| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/clocksource.h> |
| #include <linux/time.h> |
| #include <linux/acpi.h> |
| #include <linux/cpufreq.h> |
| #include <linux/acpi_pmtmr.h> |
| |
| #include <asm/hpet.h> |
| #include <asm/timex.h> |
| #include <asm/timer.h> |
| #include <asm/vgtod.h> |
| |
| static int notsc __initdata = 0; |
| |
| unsigned int cpu_khz; /* TSC clocks / usec, not used here */ |
| EXPORT_SYMBOL(cpu_khz); |
| unsigned int tsc_khz; |
| EXPORT_SYMBOL(tsc_khz); |
| |
| /* Accelerators for sched_clock() |
| * convert from cycles(64bits) => nanoseconds (64bits) |
| * basic equation: |
| * ns = cycles / (freq / ns_per_sec) |
| * ns = cycles * (ns_per_sec / freq) |
| * ns = cycles * (10^9 / (cpu_khz * 10^3)) |
| * ns = cycles * (10^6 / cpu_khz) |
| * |
| * Then we use scaling math (suggested by george@mvista.com) to get: |
| * ns = cycles * (10^6 * SC / cpu_khz) / SC |
| * ns = cycles * cyc2ns_scale / SC |
| * |
| * And since SC is a constant power of two, we can convert the div |
| * into a shift. |
| * |
| * We can use khz divisor instead of mhz to keep a better precision, since |
| * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. |
| * (mathieu.desnoyers@polymtl.ca) |
| * |
| * -johnstul@us.ibm.com "math is hard, lets go shopping!" |
| */ |
| DEFINE_PER_CPU(unsigned long, cyc2ns); |
| |
| static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) |
| { |
| unsigned long long tsc_now, ns_now; |
| unsigned long flags, *scale; |
| |
| local_irq_save(flags); |
| sched_clock_idle_sleep_event(); |
| |
| scale = &per_cpu(cyc2ns, cpu); |
| |
| rdtscll(tsc_now); |
| ns_now = __cycles_2_ns(tsc_now); |
| |
| if (cpu_khz) |
| *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz; |
| |
| sched_clock_idle_wakeup_event(0); |
| local_irq_restore(flags); |
| } |
| |
| unsigned long long native_sched_clock(void) |
| { |
| unsigned long a = 0; |
| |
| /* Could do CPU core sync here. Opteron can execute rdtsc speculatively, |
| * which means it is not completely exact and may not be monotonous |
| * between CPUs. But the errors should be too small to matter for |
| * scheduling purposes. |
| */ |
| |
| rdtscll(a); |
| return cycles_2_ns(a); |
| } |
| |
| /* We need to define a real function for sched_clock, to override the |
| weak default version */ |
| #ifdef CONFIG_PARAVIRT |
| unsigned long long sched_clock(void) |
| { |
| return paravirt_sched_clock(); |
| } |
| #else |
| unsigned long long |
| sched_clock(void) __attribute__((alias("native_sched_clock"))); |
| #endif |
| |
| |
| static int tsc_unstable; |
| |
| int check_tsc_unstable(void) |
| { |
| return tsc_unstable; |
| } |
| EXPORT_SYMBOL_GPL(check_tsc_unstable); |
| |
| #ifdef CONFIG_CPU_FREQ |
| |
| /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency |
| * changes. |
| * |
| * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's |
| * not that important because current Opteron setups do not support |
| * scaling on SMP anyroads. |
| * |
| * Should fix up last_tsc too. Currently gettimeofday in the |
| * first tick after the change will be slightly wrong. |
| */ |
| |
| static unsigned int ref_freq; |
| static unsigned long loops_per_jiffy_ref; |
| static unsigned long tsc_khz_ref; |
| |
| static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct cpufreq_freqs *freq = data; |
| unsigned long *lpj, dummy; |
| |
| if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) |
| return 0; |
| |
| lpj = &dummy; |
| if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| #ifdef CONFIG_SMP |
| lpj = &cpu_data(freq->cpu).loops_per_jiffy; |
| #else |
| lpj = &boot_cpu_data.loops_per_jiffy; |
| #endif |
| |
| if (!ref_freq) { |
| ref_freq = freq->old; |
| loops_per_jiffy_ref = *lpj; |
| tsc_khz_ref = tsc_khz; |
| } |
| if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || |
| (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || |
| (val == CPUFREQ_RESUMECHANGE)) { |
| *lpj = |
| cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); |
| |
| tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); |
| if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| mark_tsc_unstable("cpufreq changes"); |
| } |
| |
| set_cyc2ns_scale(tsc_khz_ref, freq->cpu); |
| |
| return 0; |
| } |
| |
| static struct notifier_block time_cpufreq_notifier_block = { |
| .notifier_call = time_cpufreq_notifier |
| }; |
| |
| static int __init cpufreq_tsc(void) |
| { |
| cpufreq_register_notifier(&time_cpufreq_notifier_block, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| return 0; |
| } |
| |
| core_initcall(cpufreq_tsc); |
| |
| #endif |
| |
| #define MAX_RETRIES 5 |
| #define SMI_TRESHOLD 50000 |
| |
| /* |
| * Read TSC and the reference counters. Take care of SMI disturbance |
| */ |
| static unsigned long __init tsc_read_refs(unsigned long *pm, |
| unsigned long *hpet) |
| { |
| unsigned long t1, t2; |
| int i; |
| |
| for (i = 0; i < MAX_RETRIES; i++) { |
| t1 = get_cycles(); |
| if (hpet) |
| *hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; |
| else |
| *pm = acpi_pm_read_early(); |
| t2 = get_cycles(); |
| if ((t2 - t1) < SMI_TRESHOLD) |
| return t2; |
| } |
| return ULONG_MAX; |
| } |
| |
| /** |
| * tsc_calibrate - calibrate the tsc on boot |
| */ |
| void __init tsc_calibrate(void) |
| { |
| unsigned long flags, tsc1, tsc2, tr1, tr2, pm1, pm2, hpet1, hpet2; |
| int hpet = is_hpet_enabled(), cpu; |
| |
| local_irq_save(flags); |
| |
| tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL); |
| |
| outb((inb(0x61) & ~0x02) | 0x01, 0x61); |
| |
| outb(0xb0, 0x43); |
| outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42); |
| outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42); |
| tr1 = get_cycles(); |
| while ((inb(0x61) & 0x20) == 0); |
| tr2 = get_cycles(); |
| |
| tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL); |
| |
| local_irq_restore(flags); |
| |
| /* |
| * Preset the result with the raw and inaccurate PIT |
| * calibration value |
| */ |
| tsc_khz = (tr2 - tr1) / 50; |
| |
| /* hpet or pmtimer available ? */ |
| if (!hpet && !pm1 && !pm2) { |
| printk(KERN_INFO "TSC calibrated against PIT\n"); |
| goto out; |
| } |
| |
| /* Check, whether the sampling was disturbed by an SMI */ |
| if (tsc1 == ULONG_MAX || tsc2 == ULONG_MAX) { |
| printk(KERN_WARNING "TSC calibration disturbed by SMI, " |
| "using PIT calibration result\n"); |
| goto out; |
| } |
| |
| tsc2 = (tsc2 - tsc1) * 1000000L; |
| |
| if (hpet) { |
| printk(KERN_INFO "TSC calibrated against HPET\n"); |
| if (hpet2 < hpet1) |
| hpet2 += 0x100000000UL; |
| hpet2 -= hpet1; |
| tsc1 = (hpet2 * hpet_readl(HPET_PERIOD)) / 1000000; |
| } else { |
| printk(KERN_INFO "TSC calibrated against PM_TIMER\n"); |
| if (pm2 < pm1) |
| pm2 += ACPI_PM_OVRRUN; |
| pm2 -= pm1; |
| tsc1 = (pm2 * 1000000000) / PMTMR_TICKS_PER_SEC; |
| } |
| |
| tsc_khz = tsc2 / tsc1; |
| |
| out: |
| for_each_possible_cpu(cpu) |
| set_cyc2ns_scale(tsc_khz, cpu); |
| } |
| |
| /* |
| * Make an educated guess if the TSC is trustworthy and synchronized |
| * over all CPUs. |
| */ |
| __cpuinit int unsynchronized_tsc(void) |
| { |
| if (tsc_unstable) |
| return 1; |
| |
| #ifdef CONFIG_SMP |
| if (apic_is_clustered_box()) |
| return 1; |
| #endif |
| |
| if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
| return 0; |
| |
| /* Assume multi socket systems are not synchronized */ |
| return num_present_cpus() > 1; |
| } |
| |
| int __init notsc_setup(char *s) |
| { |
| notsc = 1; |
| return 1; |
| } |
| |
| __setup("notsc", notsc_setup); |
| |
| static struct clocksource clocksource_tsc; |
| |
| /* |
| * We compare the TSC to the cycle_last value in the clocksource |
| * structure to avoid a nasty time-warp. This can be observed in a |
| * very small window right after one CPU updated cycle_last under |
| * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which |
| * is smaller than the cycle_last reference value due to a TSC which |
| * is slighty behind. This delta is nowhere else observable, but in |
| * that case it results in a forward time jump in the range of hours |
| * due to the unsigned delta calculation of the time keeping core |
| * code, which is necessary to support wrapping clocksources like pm |
| * timer. |
| */ |
| static cycle_t read_tsc(void) |
| { |
| cycle_t ret = (cycle_t)get_cycles(); |
| |
| return ret >= clocksource_tsc.cycle_last ? |
| ret : clocksource_tsc.cycle_last; |
| } |
| |
| static cycle_t __vsyscall_fn vread_tsc(void) |
| { |
| cycle_t ret = (cycle_t)vget_cycles(); |
| |
| return ret >= __vsyscall_gtod_data.clock.cycle_last ? |
| ret : __vsyscall_gtod_data.clock.cycle_last; |
| } |
| |
| static struct clocksource clocksource_tsc = { |
| .name = "tsc", |
| .rating = 300, |
| .read = read_tsc, |
| .mask = CLOCKSOURCE_MASK(64), |
| .shift = 22, |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS | |
| CLOCK_SOURCE_MUST_VERIFY, |
| .vread = vread_tsc, |
| }; |
| |
| void mark_tsc_unstable(char *reason) |
| { |
| if (!tsc_unstable) { |
| tsc_unstable = 1; |
| printk("Marking TSC unstable due to %s\n", reason); |
| /* Change only the rating, when not registered */ |
| if (clocksource_tsc.mult) |
| clocksource_change_rating(&clocksource_tsc, 0); |
| else |
| clocksource_tsc.rating = 0; |
| } |
| } |
| EXPORT_SYMBOL_GPL(mark_tsc_unstable); |
| |
| void __init init_tsc_clocksource(void) |
| { |
| if (!notsc) { |
| clocksource_tsc.mult = clocksource_khz2mult(tsc_khz, |
| clocksource_tsc.shift); |
| if (check_tsc_unstable()) |
| clocksource_tsc.rating = 0; |
| |
| clocksource_register(&clocksource_tsc); |
| } |
| } |