dump->u_debugreg[4] = 0; |
| dump->u_debugreg[5] = 0; |
| dump->u_debugreg[6] = current->thread.debugreg6; |
| dump->u_debugreg[7] = current->thread.debugreg7; |
| |
| if (dump->start_stack < TASK_SIZE) |
| dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT; |
| |
| dump->regs.bx = regs->bx; |
| dump->regs.cx = regs->cx; |
| dump->regs.dx = regs->dx; |
| dump->regs.si = regs->si; |
| dump->regs.di = regs->di; |
| dump->regs.bp = regs->bp; |
| dump->regs.ax = regs->ax; |
| dump->regs.ds = (u16)regs->ds; |
| dump->regs.es = (u16)regs->es; |
| dump->regs.fs = (u16)regs->fs; |
| savesegment(gs,gs); |
| dump->regs.orig_ax = regs->orig_ax; |
| dump->regs.ip = regs->ip; |
| dump->regs.cs = (u16)regs->cs; |
| dump->regs.flags = regs->flags; |
| dump->regs.sp = regs->sp; |
| dump->regs.ss = (u16)regs->ss; |
| |
| dump->u_fpvalid = dump_fpu (regs, &dump->i387); |
| } |
| EXPORT_SYMBOL(dump_thread); |
| |
| /* |
| * Capture the user space registers if the task is not running (in user space) |
| */ |
| int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs) |
| { |
| struct pt_regs ptregs = *task_pt_regs(tsk); |
| ptregs.cs &= 0xffff; |
| ptregs.ds &= 0xffff; |
| ptregs.es &= 0xffff; |
| ptregs.ss &= 0xffff; |
| |
| elf_core_copy_regs(regs, &ptregs); |
| |
| return 1; |
| } |
| |
| #ifdef CONFIG_SECCOMP |
| void hard_disable_TSC(void) |
| { |
| write_cr4(read_cr4() | X86_CR4_TSD); |
| } |
| void disable_TSC(void) |
| { |
| preempt_disable(); |
| if (!test_and_set_thread_flag(TIF_NOTSC)) |
| /* |
| * Must flip the CPU state synchronously with |
| * TIF_NOTSC in the current running context. |
| */ |
| hard_disable_TSC(); |
| preempt_enable(); |
| } |
| void hard_enable_TSC(void) |
| { |
| write_cr4(read_cr4() & ~X86_CR4_TSD); |
| } |
| #endif /* CONFIG_SECCOMP */ |
| |
| static noinline void |
| __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, |
| struct tss_struct *tss) |
| { |
| struct thread_struct *prev, *next; |
| |
| prev = &prev_p->thread; |
| next = &next_p->thread; |
| |
| if (next->debugctlmsr != prev->debugctlmsr) |
| wrmsr(MSR_IA32_DEBUGCTLMSR, next->debugctlmsr, 0); |
| |
| if (test_tsk_thread_flag(next_p, TIF_DEBUG)) { |
| set_debugreg(next->debugreg0, 0); |
| set_debugreg(next->debugreg1, 1); |
| set_debugreg(next->debugreg2, 2); |
| set_debugreg(next->debugreg3, 3); |
| /* no 4 and 5 */ |
| set_debugreg(next->debugreg6, 6); |
| set_debugreg(next->debugreg7, 7); |
| } |
| |
| #ifdef CONFIG_SECCOMP |
| if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ |
| test_tsk_thread_flag(next_p, TIF_NOTSC)) { |
| /* prev and next are different */ |
| if (test_tsk_thread_flag(next_p, TIF_NOTSC)) |
| hard_disable_TSC(); |
| else |
| hard_enable_TSC(); |
| } |
| #endif |
| |
| if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { |
| /* |
| * Disable the bitmap via an invalid offset. We still cache |
| * the previous bitmap owner and the IO bitmap contents: |
| */ |
| tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; |
| return; |
| } |
| |
| if (likely(next == tss->io_bitmap_owner)) { |
| /* |
| * Previous owner of the bitmap (hence the bitmap content) |
| * matches the next task, we dont have to do anything but |
| * to set a valid offset in the TSS: |
| */ |
| tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; |
| return; |
| } |
| /* |
| * Lazy TSS's I/O bitmap copy. We set an invalid offset here |
| * and we let the task to get a GPF in case an I/O instruction |
| * is performed. The handler of the GPF will verify that the |
| * faulting task has a valid I/O bitmap and, it true, does the |
| * real copy and restart the instruction. This will save us |
| * redundant copies when the currently switched task does not |
| * perform any I/O during its timeslice. |
| */ |
| tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY; |
| } |
| |
| /* |
| * switch_to(x,yn) should switch tasks from x to y. |
| * |
| * We fsave/fwait so that an exception goes off at the right time |
| * (as a call from the fsave or fwait in effect) rather than to |
| * the wrong process. Lazy FP saving no longer makes any sense |
| * with modern CPU's, and this simplifies a lot of things (SMP |
| * and UP become the same). |
| * |
| * NOTE! We used to use the x86 hardware context switching. The |
| * reason for not using it any more becomes apparent when you |
| * try to recover gracefully from saved state that is no longer |
| * valid (stale segment register values in particular). With the |
| * hardware task-switch, there is no way to fix up bad state in |
| * a reasonable manner. |
| * |
| * The fact that Intel documents the hardware task-switching to |
| * be slow is a fairly red herring - this code is not noticeably |
| * faster. However, there _is_ some room for improvement here, |
| * so the performance issues may eventually be a valid point. |
| * More important, however, is the fact that this allows us much |
| * more flexibility. |
| * |
| * The return value (in %ax) will be the "prev" task after |
| * the task-switch, and shows up in ret_from_fork in entry.S, |
| * for example. |
| */ |
| struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p) |
| { |
| struct thread_struct *prev = &prev_p->thread, |
| *next = &next_p->thread; |
| int cpu = smp_processor_id(); |
| struct tss_struct *tss = &per_cpu(init_tss, cpu); |
| |
| /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ |
| |
| __unlazy_fpu(prev_p); |
| |
| |
| /* we're going to use this soon, after a few expensive things */ |
| if (next_p->fpu_counter > 5) |
| prefetch(&next->i387.fxsave); |
| |
| /* |
| * Reload esp0. |
| */ |
| load_sp0(tss, next); |
| |
| /* |
| * Save away %gs. No need to save %fs, as it was saved on the |
| * stack on entry. No need to save %es and %ds, as those are |
| * always kernel segments while inside the kernel. Doing this |
| * before setting the new TLS descriptors avoids the situation |
| * where we temporarily have non-reloadable segments in %fs |
| * and %gs. This could be an issue if the NMI handler ever |
| * used %fs or %gs (it does not today), or if the kernel is |
| * running inside of a hypervisor layer. |
| */ |
| savesegment(gs, prev->gs); |
| |
| /* |
| * Load the per-thread Thread-Local Storage descriptor. |
| */ |
| load_TLS(next, cpu); |
| |
| /* |
| * Restore IOPL if needed. In normal use, the flags restore |
| * in the switch assembly will handle this. But if the kernel |
| * is running virtualized at a non-zero CPL, the popf will |
| * not restore flags, so it must be done in a separate step. |
| */ |
| if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) |
| set_iopl_mask(next->iopl); |
| |
| /* |
| * Now maybe handle debug registers and/or IO bitmaps |
| */ |
| if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV || |
| task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) |
| __switch_to_xtra(prev_p, next_p, tss); |
| |
| /* |
| * Leave lazy mode, flushing any hypercalls made here. |
| * This must be done before restoring TLS segments so |
| * the GDT and LDT are properly updated, and must be |
| * done before math_state_restore, so the TS bit is up |
| * to date. |
| */ |
| arch_leave_lazy_cpu_mode(); |
| |
| /* If the task has used fpu the last 5 timeslices, just do a full |
| * restore of the math state immediately to avoid the trap; the |
| * chances of needing FPU soon are obviously high now |
| */ |
| if (next_p->fpu_counter > 5) |
| math_state_restore(); |
| |
| /* |
| * Restore %gs if needed (which is common) |
| */ |
| if (prev->gs | next->gs) |
| loadsegment(gs, next->gs); |
| |
| x86_write_percpu(current_task, next_p); |
| |
| return prev_p; |
| } |
| |
| asmlinkage int sys_fork(struct pt_regs regs) |
| { |
| return do_fork(SIGCHLD, regs.sp, ®s, 0, NULL, NULL); |
| } |
| |
| asmlinkage int sys_clone(struct pt_regs regs) |
| { |
| unsigned long clone_flags; |
| unsigned long newsp; |
| int __user *parent_tidptr, *child_tidptr; |
| |
| clone_flags = regs.bx; |
| newsp = regs.cx; |
| parent_tidptr = (int __user *)regs.dx; |
| child_tidptr = (int __user *)regs.di; |
| if (!newsp) |
| newsp = regs.sp; |
| return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr); |
| } |
| |
| /* |
| * This is trivial, and on the face of it looks like it |
| * could equally well be done in user mode. |
| * |
| * Not so, for quite unobvious reasons - register pressure. |
| * In user mode vfork() cannot have a stack frame, and if |
| * done by calling the "clone()" system call directly, you |
| * do not have enough call-clobbered registers to hold all |
| * the information you need. |
| */ |
| asmlinkage int sys_vfork(struct pt_regs regs) |
| { |
| return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, ®s, 0, NULL, NULL); |
| } |
| |
| /* |
| * sys_execve() executes a new program. |
| */ |
| asmlinkage int sys_execve(struct pt_regs regs) |
| { |
| int error; |
| char * filename; |
| |
| filename = getname((char __user *) regs.bx); |
| error = PTR_ERR(filename); |
| if (IS_ERR(filename)) |
| goto out; |
| error = do_execve(filename, |
| (char __user * __user *) regs.cx, |
| (char __user * __user *) regs.dx, |
| ®s); |
| if (error == 0) { |
| /* Make sure we don't return using sysenter.. */ |
| set_thread_flag(TIF_IRET); |
| } |
| putname(filename); |
| out: |
| return error; |
| } |
| |
| #define top_esp (THREAD_SIZE - sizeof(unsigned long)) |
| #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long)) |
| |
| unsigned long get_wchan(struct task_struct *p) |
| { |
| unsigned long bp, sp, ip; |
| unsigned long stack_page; |
| int count = 0; |
| if (!p || p == current || p->state == TASK_RUNNING) |
| return 0; |
| stack_page = (unsigned long)task_stack_page(p); |
| sp = p->thread.sp; |
| if (!stack_page || sp < stack_page || sp > top_esp+stack_page) |
| return 0; |
| /* include/asm-i386/system.h:switch_to() pushes bp last. */ |
| bp = *(unsigned long *) sp; |
| do { |
| if (bp < stack_page || bp > top_ebp+stack_page) |
| return 0; |
| ip = *(unsigned long *) (bp+4); |
| if (!in_sched_functions(ip)) |
| return ip; |
| bp = *(unsigned long *) bp; |
| } while (count++ < 16); |
| return 0; |
| } |
| |
| unsigned long arch_align_stack(unsigned long sp) |
| { |
| if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) |
| sp -= get_random_int() % 8192; |
| return sp & ~0xf; |
| } |
| |
| unsigned long arch_randomize_brk(struct mm_struct *mm) |
| { |
| unsigned long range_end = mm->brk + 0x02000000; |
| return randomize_range(mm->brk, range_end, 0) ? : mm->brk; |
| } |