| /****************************************************************************** |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2013 - 2014 Intel Corporation. All rights reserved. |
| * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, |
| * USA |
| * |
| * The full GNU General Public License is included in this distribution |
| * in the file called COPYING. |
| * |
| * Contact Information: |
| * Intel Linux Wireless <ilw@linux.intel.com> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. |
| * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| *****************************************************************************/ |
| |
| #include "mvm.h" |
| #include "iwl-config.h" |
| #include "iwl-io.h" |
| #include "iwl-csr.h" |
| #include "iwl-prph.h" |
| |
| #define OTP_DTS_DIODE_DEVIATION 96 /*in words*/ |
| /* VBG - Voltage Band Gap error data (temperature offset) */ |
| #define OTP_WP_DTS_VBG (OTP_DTS_DIODE_DEVIATION + 2) |
| #define MEAS_VBG_MIN_VAL 2300 |
| #define MEAS_VBG_MAX_VAL 3000 |
| #define MEAS_VBG_DEFAULT_VAL 2700 |
| #define DTS_DIODE_VALID(flags) (flags & DTS_DIODE_REG_FLAGS_PASS_ONCE) |
| #define MIN_TEMPERATURE 0 |
| #define MAX_TEMPERATURE 125 |
| #define TEMPERATURE_ERROR (MAX_TEMPERATURE + 1) |
| #define PTAT_DIGITAL_VALUE_MIN_VALUE 0 |
| #define PTAT_DIGITAL_VALUE_MAX_VALUE 0xFF |
| #define DTS_VREFS_NUM 5 |
| static inline u32 DTS_DIODE_GET_VREFS_ID(u32 flags) |
| { |
| return (flags & DTS_DIODE_REG_FLAGS_VREFS_ID) >> |
| DTS_DIODE_REG_FLAGS_VREFS_ID_POS; |
| } |
| |
| #define CALC_VREFS_MIN_DIFF 43 |
| #define CALC_VREFS_MAX_DIFF 51 |
| #define CALC_LUT_SIZE (1 + CALC_VREFS_MAX_DIFF - CALC_VREFS_MIN_DIFF) |
| #define CALC_LUT_INDEX_OFFSET CALC_VREFS_MIN_DIFF |
| #define CALC_TEMPERATURE_RESULT_SHIFT_OFFSET 23 |
| |
| /* |
| * @digital_value: The diode's digital-value sampled (temperature/voltage) |
| * @vref_low: The lower voltage-reference (the vref just below the diode's |
| * sampled digital-value) |
| * @vref_high: The higher voltage-reference (the vref just above the diode's |
| * sampled digital-value) |
| * @flags: bits[1:0]: The ID of the Vrefs pair (lowVref,highVref) |
| * bits[6:2]: Reserved. |
| * bits[7:7]: Indicates completion of at least 1 successful sample |
| * since last DTS reset. |
| */ |
| struct iwl_mvm_dts_diode_bits { |
| u8 digital_value; |
| u8 vref_low; |
| u8 vref_high; |
| u8 flags; |
| } __packed; |
| |
| union dts_diode_results { |
| u32 reg_value; |
| struct iwl_mvm_dts_diode_bits bits; |
| } __packed; |
| |
| static s16 iwl_mvm_dts_get_volt_band_gap(struct iwl_mvm *mvm) |
| { |
| struct iwl_nvm_section calib_sec; |
| const __le16 *calib; |
| u16 vbg; |
| |
| /* TODO: move parsing to NVM code */ |
| calib_sec = mvm->nvm_sections[NVM_SECTION_TYPE_CALIBRATION]; |
| calib = (__le16 *)calib_sec.data; |
| |
| vbg = le16_to_cpu(calib[OTP_WP_DTS_VBG]); |
| |
| if (vbg < MEAS_VBG_MIN_VAL || vbg > MEAS_VBG_MAX_VAL) |
| vbg = MEAS_VBG_DEFAULT_VAL; |
| |
| return vbg; |
| } |
| |
| static u16 iwl_mvm_dts_get_ptat_deviation_offset(struct iwl_mvm *mvm) |
| { |
| const u8 *calib; |
| u8 ptat, pa1, pa2, median; |
| |
| /* TODO: move parsing to NVM code */ |
| calib = mvm->nvm_sections[NVM_SECTION_TYPE_CALIBRATION].data; |
| ptat = calib[OTP_DTS_DIODE_DEVIATION * 2]; |
| pa1 = calib[OTP_DTS_DIODE_DEVIATION * 2 + 1]; |
| pa2 = calib[OTP_DTS_DIODE_DEVIATION * 2 + 2]; |
| |
| /* get the median: */ |
| if (ptat > pa1) { |
| if (ptat > pa2) |
| median = (pa1 > pa2) ? pa1 : pa2; |
| else |
| median = ptat; |
| } else { |
| if (pa1 > pa2) |
| median = (ptat > pa2) ? ptat : pa2; |
| else |
| median = pa1; |
| } |
| |
| return ptat - median; |
| } |
| |
| static u8 iwl_mvm_dts_calibrate_ptat_deviation(struct iwl_mvm *mvm, u8 value) |
| { |
| /* Calibrate the PTAT digital value, based on PTAT deviation data: */ |
| s16 new_val = value - iwl_mvm_dts_get_ptat_deviation_offset(mvm); |
| |
| if (new_val > PTAT_DIGITAL_VALUE_MAX_VALUE) |
| new_val = PTAT_DIGITAL_VALUE_MAX_VALUE; |
| else if (new_val < PTAT_DIGITAL_VALUE_MIN_VALUE) |
| new_val = PTAT_DIGITAL_VALUE_MIN_VALUE; |
| |
| return new_val; |
| } |
| |
| static bool dts_get_adjacent_vrefs(struct iwl_mvm *mvm, |
| union dts_diode_results *avg_ptat) |
| { |
| u8 vrefs_results[DTS_VREFS_NUM]; |
| u8 low_vref_index = 0, flags; |
| u32 reg; |
| |
| reg = iwl_read_prph(mvm->trans, DTSC_VREF_AVG); |
| memcpy(vrefs_results, ®, sizeof(reg)); |
| reg = iwl_read_prph(mvm->trans, DTSC_VREF5_AVG); |
| vrefs_results[4] = reg & 0xff; |
| |
| if (avg_ptat->bits.digital_value < vrefs_results[0] || |
| avg_ptat->bits.digital_value > vrefs_results[4]) |
| return false; |
| |
| if (avg_ptat->bits.digital_value > vrefs_results[3]) |
| low_vref_index = 3; |
| else if (avg_ptat->bits.digital_value > vrefs_results[2]) |
| low_vref_index = 2; |
| else if (avg_ptat->bits.digital_value > vrefs_results[1]) |
| low_vref_index = 1; |
| |
| avg_ptat->bits.vref_low = vrefs_results[low_vref_index]; |
| avg_ptat->bits.vref_high = vrefs_results[low_vref_index + 1]; |
| flags = avg_ptat->bits.flags; |
| avg_ptat->bits.flags = |
| (flags & ~DTS_DIODE_REG_FLAGS_VREFS_ID) | |
| (low_vref_index & DTS_DIODE_REG_FLAGS_VREFS_ID); |
| return true; |
| } |
| |
| /* |
| * return true it the results are valid, and false otherwise. |
| */ |
| static bool dts_read_ptat_avg_results(struct iwl_mvm *mvm, |
| union dts_diode_results *avg_ptat) |
| { |
| u32 reg; |
| u8 tmp; |
| |
| /* fill the diode value and pass_once with avg-reg results */ |
| reg = iwl_read_prph(mvm->trans, DTSC_PTAT_AVG); |
| reg &= DTS_DIODE_REG_DIG_VAL | DTS_DIODE_REG_PASS_ONCE; |
| avg_ptat->reg_value = reg; |
| |
| /* calibrate the PTAT digital value */ |
| tmp = avg_ptat->bits.digital_value; |
| tmp = iwl_mvm_dts_calibrate_ptat_deviation(mvm, tmp); |
| avg_ptat->bits.digital_value = tmp; |
| |
| /* |
| * fill vrefs fields, based on the avgVrefs results |
| * and the diode value |
| */ |
| return dts_get_adjacent_vrefs(mvm, avg_ptat) && |
| DTS_DIODE_VALID(avg_ptat->bits.flags); |
| } |
| |
| static s32 calculate_nic_temperature(union dts_diode_results avg_ptat, |
| u16 volt_band_gap) |
| { |
| u32 tmp_result; |
| u8 vrefs_diff; |
| /* |
| * For temperature calculation (at the end, shift right by 23) |
| * LUT[(D2-D1)] = ROUND{ 2^23 / ((D2-D1)*9*10) } |
| * (D2-D1) == 43 44 45 46 47 48 49 50 51 |
| */ |
| static const u16 calc_lut[CALC_LUT_SIZE] = { |
| 2168, 2118, 2071, 2026, 1983, 1942, 1902, 1864, 1828, |
| }; |
| |
| /* |
| * The diff between the high and low voltage-references is assumed |
| * to be strictly be in range of [60,68] |
| */ |
| vrefs_diff = avg_ptat.bits.vref_high - avg_ptat.bits.vref_low; |
| |
| if (vrefs_diff < CALC_VREFS_MIN_DIFF || |
| vrefs_diff > CALC_VREFS_MAX_DIFF) |
| return TEMPERATURE_ERROR; |
| |
| /* calculate the result: */ |
| tmp_result = |
| vrefs_diff * (DTS_DIODE_GET_VREFS_ID(avg_ptat.bits.flags) + 9); |
| tmp_result += avg_ptat.bits.digital_value; |
| tmp_result -= avg_ptat.bits.vref_high; |
| |
| /* multiply by the LUT value (based on the diff) */ |
| tmp_result *= calc_lut[vrefs_diff - CALC_LUT_INDEX_OFFSET]; |
| |
| /* |
| * Get the BandGap (the voltage refereces source) error data |
| * (temperature offset) |
| */ |
| tmp_result *= volt_band_gap; |
| |
| /* |
| * here, tmp_result value can be up to 32-bits. We want to right-shift |
| * it *without* sign-extend. |
| */ |
| tmp_result = tmp_result >> CALC_TEMPERATURE_RESULT_SHIFT_OFFSET; |
| |
| /* |
| * at this point, tmp_result should be in the range: |
| * 200 <= tmp_result <= 365 |
| */ |
| return (s16)tmp_result - 240; |
| } |
| |
| static s32 check_nic_temperature(struct iwl_mvm *mvm) |
| { |
| u16 volt_band_gap; |
| union dts_diode_results avg_ptat; |
| |
| volt_band_gap = iwl_mvm_dts_get_volt_band_gap(mvm); |
| |
| /* disable DTS */ |
| iwl_write_prph(mvm->trans, SHR_MISC_WFM_DTS_EN, 0); |
| |
| /* SV initialization */ |
| iwl_write_prph(mvm->trans, SHR_MISC_WFM_DTS_EN, 1); |
| iwl_write_prph(mvm->trans, DTSC_CFG_MODE, |
| DTSC_CFG_MODE_PERIODIC); |
| |
| /* wait for results */ |
| msleep(100); |
| if (!dts_read_ptat_avg_results(mvm, &avg_ptat)) |
| return TEMPERATURE_ERROR; |
| |
| /* disable DTS */ |
| iwl_write_prph(mvm->trans, SHR_MISC_WFM_DTS_EN, 0); |
| |
| return calculate_nic_temperature(avg_ptat, volt_band_gap); |
| } |
| |
| static void iwl_mvm_enter_ctkill(struct iwl_mvm *mvm) |
| { |
| u32 duration = mvm->thermal_throttle.params->ct_kill_duration; |
| |
| if (test_bit(IWL_MVM_STATUS_HW_CTKILL, &mvm->status)) |
| return; |
| |
| IWL_ERR(mvm, "Enter CT Kill\n"); |
| iwl_mvm_set_hw_ctkill_state(mvm, true); |
| |
| /* Don't schedule an exit work if we're in test mode, since |
| * the temperature will not change unless we manually set it |
| * again (or disable testing). |
| */ |
| if (!mvm->temperature_test) |
| schedule_delayed_work(&mvm->thermal_throttle.ct_kill_exit, |
| round_jiffies_relative(duration * HZ)); |
| } |
| |
| static void iwl_mvm_exit_ctkill(struct iwl_mvm *mvm) |
| { |
| if (!test_bit(IWL_MVM_STATUS_HW_CTKILL, &mvm->status)) |
| return; |
| |
| IWL_ERR(mvm, "Exit CT Kill\n"); |
| iwl_mvm_set_hw_ctkill_state(mvm, false); |
| } |
| |
| static void check_exit_ctkill(struct work_struct *work) |
| { |
| struct iwl_mvm_tt_mgmt *tt; |
| struct iwl_mvm *mvm; |
| u32 duration; |
| s32 temp; |
| |
| tt = container_of(work, struct iwl_mvm_tt_mgmt, ct_kill_exit.work); |
| mvm = container_of(tt, struct iwl_mvm, thermal_throttle); |
| |
| duration = tt->params->ct_kill_duration; |
| |
| /* make sure the device is available for direct read/writes */ |
| if (iwl_mvm_ref_sync(mvm, IWL_MVM_REF_CHECK_CTKILL)) |
| goto reschedule; |
| |
| iwl_trans_start_hw(mvm->trans); |
| temp = check_nic_temperature(mvm); |
| iwl_trans_stop_device(mvm->trans); |
| |
| iwl_mvm_unref(mvm, IWL_MVM_REF_CHECK_CTKILL); |
| |
| if (temp < MIN_TEMPERATURE || temp > MAX_TEMPERATURE) { |
| IWL_DEBUG_TEMP(mvm, "Failed to measure NIC temperature\n"); |
| goto reschedule; |
| } |
| IWL_DEBUG_TEMP(mvm, "NIC temperature: %d\n", temp); |
| |
| if (temp <= tt->params->ct_kill_exit) { |
| iwl_mvm_exit_ctkill(mvm); |
| return; |
| } |
| |
| reschedule: |
| schedule_delayed_work(&mvm->thermal_throttle.ct_kill_exit, |
| round_jiffies(duration * HZ)); |
| } |
| |
| static void iwl_mvm_tt_smps_iterator(void *_data, u8 *mac, |
| struct ieee80211_vif *vif) |
| { |
| struct iwl_mvm *mvm = _data; |
| enum ieee80211_smps_mode smps_mode; |
| |
| lockdep_assert_held(&mvm->mutex); |
| |
| if (mvm->thermal_throttle.dynamic_smps) |
| smps_mode = IEEE80211_SMPS_DYNAMIC; |
| else |
| smps_mode = IEEE80211_SMPS_AUTOMATIC; |
| |
| if (vif->type != NL80211_IFTYPE_STATION) |
| return; |
| |
| iwl_mvm_update_smps(mvm, vif, IWL_MVM_SMPS_REQ_TT, smps_mode); |
| } |
| |
| static void iwl_mvm_tt_tx_protection(struct iwl_mvm *mvm, bool enable) |
| { |
| struct ieee80211_sta *sta; |
| struct iwl_mvm_sta *mvmsta; |
| int i, err; |
| |
| for (i = 0; i < IWL_MVM_STATION_COUNT; i++) { |
| sta = rcu_dereference_protected(mvm->fw_id_to_mac_id[i], |
| lockdep_is_held(&mvm->mutex)); |
| if (IS_ERR_OR_NULL(sta)) |
| continue; |
| mvmsta = iwl_mvm_sta_from_mac80211(sta); |
| if (enable == mvmsta->tt_tx_protection) |
| continue; |
| err = iwl_mvm_tx_protection(mvm, mvmsta, enable); |
| if (err) { |
| IWL_ERR(mvm, "Failed to %s Tx protection\n", |
| enable ? "enable" : "disable"); |
| } else { |
| IWL_DEBUG_TEMP(mvm, "%s Tx protection\n", |
| enable ? "Enable" : "Disable"); |
| mvmsta->tt_tx_protection = enable; |
| } |
| } |
| } |
| |
| void iwl_mvm_tt_tx_backoff(struct iwl_mvm *mvm, u32 backoff) |
| { |
| struct iwl_host_cmd cmd = { |
| .id = REPLY_THERMAL_MNG_BACKOFF, |
| .len = { sizeof(u32), }, |
| .data = { &backoff, }, |
| }; |
| |
| backoff = max(backoff, mvm->thermal_throttle.min_backoff); |
| |
| if (iwl_mvm_send_cmd(mvm, &cmd) == 0) { |
| IWL_DEBUG_TEMP(mvm, "Set Thermal Tx backoff to: %u\n", |
| backoff); |
| mvm->thermal_throttle.tx_backoff = backoff; |
| } else { |
| IWL_ERR(mvm, "Failed to change Thermal Tx backoff\n"); |
| } |
| } |
| |
| void iwl_mvm_tt_handler(struct iwl_mvm *mvm) |
| { |
| const struct iwl_tt_params *params = mvm->thermal_throttle.params; |
| struct iwl_mvm_tt_mgmt *tt = &mvm->thermal_throttle; |
| s32 temperature = mvm->temperature; |
| bool throttle_enable = false; |
| int i; |
| u32 tx_backoff; |
| |
| IWL_DEBUG_TEMP(mvm, "NIC temperature: %d\n", mvm->temperature); |
| |
| if (params->support_ct_kill && temperature >= params->ct_kill_entry) { |
| iwl_mvm_enter_ctkill(mvm); |
| return; |
| } |
| |
| if (params->support_ct_kill && |
| temperature <= tt->params->ct_kill_exit) { |
| iwl_mvm_exit_ctkill(mvm); |
| return; |
| } |
| |
| if (params->support_dynamic_smps) { |
| if (!tt->dynamic_smps && |
| temperature >= params->dynamic_smps_entry) { |
| IWL_DEBUG_TEMP(mvm, "Enable dynamic SMPS\n"); |
| tt->dynamic_smps = true; |
| ieee80211_iterate_active_interfaces_atomic( |
| mvm->hw, IEEE80211_IFACE_ITER_NORMAL, |
| iwl_mvm_tt_smps_iterator, mvm); |
| throttle_enable = true; |
| } else if (tt->dynamic_smps && |
| temperature <= params->dynamic_smps_exit) { |
| IWL_DEBUG_TEMP(mvm, "Disable dynamic SMPS\n"); |
| tt->dynamic_smps = false; |
| ieee80211_iterate_active_interfaces_atomic( |
| mvm->hw, IEEE80211_IFACE_ITER_NORMAL, |
| iwl_mvm_tt_smps_iterator, mvm); |
| } |
| } |
| |
| if (params->support_tx_protection) { |
| if (temperature >= params->tx_protection_entry) { |
| iwl_mvm_tt_tx_protection(mvm, true); |
| throttle_enable = true; |
| } else if (temperature <= params->tx_protection_exit) { |
| iwl_mvm_tt_tx_protection(mvm, false); |
| } |
| } |
| |
| if (params->support_tx_backoff) { |
| tx_backoff = tt->min_backoff; |
| for (i = 0; i < TT_TX_BACKOFF_SIZE; i++) { |
| if (temperature < params->tx_backoff[i].temperature) |
| break; |
| tx_backoff = max(tt->min_backoff, |
| params->tx_backoff[i].backoff); |
| } |
| if (tx_backoff != tt->min_backoff) |
| throttle_enable = true; |
| if (tt->tx_backoff != tx_backoff) |
| iwl_mvm_tt_tx_backoff(mvm, tx_backoff); |
| } |
| |
| if (!tt->throttle && throttle_enable) { |
| IWL_WARN(mvm, |
| "Due to high temperature thermal throttling initiated\n"); |
| tt->throttle = true; |
| } else if (tt->throttle && !tt->dynamic_smps && |
| tt->tx_backoff == tt->min_backoff && |
| temperature <= params->tx_protection_exit) { |
| IWL_WARN(mvm, |
| "Temperature is back to normal thermal throttling stopped\n"); |
| tt->throttle = false; |
| } |
| } |
| |
| static const struct iwl_tt_params iwl7000_tt_params = { |
| .ct_kill_entry = 118, |
| .ct_kill_exit = 96, |
| .ct_kill_duration = 5, |
| .dynamic_smps_entry = 114, |
| .dynamic_smps_exit = 110, |
| .tx_protection_entry = 114, |
| .tx_protection_exit = 108, |
| .tx_backoff = { |
| {.temperature = 112, .backoff = 200}, |
| {.temperature = 113, .backoff = 600}, |
| {.temperature = 114, .backoff = 1200}, |
| {.temperature = 115, .backoff = 2000}, |
| {.temperature = 116, .backoff = 4000}, |
| {.temperature = 117, .backoff = 10000}, |
| }, |
| .support_ct_kill = true, |
| .support_dynamic_smps = true, |
| .support_tx_protection = true, |
| .support_tx_backoff = true, |
| }; |
| |
| static const struct iwl_tt_params iwl7000_high_temp_tt_params = { |
| .ct_kill_entry = 118, |
| .ct_kill_exit = 96, |
| .ct_kill_duration = 5, |
| .dynamic_smps_entry = 114, |
| .dynamic_smps_exit = 110, |
| .tx_protection_entry = 114, |
| .tx_protection_exit = 108, |
| .tx_backoff = { |
| {.temperature = 112, .backoff = 300}, |
| {.temperature = 113, .backoff = 800}, |
| {.temperature = 114, .backoff = 1500}, |
| {.temperature = 115, .backoff = 3000}, |
| {.temperature = 116, .backoff = 5000}, |
| {.temperature = 117, .backoff = 10000}, |
| }, |
| .support_ct_kill = true, |
| .support_dynamic_smps = true, |
| .support_tx_protection = true, |
| .support_tx_backoff = true, |
| }; |
| |
| void iwl_mvm_tt_initialize(struct iwl_mvm *mvm, u32 min_backoff) |
| { |
| struct iwl_mvm_tt_mgmt *tt = &mvm->thermal_throttle; |
| |
| IWL_DEBUG_TEMP(mvm, "Initialize Thermal Throttling\n"); |
| |
| if (mvm->cfg->high_temp) |
| tt->params = &iwl7000_high_temp_tt_params; |
| else |
| tt->params = &iwl7000_tt_params; |
| |
| tt->throttle = false; |
| tt->min_backoff = min_backoff; |
| INIT_DELAYED_WORK(&tt->ct_kill_exit, check_exit_ctkill); |
| } |
| |
| void iwl_mvm_tt_exit(struct iwl_mvm *mvm) |
| { |
| cancel_delayed_work_sync(&mvm->thermal_throttle.ct_kill_exit); |
| IWL_DEBUG_TEMP(mvm, "Exit Thermal Throttling\n"); |
| } |