| /* |
| * Copyright (c) 2005-2011 Atheros Communications Inc. |
| * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/bitops.h> |
| |
| #include "core.h" |
| #include "debug.h" |
| |
| #include "targaddrs.h" |
| #include "bmi.h" |
| |
| #include "hif.h" |
| #include "htc.h" |
| |
| #include "ce.h" |
| #include "pci.h" |
| |
| enum ath10k_pci_irq_mode { |
| ATH10K_PCI_IRQ_AUTO = 0, |
| ATH10K_PCI_IRQ_LEGACY = 1, |
| ATH10K_PCI_IRQ_MSI = 2, |
| }; |
| |
| enum ath10k_pci_reset_mode { |
| ATH10K_PCI_RESET_AUTO = 0, |
| ATH10K_PCI_RESET_WARM_ONLY = 1, |
| }; |
| |
| static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO; |
| static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO; |
| |
| module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644); |
| MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)"); |
| |
| module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644); |
| MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)"); |
| |
| /* how long wait to wait for target to initialise, in ms */ |
| #define ATH10K_PCI_TARGET_WAIT 3000 |
| #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3 |
| |
| #define QCA988X_2_0_DEVICE_ID (0x003c) |
| |
| static const struct pci_device_id ath10k_pci_id_table[] = { |
| { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */ |
| {0} |
| }; |
| |
| static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address, |
| u32 *data); |
| |
| static void ath10k_pci_buffer_cleanup(struct ath10k *ar); |
| static int ath10k_pci_cold_reset(struct ath10k *ar); |
| static int ath10k_pci_warm_reset(struct ath10k *ar); |
| static int ath10k_pci_wait_for_target_init(struct ath10k *ar); |
| static int ath10k_pci_init_irq(struct ath10k *ar); |
| static int ath10k_pci_deinit_irq(struct ath10k *ar); |
| static int ath10k_pci_request_irq(struct ath10k *ar); |
| static void ath10k_pci_free_irq(struct ath10k *ar); |
| static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe, |
| struct ath10k_ce_pipe *rx_pipe, |
| struct bmi_xfer *xfer); |
| |
| static const struct ce_attr host_ce_config_wlan[] = { |
| /* CE0: host->target HTC control and raw streams */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 16, |
| .src_sz_max = 256, |
| .dest_nentries = 0, |
| }, |
| |
| /* CE1: target->host HTT + HTC control */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 0, |
| .src_sz_max = 512, |
| .dest_nentries = 512, |
| }, |
| |
| /* CE2: target->host WMI */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 0, |
| .src_sz_max = 2048, |
| .dest_nentries = 32, |
| }, |
| |
| /* CE3: host->target WMI */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 32, |
| .src_sz_max = 2048, |
| .dest_nentries = 0, |
| }, |
| |
| /* CE4: host->target HTT */ |
| { |
| .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR, |
| .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES, |
| .src_sz_max = 256, |
| .dest_nentries = 0, |
| }, |
| |
| /* CE5: unused */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 0, |
| .src_sz_max = 0, |
| .dest_nentries = 0, |
| }, |
| |
| /* CE6: target autonomous hif_memcpy */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 0, |
| .src_sz_max = 0, |
| .dest_nentries = 0, |
| }, |
| |
| /* CE7: ce_diag, the Diagnostic Window */ |
| { |
| .flags = CE_ATTR_FLAGS, |
| .src_nentries = 2, |
| .src_sz_max = DIAG_TRANSFER_LIMIT, |
| .dest_nentries = 2, |
| }, |
| }; |
| |
| /* Target firmware's Copy Engine configuration. */ |
| static const struct ce_pipe_config target_ce_config_wlan[] = { |
| /* CE0: host->target HTC control and raw streams */ |
| { |
| .pipenum = __cpu_to_le32(0), |
| .pipedir = __cpu_to_le32(PIPEDIR_OUT), |
| .nentries = __cpu_to_le32(32), |
| .nbytes_max = __cpu_to_le32(256), |
| .flags = __cpu_to_le32(CE_ATTR_FLAGS), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* CE1: target->host HTT + HTC control */ |
| { |
| .pipenum = __cpu_to_le32(1), |
| .pipedir = __cpu_to_le32(PIPEDIR_IN), |
| .nentries = __cpu_to_le32(32), |
| .nbytes_max = __cpu_to_le32(512), |
| .flags = __cpu_to_le32(CE_ATTR_FLAGS), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* CE2: target->host WMI */ |
| { |
| .pipenum = __cpu_to_le32(2), |
| .pipedir = __cpu_to_le32(PIPEDIR_IN), |
| .nentries = __cpu_to_le32(32), |
| .nbytes_max = __cpu_to_le32(2048), |
| .flags = __cpu_to_le32(CE_ATTR_FLAGS), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* CE3: host->target WMI */ |
| { |
| .pipenum = __cpu_to_le32(3), |
| .pipedir = __cpu_to_le32(PIPEDIR_OUT), |
| .nentries = __cpu_to_le32(32), |
| .nbytes_max = __cpu_to_le32(2048), |
| .flags = __cpu_to_le32(CE_ATTR_FLAGS), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* CE4: host->target HTT */ |
| { |
| .pipenum = __cpu_to_le32(4), |
| .pipedir = __cpu_to_le32(PIPEDIR_OUT), |
| .nentries = __cpu_to_le32(256), |
| .nbytes_max = __cpu_to_le32(256), |
| .flags = __cpu_to_le32(CE_ATTR_FLAGS), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* NB: 50% of src nentries, since tx has 2 frags */ |
| |
| /* CE5: unused */ |
| { |
| .pipenum = __cpu_to_le32(5), |
| .pipedir = __cpu_to_le32(PIPEDIR_OUT), |
| .nentries = __cpu_to_le32(32), |
| .nbytes_max = __cpu_to_le32(2048), |
| .flags = __cpu_to_le32(CE_ATTR_FLAGS), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* CE6: Reserved for target autonomous hif_memcpy */ |
| { |
| .pipenum = __cpu_to_le32(6), |
| .pipedir = __cpu_to_le32(PIPEDIR_INOUT), |
| .nentries = __cpu_to_le32(32), |
| .nbytes_max = __cpu_to_le32(4096), |
| .flags = __cpu_to_le32(CE_ATTR_FLAGS), |
| .reserved = __cpu_to_le32(0), |
| }, |
| |
| /* CE7 used only by Host */ |
| }; |
| |
| /* |
| * Map from service/endpoint to Copy Engine. |
| * This table is derived from the CE_PCI TABLE, above. |
| * It is passed to the Target at startup for use by firmware. |
| */ |
| static const struct service_to_pipe target_service_to_ce_map_wlan[] = { |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO), |
| __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ |
| __cpu_to_le32(3), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO), |
| __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ |
| __cpu_to_le32(2), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK), |
| __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ |
| __cpu_to_le32(3), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK), |
| __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ |
| __cpu_to_le32(2), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE), |
| __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ |
| __cpu_to_le32(3), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE), |
| __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ |
| __cpu_to_le32(2), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI), |
| __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ |
| __cpu_to_le32(3), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI), |
| __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ |
| __cpu_to_le32(2), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL), |
| __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ |
| __cpu_to_le32(3), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL), |
| __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ |
| __cpu_to_le32(2), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL), |
| __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ |
| __cpu_to_le32(0), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL), |
| __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ |
| __cpu_to_le32(1), |
| }, |
| { /* not used */ |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), |
| __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ |
| __cpu_to_le32(0), |
| }, |
| { /* not used */ |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), |
| __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ |
| __cpu_to_le32(1), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG), |
| __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ |
| __cpu_to_le32(4), |
| }, |
| { |
| __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG), |
| __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ |
| __cpu_to_le32(1), |
| }, |
| |
| /* (Additions here) */ |
| |
| { /* must be last */ |
| __cpu_to_le32(0), |
| __cpu_to_le32(0), |
| __cpu_to_le32(0), |
| }, |
| }; |
| |
| static bool ath10k_pci_irq_pending(struct ath10k *ar) |
| { |
| u32 cause; |
| |
| /* Check if the shared legacy irq is for us */ |
| cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + |
| PCIE_INTR_CAUSE_ADDRESS); |
| if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL)) |
| return true; |
| |
| return false; |
| } |
| |
| static void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar) |
| { |
| /* IMPORTANT: INTR_CLR register has to be set after |
| * INTR_ENABLE is set to 0, otherwise interrupt can not be |
| * really cleared. */ |
| ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, |
| 0); |
| ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS, |
| PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); |
| |
| /* IMPORTANT: this extra read transaction is required to |
| * flush the posted write buffer. */ |
| (void) ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + |
| PCIE_INTR_ENABLE_ADDRESS); |
| } |
| |
| static void ath10k_pci_enable_legacy_irq(struct ath10k *ar) |
| { |
| ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + |
| PCIE_INTR_ENABLE_ADDRESS, |
| PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); |
| |
| /* IMPORTANT: this extra read transaction is required to |
| * flush the posted write buffer. */ |
| (void) ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + |
| PCIE_INTR_ENABLE_ADDRESS); |
| } |
| |
| static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| if (ar_pci->num_msi_intrs > 1) |
| return "msi-x"; |
| else if (ar_pci->num_msi_intrs == 1) |
| return "msi"; |
| else |
| return "legacy"; |
| } |
| |
| static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe) |
| { |
| struct ath10k *ar = pipe->hif_ce_state; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; |
| struct sk_buff *skb; |
| dma_addr_t paddr; |
| int ret; |
| |
| lockdep_assert_held(&ar_pci->ce_lock); |
| |
| skb = dev_alloc_skb(pipe->buf_sz); |
| if (!skb) |
| return -ENOMEM; |
| |
| WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb"); |
| |
| paddr = dma_map_single(ar->dev, skb->data, |
| skb->len + skb_tailroom(skb), |
| DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(ar->dev, paddr))) { |
| ath10k_warn(ar, "failed to dma map pci rx buf\n"); |
| dev_kfree_skb_any(skb); |
| return -EIO; |
| } |
| |
| ATH10K_SKB_CB(skb)->paddr = paddr; |
| |
| ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr); |
| if (ret) { |
| ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret); |
| dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb), |
| DMA_FROM_DEVICE); |
| dev_kfree_skb_any(skb); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void __ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe) |
| { |
| struct ath10k *ar = pipe->hif_ce_state; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; |
| int ret, num; |
| |
| lockdep_assert_held(&ar_pci->ce_lock); |
| |
| if (pipe->buf_sz == 0) |
| return; |
| |
| if (!ce_pipe->dest_ring) |
| return; |
| |
| num = __ath10k_ce_rx_num_free_bufs(ce_pipe); |
| while (num--) { |
| ret = __ath10k_pci_rx_post_buf(pipe); |
| if (ret) { |
| ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret); |
| mod_timer(&ar_pci->rx_post_retry, jiffies + |
| ATH10K_PCI_RX_POST_RETRY_MS); |
| break; |
| } |
| } |
| } |
| |
| static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe) |
| { |
| struct ath10k *ar = pipe->hif_ce_state; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| spin_lock_bh(&ar_pci->ce_lock); |
| __ath10k_pci_rx_post_pipe(pipe); |
| spin_unlock_bh(&ar_pci->ce_lock); |
| } |
| |
| static void ath10k_pci_rx_post(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int i; |
| |
| spin_lock_bh(&ar_pci->ce_lock); |
| for (i = 0; i < CE_COUNT; i++) |
| __ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]); |
| spin_unlock_bh(&ar_pci->ce_lock); |
| } |
| |
| static void ath10k_pci_rx_replenish_retry(unsigned long ptr) |
| { |
| struct ath10k *ar = (void *)ptr; |
| |
| ath10k_pci_rx_post(ar); |
| } |
| |
| /* |
| * Diagnostic read/write access is provided for startup/config/debug usage. |
| * Caller must guarantee proper alignment, when applicable, and single user |
| * at any moment. |
| */ |
| static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data, |
| int nbytes) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret = 0; |
| u32 buf; |
| unsigned int completed_nbytes, orig_nbytes, remaining_bytes; |
| unsigned int id; |
| unsigned int flags; |
| struct ath10k_ce_pipe *ce_diag; |
| /* Host buffer address in CE space */ |
| u32 ce_data; |
| dma_addr_t ce_data_base = 0; |
| void *data_buf = NULL; |
| int i; |
| |
| /* |
| * This code cannot handle reads to non-memory space. Redirect to the |
| * register read fn but preserve the multi word read capability of |
| * this fn |
| */ |
| if (address < DRAM_BASE_ADDRESS) { |
| if (!IS_ALIGNED(address, 4) || |
| !IS_ALIGNED((unsigned long)data, 4)) |
| return -EIO; |
| |
| while ((nbytes >= 4) && ((ret = ath10k_pci_diag_read_access( |
| ar, address, (u32 *)data)) == 0)) { |
| nbytes -= sizeof(u32); |
| address += sizeof(u32); |
| data += sizeof(u32); |
| } |
| return ret; |
| } |
| |
| ce_diag = ar_pci->ce_diag; |
| |
| /* |
| * Allocate a temporary bounce buffer to hold caller's data |
| * to be DMA'ed from Target. This guarantees |
| * 1) 4-byte alignment |
| * 2) Buffer in DMA-able space |
| */ |
| orig_nbytes = nbytes; |
| data_buf = (unsigned char *)dma_alloc_coherent(ar->dev, |
| orig_nbytes, |
| &ce_data_base, |
| GFP_ATOMIC); |
| |
| if (!data_buf) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| memset(data_buf, 0, orig_nbytes); |
| |
| remaining_bytes = orig_nbytes; |
| ce_data = ce_data_base; |
| while (remaining_bytes) { |
| nbytes = min_t(unsigned int, remaining_bytes, |
| DIAG_TRANSFER_LIMIT); |
| |
| ret = ath10k_ce_rx_post_buf(ce_diag, NULL, ce_data); |
| if (ret != 0) |
| goto done; |
| |
| /* Request CE to send from Target(!) address to Host buffer */ |
| /* |
| * The address supplied by the caller is in the |
| * Target CPU virtual address space. |
| * |
| * In order to use this address with the diagnostic CE, |
| * convert it from Target CPU virtual address space |
| * to CE address space |
| */ |
| address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, |
| address); |
| |
| ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, |
| 0); |
| if (ret) |
| goto done; |
| |
| i = 0; |
| while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf, |
| &completed_nbytes, |
| &id) != 0) { |
| mdelay(1); |
| if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { |
| ret = -EBUSY; |
| goto done; |
| } |
| } |
| |
| if (nbytes != completed_nbytes) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| if (buf != (u32) address) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| i = 0; |
| while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf, |
| &completed_nbytes, |
| &id, &flags) != 0) { |
| mdelay(1); |
| |
| if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { |
| ret = -EBUSY; |
| goto done; |
| } |
| } |
| |
| if (nbytes != completed_nbytes) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| if (buf != ce_data) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| remaining_bytes -= nbytes; |
| address += nbytes; |
| ce_data += nbytes; |
| } |
| |
| done: |
| if (ret == 0) |
| memcpy(data, data_buf, orig_nbytes); |
| else |
| ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n", |
| address, ret); |
| |
| if (data_buf) |
| dma_free_coherent(ar->dev, orig_nbytes, data_buf, |
| ce_data_base); |
| |
| return ret; |
| } |
| |
| static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value) |
| { |
| __le32 val = 0; |
| int ret; |
| |
| ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val)); |
| *value = __le32_to_cpu(val); |
| |
| return ret; |
| } |
| |
| static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest, |
| u32 src, u32 len) |
| { |
| u32 host_addr, addr; |
| int ret; |
| |
| host_addr = host_interest_item_address(src); |
| |
| ret = ath10k_pci_diag_read32(ar, host_addr, &addr); |
| if (ret != 0) { |
| ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n", |
| src, ret); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_read_mem(ar, addr, dest, len); |
| if (ret != 0) { |
| ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n", |
| addr, len, ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| #define ath10k_pci_diag_read_hi(ar, dest, src, len) \ |
| __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len); |
| |
| /* Read 4-byte aligned data from Target memory or register */ |
| static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address, |
| u32 *data) |
| { |
| /* Assume range doesn't cross this boundary */ |
| if (address >= DRAM_BASE_ADDRESS) |
| return ath10k_pci_diag_read32(ar, address, data); |
| |
| *data = ath10k_pci_read32(ar, address); |
| return 0; |
| } |
| |
| static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address, |
| const void *data, int nbytes) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret = 0; |
| u32 buf; |
| unsigned int completed_nbytes, orig_nbytes, remaining_bytes; |
| unsigned int id; |
| unsigned int flags; |
| struct ath10k_ce_pipe *ce_diag; |
| void *data_buf = NULL; |
| u32 ce_data; /* Host buffer address in CE space */ |
| dma_addr_t ce_data_base = 0; |
| int i; |
| |
| ce_diag = ar_pci->ce_diag; |
| |
| /* |
| * Allocate a temporary bounce buffer to hold caller's data |
| * to be DMA'ed to Target. This guarantees |
| * 1) 4-byte alignment |
| * 2) Buffer in DMA-able space |
| */ |
| orig_nbytes = nbytes; |
| data_buf = (unsigned char *)dma_alloc_coherent(ar->dev, |
| orig_nbytes, |
| &ce_data_base, |
| GFP_ATOMIC); |
| if (!data_buf) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| |
| /* Copy caller's data to allocated DMA buf */ |
| memcpy(data_buf, data, orig_nbytes); |
| |
| /* |
| * The address supplied by the caller is in the |
| * Target CPU virtual address space. |
| * |
| * In order to use this address with the diagnostic CE, |
| * convert it from |
| * Target CPU virtual address space |
| * to |
| * CE address space |
| */ |
| address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address); |
| |
| remaining_bytes = orig_nbytes; |
| ce_data = ce_data_base; |
| while (remaining_bytes) { |
| /* FIXME: check cast */ |
| nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT); |
| |
| /* Set up to receive directly into Target(!) address */ |
| ret = ath10k_ce_rx_post_buf(ce_diag, NULL, address); |
| if (ret != 0) |
| goto done; |
| |
| /* |
| * Request CE to send caller-supplied data that |
| * was copied to bounce buffer to Target(!) address. |
| */ |
| ret = ath10k_ce_send(ce_diag, NULL, (u32) ce_data, |
| nbytes, 0, 0); |
| if (ret != 0) |
| goto done; |
| |
| i = 0; |
| while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf, |
| &completed_nbytes, |
| &id) != 0) { |
| mdelay(1); |
| |
| if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { |
| ret = -EBUSY; |
| goto done; |
| } |
| } |
| |
| if (nbytes != completed_nbytes) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| if (buf != ce_data) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| i = 0; |
| while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf, |
| &completed_nbytes, |
| &id, &flags) != 0) { |
| mdelay(1); |
| |
| if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { |
| ret = -EBUSY; |
| goto done; |
| } |
| } |
| |
| if (nbytes != completed_nbytes) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| if (buf != address) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| remaining_bytes -= nbytes; |
| address += nbytes; |
| ce_data += nbytes; |
| } |
| |
| done: |
| if (data_buf) { |
| dma_free_coherent(ar->dev, orig_nbytes, data_buf, |
| ce_data_base); |
| } |
| |
| if (ret != 0) |
| ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n", |
| address, ret); |
| |
| return ret; |
| } |
| |
| static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value) |
| { |
| __le32 val = __cpu_to_le32(value); |
| |
| return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val)); |
| } |
| |
| /* Write 4B data to Target memory or register */ |
| static int ath10k_pci_diag_write_access(struct ath10k *ar, u32 address, |
| u32 data) |
| { |
| /* Assume range doesn't cross this boundary */ |
| if (address >= DRAM_BASE_ADDRESS) |
| return ath10k_pci_diag_write32(ar, address, data); |
| |
| ath10k_pci_write32(ar, address, data); |
| return 0; |
| } |
| |
| static bool ath10k_pci_is_awake(struct ath10k *ar) |
| { |
| u32 val = ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS); |
| |
| return RTC_STATE_V_GET(val) == RTC_STATE_V_ON; |
| } |
| |
| static int ath10k_pci_wake_wait(struct ath10k *ar) |
| { |
| int tot_delay = 0; |
| int curr_delay = 5; |
| |
| while (tot_delay < PCIE_WAKE_TIMEOUT) { |
| if (ath10k_pci_is_awake(ar)) |
| return 0; |
| |
| udelay(curr_delay); |
| tot_delay += curr_delay; |
| |
| if (curr_delay < 50) |
| curr_delay += 5; |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int ath10k_pci_wake(struct ath10k *ar) |
| { |
| ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS, |
| PCIE_SOC_WAKE_V_MASK); |
| return ath10k_pci_wake_wait(ar); |
| } |
| |
| static void ath10k_pci_sleep(struct ath10k *ar) |
| { |
| ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS, |
| PCIE_SOC_WAKE_RESET); |
| } |
| |
| /* Called by lower (CE) layer when a send to Target completes. */ |
| static void ath10k_pci_ce_send_done(struct ath10k_ce_pipe *ce_state) |
| { |
| struct ath10k *ar = ce_state->ar; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current; |
| void *transfer_context; |
| u32 ce_data; |
| unsigned int nbytes; |
| unsigned int transfer_id; |
| |
| while (ath10k_ce_completed_send_next(ce_state, &transfer_context, |
| &ce_data, &nbytes, |
| &transfer_id) == 0) { |
| /* no need to call tx completion for NULL pointers */ |
| if (transfer_context == NULL) |
| continue; |
| |
| cb->tx_completion(ar, transfer_context, transfer_id); |
| } |
| } |
| |
| /* Called by lower (CE) layer when data is received from the Target. */ |
| static void ath10k_pci_ce_recv_data(struct ath10k_ce_pipe *ce_state) |
| { |
| struct ath10k *ar = ce_state->ar; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id]; |
| struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current; |
| struct sk_buff *skb; |
| void *transfer_context; |
| u32 ce_data; |
| unsigned int nbytes, max_nbytes; |
| unsigned int transfer_id; |
| unsigned int flags; |
| |
| while (ath10k_ce_completed_recv_next(ce_state, &transfer_context, |
| &ce_data, &nbytes, &transfer_id, |
| &flags) == 0) { |
| skb = transfer_context; |
| max_nbytes = skb->len + skb_tailroom(skb); |
| dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr, |
| max_nbytes, DMA_FROM_DEVICE); |
| |
| if (unlikely(max_nbytes < nbytes)) { |
| ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)", |
| nbytes, max_nbytes); |
| dev_kfree_skb_any(skb); |
| continue; |
| } |
| |
| skb_put(skb, nbytes); |
| cb->rx_completion(ar, skb, pipe_info->pipe_num); |
| } |
| |
| ath10k_pci_rx_post_pipe(pipe_info); |
| } |
| |
| static int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id, |
| struct ath10k_hif_sg_item *items, int n_items) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id]; |
| struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl; |
| struct ath10k_ce_ring *src_ring = ce_pipe->src_ring; |
| unsigned int nentries_mask; |
| unsigned int sw_index; |
| unsigned int write_index; |
| int err, i = 0; |
| |
| spin_lock_bh(&ar_pci->ce_lock); |
| |
| nentries_mask = src_ring->nentries_mask; |
| sw_index = src_ring->sw_index; |
| write_index = src_ring->write_index; |
| |
| if (unlikely(CE_RING_DELTA(nentries_mask, |
| write_index, sw_index - 1) < n_items)) { |
| err = -ENOBUFS; |
| goto err; |
| } |
| |
| for (i = 0; i < n_items - 1; i++) { |
| ath10k_dbg(ar, ATH10K_DBG_PCI, |
| "pci tx item %d paddr 0x%08x len %d n_items %d\n", |
| i, items[i].paddr, items[i].len, n_items); |
| ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ", |
| items[i].vaddr, items[i].len); |
| |
| err = ath10k_ce_send_nolock(ce_pipe, |
| items[i].transfer_context, |
| items[i].paddr, |
| items[i].len, |
| items[i].transfer_id, |
| CE_SEND_FLAG_GATHER); |
| if (err) |
| goto err; |
| } |
| |
| /* `i` is equal to `n_items -1` after for() */ |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI, |
| "pci tx item %d paddr 0x%08x len %d n_items %d\n", |
| i, items[i].paddr, items[i].len, n_items); |
| ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ", |
| items[i].vaddr, items[i].len); |
| |
| err = ath10k_ce_send_nolock(ce_pipe, |
| items[i].transfer_context, |
| items[i].paddr, |
| items[i].len, |
| items[i].transfer_id, |
| 0); |
| if (err) |
| goto err; |
| |
| spin_unlock_bh(&ar_pci->ce_lock); |
| return 0; |
| |
| err: |
| for (; i > 0; i--) |
| __ath10k_ce_send_revert(ce_pipe); |
| |
| spin_unlock_bh(&ar_pci->ce_lock); |
| return err; |
| } |
| |
| static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n"); |
| |
| return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl); |
| } |
| |
| static void ath10k_pci_dump_registers(struct ath10k *ar, |
| struct ath10k_fw_crash_data *crash_data) |
| { |
| __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {}; |
| int i, ret; |
| |
| lockdep_assert_held(&ar->data_lock); |
| |
| ret = ath10k_pci_diag_read_hi(ar, ®_dump_values[0], |
| hi_failure_state, |
| REG_DUMP_COUNT_QCA988X * sizeof(__le32)); |
| if (ret) { |
| ath10k_err(ar, "failed to read firmware dump area: %d\n", ret); |
| return; |
| } |
| |
| BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4); |
| |
| ath10k_err(ar, "firmware register dump:\n"); |
| for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4) |
| ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n", |
| i, |
| __le32_to_cpu(reg_dump_values[i]), |
| __le32_to_cpu(reg_dump_values[i + 1]), |
| __le32_to_cpu(reg_dump_values[i + 2]), |
| __le32_to_cpu(reg_dump_values[i + 3])); |
| |
| if (!crash_data) |
| return; |
| |
| for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++) |
| crash_data->registers[i] = reg_dump_values[i]; |
| } |
| |
| static void ath10k_pci_fw_crashed_dump(struct ath10k *ar) |
| { |
| struct ath10k_fw_crash_data *crash_data; |
| char uuid[50]; |
| |
| spin_lock_bh(&ar->data_lock); |
| |
| crash_data = ath10k_debug_get_new_fw_crash_data(ar); |
| |
| if (crash_data) |
| scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid); |
| else |
| scnprintf(uuid, sizeof(uuid), "n/a"); |
| |
| ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid); |
| ath10k_print_driver_info(ar); |
| ath10k_pci_dump_registers(ar, crash_data); |
| |
| spin_unlock_bh(&ar->data_lock); |
| |
| queue_work(ar->workqueue, &ar->restart_work); |
| } |
| |
| static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe, |
| int force) |
| { |
| ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n"); |
| |
| if (!force) { |
| int resources; |
| /* |
| * Decide whether to actually poll for completions, or just |
| * wait for a later chance. |
| * If there seem to be plenty of resources left, then just wait |
| * since checking involves reading a CE register, which is a |
| * relatively expensive operation. |
| */ |
| resources = ath10k_pci_hif_get_free_queue_number(ar, pipe); |
| |
| /* |
| * If at least 50% of the total resources are still available, |
| * don't bother checking again yet. |
| */ |
| if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1)) |
| return; |
| } |
| ath10k_ce_per_engine_service(ar, pipe); |
| } |
| |
| static void ath10k_pci_hif_set_callbacks(struct ath10k *ar, |
| struct ath10k_hif_cb *callbacks) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif set callbacks\n"); |
| |
| memcpy(&ar_pci->msg_callbacks_current, callbacks, |
| sizeof(ar_pci->msg_callbacks_current)); |
| } |
| |
| static void ath10k_pci_kill_tasklet(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int i; |
| |
| tasklet_kill(&ar_pci->intr_tq); |
| tasklet_kill(&ar_pci->msi_fw_err); |
| |
| for (i = 0; i < CE_COUNT; i++) |
| tasklet_kill(&ar_pci->pipe_info[i].intr); |
| |
| del_timer_sync(&ar_pci->rx_post_retry); |
| } |
| |
| static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, |
| u16 service_id, u8 *ul_pipe, |
| u8 *dl_pipe, int *ul_is_polled, |
| int *dl_is_polled) |
| { |
| const struct service_to_pipe *entry; |
| bool ul_set = false, dl_set = false; |
| int i; |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n"); |
| |
| /* polling for received messages not supported */ |
| *dl_is_polled = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) { |
| entry = &target_service_to_ce_map_wlan[i]; |
| |
| if (__le32_to_cpu(entry->service_id) != service_id) |
| continue; |
| |
| switch (__le32_to_cpu(entry->pipedir)) { |
| case PIPEDIR_NONE: |
| break; |
| case PIPEDIR_IN: |
| WARN_ON(dl_set); |
| *dl_pipe = __le32_to_cpu(entry->pipenum); |
| dl_set = true; |
| break; |
| case PIPEDIR_OUT: |
| WARN_ON(ul_set); |
| *ul_pipe = __le32_to_cpu(entry->pipenum); |
| ul_set = true; |
| break; |
| case PIPEDIR_INOUT: |
| WARN_ON(dl_set); |
| WARN_ON(ul_set); |
| *dl_pipe = __le32_to_cpu(entry->pipenum); |
| *ul_pipe = __le32_to_cpu(entry->pipenum); |
| dl_set = true; |
| ul_set = true; |
| break; |
| } |
| } |
| |
| if (WARN_ON(!ul_set || !dl_set)) |
| return -ENOENT; |
| |
| *ul_is_polled = |
| (host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0; |
| |
| return 0; |
| } |
| |
| static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar, |
| u8 *ul_pipe, u8 *dl_pipe) |
| { |
| int ul_is_polled, dl_is_polled; |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n"); |
| |
| (void)ath10k_pci_hif_map_service_to_pipe(ar, |
| ATH10K_HTC_SVC_ID_RSVD_CTRL, |
| ul_pipe, |
| dl_pipe, |
| &ul_is_polled, |
| &dl_is_polled); |
| } |
| |
| static void ath10k_pci_irq_disable(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int i; |
| |
| ath10k_ce_disable_interrupts(ar); |
| |
| /* Regardless how many interrupts were assigned for MSI the first one |
| * is always used for firmware indications (crashes). There's no way to |
| * mask the irq in the device so call disable_irq(). Legacy (shared) |
| * interrupts can be masked on the device though. |
| */ |
| if (ar_pci->num_msi_intrs > 0) |
| disable_irq(ar_pci->pdev->irq); |
| else |
| ath10k_pci_disable_and_clear_legacy_irq(ar); |
| |
| for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++) |
| synchronize_irq(ar_pci->pdev->irq + i); |
| } |
| |
| static void ath10k_pci_irq_enable(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| ath10k_ce_enable_interrupts(ar); |
| |
| /* See comment in ath10k_pci_irq_disable() */ |
| if (ar_pci->num_msi_intrs > 0) |
| enable_irq(ar_pci->pdev->irq); |
| else |
| ath10k_pci_enable_legacy_irq(ar); |
| } |
| |
| static int ath10k_pci_hif_start(struct ath10k *ar) |
| { |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n"); |
| |
| ath10k_pci_irq_enable(ar); |
| ath10k_pci_rx_post(ar); |
| |
| return 0; |
| } |
| |
| static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info) |
| { |
| struct ath10k *ar; |
| struct ath10k_pci *ar_pci; |
| struct ath10k_ce_pipe *ce_hdl; |
| u32 buf_sz; |
| struct sk_buff *netbuf; |
| u32 ce_data; |
| |
| buf_sz = pipe_info->buf_sz; |
| |
| /* Unused Copy Engine */ |
| if (buf_sz == 0) |
| return; |
| |
| ar = pipe_info->hif_ce_state; |
| ar_pci = ath10k_pci_priv(ar); |
| ce_hdl = pipe_info->ce_hdl; |
| |
| while (ath10k_ce_revoke_recv_next(ce_hdl, (void **)&netbuf, |
| &ce_data) == 0) { |
| dma_unmap_single(ar->dev, ATH10K_SKB_CB(netbuf)->paddr, |
| netbuf->len + skb_tailroom(netbuf), |
| DMA_FROM_DEVICE); |
| dev_kfree_skb_any(netbuf); |
| } |
| } |
| |
| static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info) |
| { |
| struct ath10k *ar; |
| struct ath10k_pci *ar_pci; |
| struct ath10k_ce_pipe *ce_hdl; |
| struct sk_buff *netbuf; |
| u32 ce_data; |
| unsigned int nbytes; |
| unsigned int id; |
| u32 buf_sz; |
| |
| buf_sz = pipe_info->buf_sz; |
| |
| /* Unused Copy Engine */ |
| if (buf_sz == 0) |
| return; |
| |
| ar = pipe_info->hif_ce_state; |
| ar_pci = ath10k_pci_priv(ar); |
| ce_hdl = pipe_info->ce_hdl; |
| |
| while (ath10k_ce_cancel_send_next(ce_hdl, (void **)&netbuf, |
| &ce_data, &nbytes, &id) == 0) { |
| /* no need to call tx completion for NULL pointers */ |
| if (!netbuf) |
| continue; |
| |
| ar_pci->msg_callbacks_current.tx_completion(ar, |
| netbuf, |
| id); |
| } |
| } |
| |
| /* |
| * Cleanup residual buffers for device shutdown: |
| * buffers that were enqueued for receive |
| * buffers that were to be sent |
| * Note: Buffers that had completed but which were |
| * not yet processed are on a completion queue. They |
| * are handled when the completion thread shuts down. |
| */ |
| static void ath10k_pci_buffer_cleanup(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int pipe_num; |
| |
| for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { |
| struct ath10k_pci_pipe *pipe_info; |
| |
| pipe_info = &ar_pci->pipe_info[pipe_num]; |
| ath10k_pci_rx_pipe_cleanup(pipe_info); |
| ath10k_pci_tx_pipe_cleanup(pipe_info); |
| } |
| } |
| |
| static void ath10k_pci_ce_deinit(struct ath10k *ar) |
| { |
| int i; |
| |
| for (i = 0; i < CE_COUNT; i++) |
| ath10k_ce_deinit_pipe(ar, i); |
| } |
| |
| static void ath10k_pci_flush(struct ath10k *ar) |
| { |
| ath10k_pci_kill_tasklet(ar); |
| ath10k_pci_buffer_cleanup(ar); |
| } |
| |
| static void ath10k_pci_hif_stop(struct ath10k *ar) |
| { |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n"); |
| |
| ath10k_pci_irq_disable(ar); |
| ath10k_pci_flush(ar); |
| |
| /* Most likely the device has HTT Rx ring configured. The only way to |
| * prevent the device from accessing (and possible corrupting) host |
| * memory is to reset the chip now. |
| */ |
| ath10k_pci_warm_reset(ar); |
| } |
| |
| static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar, |
| void *req, u32 req_len, |
| void *resp, u32 *resp_len) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG]; |
| struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST]; |
| struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl; |
| struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl; |
| dma_addr_t req_paddr = 0; |
| dma_addr_t resp_paddr = 0; |
| struct bmi_xfer xfer = {}; |
| void *treq, *tresp = NULL; |
| int ret = 0; |
| |
| might_sleep(); |
| |
| if (resp && !resp_len) |
| return -EINVAL; |
| |
| if (resp && resp_len && *resp_len == 0) |
| return -EINVAL; |
| |
| treq = kmemdup(req, req_len, GFP_KERNEL); |
| if (!treq) |
| return -ENOMEM; |
| |
| req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE); |
| ret = dma_mapping_error(ar->dev, req_paddr); |
| if (ret) |
| goto err_dma; |
| |
| if (resp && resp_len) { |
| tresp = kzalloc(*resp_len, GFP_KERNEL); |
| if (!tresp) { |
| ret = -ENOMEM; |
| goto err_req; |
| } |
| |
| resp_paddr = dma_map_single(ar->dev, tresp, *resp_len, |
| DMA_FROM_DEVICE); |
| ret = dma_mapping_error(ar->dev, resp_paddr); |
| if (ret) |
| goto err_req; |
| |
| xfer.wait_for_resp = true; |
| xfer.resp_len = 0; |
| |
| ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr); |
| } |
| |
| ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0); |
| if (ret) |
| goto err_resp; |
| |
| ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer); |
| if (ret) { |
| u32 unused_buffer; |
| unsigned int unused_nbytes; |
| unsigned int unused_id; |
| |
| ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer, |
| &unused_nbytes, &unused_id); |
| } else { |
| /* non-zero means we did not time out */ |
| ret = 0; |
| } |
| |
| err_resp: |
| if (resp) { |
| u32 unused_buffer; |
| |
| ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer); |
| dma_unmap_single(ar->dev, resp_paddr, |
| *resp_len, DMA_FROM_DEVICE); |
| } |
| err_req: |
| dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE); |
| |
| if (ret == 0 && resp_len) { |
| *resp_len = min(*resp_len, xfer.resp_len); |
| memcpy(resp, tresp, xfer.resp_len); |
| } |
| err_dma: |
| kfree(treq); |
| kfree(tresp); |
| |
| return ret; |
| } |
| |
| static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state) |
| { |
| struct bmi_xfer *xfer; |
| u32 ce_data; |
| unsigned int nbytes; |
| unsigned int transfer_id; |
| |
| if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer, &ce_data, |
| &nbytes, &transfer_id)) |
| return; |
| |
| xfer->tx_done = true; |
| } |
| |
| static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state) |
| { |
| struct ath10k *ar = ce_state->ar; |
| struct bmi_xfer *xfer; |
| u32 ce_data; |
| unsigned int nbytes; |
| unsigned int transfer_id; |
| unsigned int flags; |
| |
| if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data, |
| &nbytes, &transfer_id, &flags)) |
| return; |
| |
| if (!xfer->wait_for_resp) { |
| ath10k_warn(ar, "unexpected: BMI data received; ignoring\n"); |
| return; |
| } |
| |
| xfer->resp_len = nbytes; |
| xfer->rx_done = true; |
| } |
| |
| static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe, |
| struct ath10k_ce_pipe *rx_pipe, |
| struct bmi_xfer *xfer) |
| { |
| unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; |
| |
| while (time_before_eq(jiffies, timeout)) { |
| ath10k_pci_bmi_send_done(tx_pipe); |
| ath10k_pci_bmi_recv_data(rx_pipe); |
| |
| if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) |
| return 0; |
| |
| schedule(); |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| /* |
| * Send an interrupt to the device to wake up the Target CPU |
| * so it has an opportunity to notice any changed state. |
| */ |
| static int ath10k_pci_wake_target_cpu(struct ath10k *ar) |
| { |
| int ret; |
| u32 core_ctrl; |
| |
| ret = ath10k_pci_diag_read_access(ar, SOC_CORE_BASE_ADDRESS | |
| CORE_CTRL_ADDRESS, |
| &core_ctrl); |
| if (ret) { |
| ath10k_warn(ar, "failed to read core_ctrl: %d\n", ret); |
| return ret; |
| } |
| |
| /* A_INUM_FIRMWARE interrupt to Target CPU */ |
| core_ctrl |= CORE_CTRL_CPU_INTR_MASK; |
| |
| ret = ath10k_pci_diag_write_access(ar, SOC_CORE_BASE_ADDRESS | |
| CORE_CTRL_ADDRESS, |
| core_ctrl); |
| if (ret) { |
| ath10k_warn(ar, "failed to set target CPU interrupt mask: %d\n", |
| ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_init_config(struct ath10k *ar) |
| { |
| u32 interconnect_targ_addr; |
| u32 pcie_state_targ_addr = 0; |
| u32 pipe_cfg_targ_addr = 0; |
| u32 svc_to_pipe_map = 0; |
| u32 pcie_config_flags = 0; |
| u32 ealloc_value; |
| u32 ealloc_targ_addr; |
| u32 flag2_value; |
| u32 flag2_targ_addr; |
| int ret = 0; |
| |
| /* Download to Target the CE Config and the service-to-CE map */ |
| interconnect_targ_addr = |
| host_interest_item_address(HI_ITEM(hi_interconnect_state)); |
| |
| /* Supply Target-side CE configuration */ |
| ret = ath10k_pci_diag_read_access(ar, interconnect_targ_addr, |
| &pcie_state_targ_addr); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret); |
| return ret; |
| } |
| |
| if (pcie_state_targ_addr == 0) { |
| ret = -EIO; |
| ath10k_err(ar, "Invalid pcie state addr\n"); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr + |
| offsetof(struct pcie_state, |
| pipe_cfg_addr), |
| &pipe_cfg_targ_addr); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret); |
| return ret; |
| } |
| |
| if (pipe_cfg_targ_addr == 0) { |
| ret = -EIO; |
| ath10k_err(ar, "Invalid pipe cfg addr\n"); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr, |
| target_ce_config_wlan, |
| sizeof(target_ce_config_wlan)); |
| |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr + |
| offsetof(struct pcie_state, |
| svc_to_pipe_map), |
| &svc_to_pipe_map); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret); |
| return ret; |
| } |
| |
| if (svc_to_pipe_map == 0) { |
| ret = -EIO; |
| ath10k_err(ar, "Invalid svc_to_pipe map\n"); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map, |
| target_service_to_ce_map_wlan, |
| sizeof(target_service_to_ce_map_wlan)); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr + |
| offsetof(struct pcie_state, |
| config_flags), |
| &pcie_config_flags); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret); |
| return ret; |
| } |
| |
| pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1; |
| |
| ret = ath10k_pci_diag_write_access(ar, pcie_state_targ_addr + |
| offsetof(struct pcie_state, config_flags), |
| pcie_config_flags); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret); |
| return ret; |
| } |
| |
| /* configure early allocation */ |
| ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc)); |
| |
| ret = ath10k_pci_diag_read_access(ar, ealloc_targ_addr, &ealloc_value); |
| if (ret != 0) { |
| ath10k_err(ar, "Faile to get early alloc val: %d\n", ret); |
| return ret; |
| } |
| |
| /* first bank is switched to IRAM */ |
| ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) & |
| HI_EARLY_ALLOC_MAGIC_MASK); |
| ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) & |
| HI_EARLY_ALLOC_IRAM_BANKS_MASK); |
| |
| ret = ath10k_pci_diag_write_access(ar, ealloc_targ_addr, ealloc_value); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to set early alloc val: %d\n", ret); |
| return ret; |
| } |
| |
| /* Tell Target to proceed with initialization */ |
| flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2)); |
| |
| ret = ath10k_pci_diag_read_access(ar, flag2_targ_addr, &flag2_value); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to get option val: %d\n", ret); |
| return ret; |
| } |
| |
| flag2_value |= HI_OPTION_EARLY_CFG_DONE; |
| |
| ret = ath10k_pci_diag_write_access(ar, flag2_targ_addr, flag2_value); |
| if (ret != 0) { |
| ath10k_err(ar, "Failed to set option val: %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_alloc_ce(struct ath10k *ar) |
| { |
| int i, ret; |
| |
| for (i = 0; i < CE_COUNT; i++) { |
| ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]); |
| if (ret) { |
| ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n", |
| i, ret); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void ath10k_pci_free_ce(struct ath10k *ar) |
| { |
| int i; |
| |
| for (i = 0; i < CE_COUNT; i++) |
| ath10k_ce_free_pipe(ar, i); |
| } |
| |
| static int ath10k_pci_ce_init(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_pci_pipe *pipe_info; |
| const struct ce_attr *attr; |
| int pipe_num, ret; |
| |
| for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { |
| pipe_info = &ar_pci->pipe_info[pipe_num]; |
| pipe_info->ce_hdl = &ar_pci->ce_states[pipe_num]; |
| pipe_info->pipe_num = pipe_num; |
| pipe_info->hif_ce_state = ar; |
| attr = &host_ce_config_wlan[pipe_num]; |
| |
| ret = ath10k_ce_init_pipe(ar, pipe_num, attr, |
| ath10k_pci_ce_send_done, |
| ath10k_pci_ce_recv_data); |
| if (ret) { |
| ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n", |
| pipe_num, ret); |
| return ret; |
| } |
| |
| if (pipe_num == CE_COUNT - 1) { |
| /* |
| * Reserve the ultimate CE for |
| * diagnostic Window support |
| */ |
| ar_pci->ce_diag = pipe_info->ce_hdl; |
| continue; |
| } |
| |
| pipe_info->buf_sz = (size_t) (attr->src_sz_max); |
| } |
| |
| return 0; |
| } |
| |
| static bool ath10k_pci_has_fw_crashed(struct ath10k *ar) |
| { |
| return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) & |
| FW_IND_EVENT_PENDING; |
| } |
| |
| static void ath10k_pci_fw_crashed_clear(struct ath10k *ar) |
| { |
| u32 val; |
| |
| val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); |
| val &= ~FW_IND_EVENT_PENDING; |
| ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val); |
| } |
| |
| /* this function effectively clears target memory controller assert line */ |
| static void ath10k_pci_warm_reset_si0(struct ath10k *ar) |
| { |
| u32 val; |
| |
| val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); |
| ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, |
| val | SOC_RESET_CONTROL_SI0_RST_MASK); |
| val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); |
| |
| msleep(10); |
| |
| val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); |
| ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, |
| val & ~SOC_RESET_CONTROL_SI0_RST_MASK); |
| val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); |
| |
| msleep(10); |
| } |
| |
| static int ath10k_pci_warm_reset(struct ath10k *ar) |
| { |
| u32 val; |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n"); |
| |
| /* debug */ |
| val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + |
| PCIE_INTR_CAUSE_ADDRESS); |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot host cpu intr cause: 0x%08x\n", |
| val); |
| |
| val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + |
| CPU_INTR_ADDRESS); |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target cpu intr cause: 0x%08x\n", |
| val); |
| |
| /* disable pending irqs */ |
| ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + |
| PCIE_INTR_ENABLE_ADDRESS, 0); |
| |
| ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + |
| PCIE_INTR_CLR_ADDRESS, ~0); |
| |
| msleep(100); |
| |
| /* clear fw indicator */ |
| ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0); |
| |
| /* clear target LF timer interrupts */ |
| val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + |
| SOC_LF_TIMER_CONTROL0_ADDRESS); |
| ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + |
| SOC_LF_TIMER_CONTROL0_ADDRESS, |
| val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK); |
| |
| /* reset CE */ |
| val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + |
| SOC_RESET_CONTROL_ADDRESS); |
| ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS, |
| val | SOC_RESET_CONTROL_CE_RST_MASK); |
| val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + |
| SOC_RESET_CONTROL_ADDRESS); |
| msleep(10); |
| |
| /* unreset CE */ |
| ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS, |
| val & ~SOC_RESET_CONTROL_CE_RST_MASK); |
| val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + |
| SOC_RESET_CONTROL_ADDRESS); |
| msleep(10); |
| |
| ath10k_pci_warm_reset_si0(ar); |
| |
| /* debug */ |
| val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + |
| PCIE_INTR_CAUSE_ADDRESS); |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot host cpu intr cause: 0x%08x\n", |
| val); |
| |
| val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + |
| CPU_INTR_ADDRESS); |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target cpu intr cause: 0x%08x\n", |
| val); |
| |
| /* CPU warm reset */ |
| val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + |
| SOC_RESET_CONTROL_ADDRESS); |
| ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS, |
| val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK); |
| |
| val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + |
| SOC_RESET_CONTROL_ADDRESS); |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target reset state: 0x%08x\n", |
| val); |
| |
| msleep(100); |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n"); |
| |
| return 0; |
| } |
| |
| static int __ath10k_pci_hif_power_up(struct ath10k *ar, bool cold_reset) |
| { |
| int ret; |
| |
| /* |
| * Bring the target up cleanly. |
| * |
| * The target may be in an undefined state with an AUX-powered Target |
| * and a Host in WoW mode. If the Host crashes, loses power, or is |
| * restarted (without unloading the driver) then the Target is left |
| * (aux) powered and running. On a subsequent driver load, the Target |
| * is in an unexpected state. We try to catch that here in order to |
| * reset the Target and retry the probe. |
| */ |
| if (cold_reset) |
| ret = ath10k_pci_cold_reset(ar); |
| else |
| ret = ath10k_pci_warm_reset(ar); |
| |
| if (ret) { |
| ath10k_err(ar, "failed to reset target: %d\n", ret); |
| goto err; |
| } |
| |
| ret = ath10k_pci_ce_init(ar); |
| if (ret) { |
| ath10k_err(ar, "failed to initialize CE: %d\n", ret); |
| goto err; |
| } |
| |
| ret = ath10k_pci_wait_for_target_init(ar); |
| if (ret) { |
| ath10k_err(ar, "failed to wait for target to init: %d\n", ret); |
| goto err_ce; |
| } |
| |
| ret = ath10k_pci_init_config(ar); |
| if (ret) { |
| ath10k_err(ar, "failed to setup init config: %d\n", ret); |
| goto err_ce; |
| } |
| |
| ret = ath10k_pci_wake_target_cpu(ar); |
| if (ret) { |
| ath10k_err(ar, "could not wake up target CPU: %d\n", ret); |
| goto err_ce; |
| } |
| |
| return 0; |
| |
| err_ce: |
| ath10k_pci_ce_deinit(ar); |
| ath10k_pci_warm_reset(ar); |
| err: |
| return ret; |
| } |
| |
| static int ath10k_pci_hif_power_up_warm(struct ath10k *ar) |
| { |
| int i, ret; |
| |
| /* |
| * Sometime warm reset succeeds after retries. |
| * |
| * FIXME: It might be possible to tune ath10k_pci_warm_reset() to work |
| * at first try. |
| */ |
| for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) { |
| ret = __ath10k_pci_hif_power_up(ar, false); |
| if (ret == 0) |
| break; |
| |
| ath10k_warn(ar, "failed to warm reset (attempt %d out of %d): %d\n", |
| i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS, ret); |
| } |
| |
| return ret; |
| } |
| |
| static int ath10k_pci_hif_power_up(struct ath10k *ar) |
| { |
| int ret; |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n"); |
| |
| /* |
| * Hardware CUS232 version 2 has some issues with cold reset and the |
| * preferred (and safer) way to perform a device reset is through a |
| * warm reset. |
| * |
| * Warm reset doesn't always work though so fall back to cold reset may |
| * be necessary. |
| */ |
| ret = ath10k_pci_hif_power_up_warm(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to power up target using warm reset: %d\n", |
| ret); |
| |
| if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) |
| return ret; |
| |
| ath10k_warn(ar, "trying cold reset\n"); |
| |
| ret = __ath10k_pci_hif_power_up(ar, true); |
| if (ret) { |
| ath10k_err(ar, "failed to power up target using cold reset too (%d)\n", |
| ret); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void ath10k_pci_hif_power_down(struct ath10k *ar) |
| { |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n"); |
| |
| ath10k_pci_warm_reset(ar); |
| } |
| |
| #ifdef CONFIG_PM |
| |
| #define ATH10K_PCI_PM_CONTROL 0x44 |
| |
| static int ath10k_pci_hif_suspend(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct pci_dev *pdev = ar_pci->pdev; |
| u32 val; |
| |
| pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val); |
| |
| if ((val & 0x000000ff) != 0x3) { |
| pci_save_state(pdev); |
| pci_disable_device(pdev); |
| pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL, |
| (val & 0xffffff00) | 0x03); |
| } |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_hif_resume(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct pci_dev *pdev = ar_pci->pdev; |
| u32 val; |
| |
| pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val); |
| |
| if ((val & 0x000000ff) != 0) { |
| pci_restore_state(pdev); |
| pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL, |
| val & 0xffffff00); |
| /* |
| * Suspend/Resume resets the PCI configuration space, |
| * so we have to re-disable the RETRY_TIMEOUT register (0x41) |
| * to keep PCI Tx retries from interfering with C3 CPU state |
| */ |
| pci_read_config_dword(pdev, 0x40, &val); |
| |
| if ((val & 0x0000ff00) != 0) |
| pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static const struct ath10k_hif_ops ath10k_pci_hif_ops = { |
| .tx_sg = ath10k_pci_hif_tx_sg, |
| .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg, |
| .start = ath10k_pci_hif_start, |
| .stop = ath10k_pci_hif_stop, |
| .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe, |
| .get_default_pipe = ath10k_pci_hif_get_default_pipe, |
| .send_complete_check = ath10k_pci_hif_send_complete_check, |
| .set_callbacks = ath10k_pci_hif_set_callbacks, |
| .get_free_queue_number = ath10k_pci_hif_get_free_queue_number, |
| .power_up = ath10k_pci_hif_power_up, |
| .power_down = ath10k_pci_hif_power_down, |
| #ifdef CONFIG_PM |
| .suspend = ath10k_pci_hif_suspend, |
| .resume = ath10k_pci_hif_resume, |
| #endif |
| }; |
| |
| static void ath10k_pci_ce_tasklet(unsigned long ptr) |
| { |
| struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr; |
| struct ath10k_pci *ar_pci = pipe->ar_pci; |
| |
| ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num); |
| } |
| |
| static void ath10k_msi_err_tasklet(unsigned long data) |
| { |
| struct ath10k *ar = (struct ath10k *)data; |
| |
| if (!ath10k_pci_has_fw_crashed(ar)) { |
| ath10k_warn(ar, "received unsolicited fw crash interrupt\n"); |
| return; |
| } |
| |
| ath10k_pci_fw_crashed_clear(ar); |
| ath10k_pci_fw_crashed_dump(ar); |
| } |
| |
| /* |
| * Handler for a per-engine interrupt on a PARTICULAR CE. |
| * This is used in cases where each CE has a private MSI interrupt. |
| */ |
| static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg) |
| { |
| struct ath10k *ar = arg; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL; |
| |
| if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) { |
| ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq, |
| ce_id); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * NOTE: We are able to derive ce_id from irq because we |
| * use a one-to-one mapping for CE's 0..5. |
| * CE's 6 & 7 do not use interrupts at all. |
| * |
| * This mapping must be kept in sync with the mapping |
| * used by firmware. |
| */ |
| tasklet_schedule(&ar_pci->pipe_info[ce_id].intr); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg) |
| { |
| struct ath10k *ar = arg; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| tasklet_schedule(&ar_pci->msi_fw_err); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Top-level interrupt handler for all PCI interrupts from a Target. |
| * When a block of MSI interrupts is allocated, this top-level handler |
| * is not used; instead, we directly call the correct sub-handler. |
| */ |
| static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg) |
| { |
| struct ath10k *ar = arg; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| if (ar_pci->num_msi_intrs == 0) { |
| if (!ath10k_pci_irq_pending(ar)) |
| return IRQ_NONE; |
| |
| ath10k_pci_disable_and_clear_legacy_irq(ar); |
| } |
| |
| tasklet_schedule(&ar_pci->intr_tq); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void ath10k_pci_tasklet(unsigned long data) |
| { |
| struct ath10k *ar = (struct ath10k *)data; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| if (ath10k_pci_has_fw_crashed(ar)) { |
| ath10k_pci_fw_crashed_clear(ar); |
| ath10k_pci_fw_crashed_dump(ar); |
| return; |
| } |
| |
| ath10k_ce_per_engine_service_any(ar); |
| |
| /* Re-enable legacy irq that was disabled in the irq handler */ |
| if (ar_pci->num_msi_intrs == 0) |
| ath10k_pci_enable_legacy_irq(ar); |
| } |
| |
| static int ath10k_pci_request_irq_msix(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret, i; |
| |
| ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, |
| ath10k_pci_msi_fw_handler, |
| IRQF_SHARED, "ath10k_pci", ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to request MSI-X fw irq %d: %d\n", |
| ar_pci->pdev->irq + MSI_ASSIGN_FW, ret); |
| return ret; |
| } |
| |
| for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) { |
| ret = request_irq(ar_pci->pdev->irq + i, |
| ath10k_pci_per_engine_handler, |
| IRQF_SHARED, "ath10k_pci", ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to request MSI-X ce irq %d: %d\n", |
| ar_pci->pdev->irq + i, ret); |
| |
| for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--) |
| free_irq(ar_pci->pdev->irq + i, ar); |
| |
| free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_request_irq_msi(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret; |
| |
| ret = request_irq(ar_pci->pdev->irq, |
| ath10k_pci_interrupt_handler, |
| IRQF_SHARED, "ath10k_pci", ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to request MSI irq %d: %d\n", |
| ar_pci->pdev->irq, ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_request_irq_legacy(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret; |
| |
| ret = request_irq(ar_pci->pdev->irq, |
| ath10k_pci_interrupt_handler, |
| IRQF_SHARED, "ath10k_pci", ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to request legacy irq %d: %d\n", |
| ar_pci->pdev->irq, ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_request_irq(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| switch (ar_pci->num_msi_intrs) { |
| case 0: |
| return ath10k_pci_request_irq_legacy(ar); |
| case 1: |
| return ath10k_pci_request_irq_msi(ar); |
| case MSI_NUM_REQUEST: |
| return ath10k_pci_request_irq_msix(ar); |
| } |
| |
| ath10k_warn(ar, "unknown irq configuration upon request\n"); |
| return -EINVAL; |
| } |
| |
| static void ath10k_pci_free_irq(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int i; |
| |
| /* There's at least one interrupt irregardless whether its legacy INTR |
| * or MSI or MSI-X */ |
| for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++) |
| free_irq(ar_pci->pdev->irq + i, ar); |
| } |
| |
| static void ath10k_pci_init_irq_tasklets(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int i; |
| |
| tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar); |
| tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet, |
| (unsigned long)ar); |
| |
| for (i = 0; i < CE_COUNT; i++) { |
| ar_pci->pipe_info[i].ar_pci = ar_pci; |
| tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet, |
| (unsigned long)&ar_pci->pipe_info[i]); |
| } |
| } |
| |
| static int ath10k_pci_init_irq(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret; |
| |
| ath10k_pci_init_irq_tasklets(ar); |
| |
| if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO) |
| ath10k_info(ar, "limiting irq mode to: %d\n", |
| ath10k_pci_irq_mode); |
| |
| /* Try MSI-X */ |
| if (ath10k_pci_irq_mode == ATH10K_PCI_IRQ_AUTO) { |
| ar_pci->num_msi_intrs = MSI_NUM_REQUEST; |
| ret = pci_enable_msi_range(ar_pci->pdev, ar_pci->num_msi_intrs, |
| ar_pci->num_msi_intrs); |
| if (ret > 0) |
| return 0; |
| |
| /* fall-through */ |
| } |
| |
| /* Try MSI */ |
| if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) { |
| ar_pci->num_msi_intrs = 1; |
| ret = pci_enable_msi(ar_pci->pdev); |
| if (ret == 0) |
| return 0; |
| |
| /* fall-through */ |
| } |
| |
| /* Try legacy irq |
| * |
| * A potential race occurs here: The CORE_BASE write |
| * depends on target correctly decoding AXI address but |
| * host won't know when target writes BAR to CORE_CTRL. |
| * This write might get lost if target has NOT written BAR. |
| * For now, fix the race by repeating the write in below |
| * synchronization checking. */ |
| ar_pci->num_msi_intrs = 0; |
| |
| ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, |
| PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); |
| |
| return 0; |
| } |
| |
| static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar) |
| { |
| ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, |
| 0); |
| } |
| |
| static int ath10k_pci_deinit_irq(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| switch (ar_pci->num_msi_intrs) { |
| case 0: |
| ath10k_pci_deinit_irq_legacy(ar); |
| return 0; |
| case 1: |
| /* fall-through */ |
| case MSI_NUM_REQUEST: |
| pci_disable_msi(ar_pci->pdev); |
| return 0; |
| default: |
| pci_disable_msi(ar_pci->pdev); |
| } |
| |
| ath10k_warn(ar, "unknown irq configuration upon deinit\n"); |
| return -EINVAL; |
| } |
| |
| static int ath10k_pci_wait_for_target_init(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| unsigned long timeout; |
| u32 val; |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n"); |
| |
| timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT); |
| |
| do { |
| val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n", |
| val); |
| |
| /* target should never return this */ |
| if (val == 0xffffffff) |
| continue; |
| |
| /* the device has crashed so don't bother trying anymore */ |
| if (val & FW_IND_EVENT_PENDING) |
| break; |
| |
| if (val & FW_IND_INITIALIZED) |
| break; |
| |
| if (ar_pci->num_msi_intrs == 0) |
| /* Fix potential race by repeating CORE_BASE writes */ |
| ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + |
| PCIE_INTR_ENABLE_ADDRESS, |
| PCIE_INTR_FIRMWARE_MASK | |
| PCIE_INTR_CE_MASK_ALL); |
| |
| mdelay(10); |
| } while (time_before(jiffies, timeout)); |
| |
| if (val == 0xffffffff) { |
| ath10k_err(ar, "failed to read device register, device is gone\n"); |
| return -EIO; |
| } |
| |
| if (val & FW_IND_EVENT_PENDING) { |
| ath10k_warn(ar, "device has crashed during init\n"); |
| ath10k_pci_fw_crashed_clear(ar); |
| ath10k_pci_fw_crashed_dump(ar); |
| return -ECOMM; |
| } |
| |
| if (!(val & FW_IND_INITIALIZED)) { |
| ath10k_err(ar, "failed to receive initialized event from target: %08x\n", |
| val); |
| return -ETIMEDOUT; |
| } |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n"); |
| return 0; |
| } |
| |
| static int ath10k_pci_cold_reset(struct ath10k *ar) |
| { |
| int i; |
| u32 val; |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n"); |
| |
| /* Put Target, including PCIe, into RESET. */ |
| val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS); |
| val |= 1; |
| ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val); |
| |
| for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) { |
| if (ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) & |
| RTC_STATE_COLD_RESET_MASK) |
| break; |
| msleep(1); |
| } |
| |
| /* Pull Target, including PCIe, out of RESET. */ |
| val &= ~1; |
| ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val); |
| |
| for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) { |
| if (!(ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) & |
| RTC_STATE_COLD_RESET_MASK)) |
| break; |
| msleep(1); |
| } |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n"); |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_claim(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct pci_dev *pdev = ar_pci->pdev; |
| u32 lcr_val; |
| int ret; |
| |
| pci_set_drvdata(pdev, ar); |
| |
| ret = pci_enable_device(pdev); |
| if (ret) { |
| ath10k_err(ar, "failed to enable pci device: %d\n", ret); |
| return ret; |
| } |
| |
| ret = pci_request_region(pdev, BAR_NUM, "ath"); |
| if (ret) { |
| ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM, |
| ret); |
| goto err_device; |
| } |
| |
| /* Target expects 32 bit DMA. Enforce it. */ |
| ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (ret) { |
| ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret); |
| goto err_region; |
| } |
| |
| ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (ret) { |
| ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n", |
| ret); |
| goto err_region; |
| } |
| |
| pci_set_master(pdev); |
| |
| /* Workaround: Disable ASPM */ |
| pci_read_config_dword(pdev, 0x80, &lcr_val); |
| pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00)); |
| |
| /* Arrange for access to Target SoC registers. */ |
| ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0); |
| if (!ar_pci->mem) { |
| ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM); |
| ret = -EIO; |
| goto err_master; |
| } |
| |
| ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem); |
| return 0; |
| |
| err_master: |
| pci_clear_master(pdev); |
| |
| err_region: |
| pci_release_region(pdev, BAR_NUM); |
| |
| err_device: |
| pci_disable_device(pdev); |
| |
| return ret; |
| } |
| |
| static void ath10k_pci_release(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct pci_dev *pdev = ar_pci->pdev; |
| |
| pci_iounmap(pdev, ar_pci->mem); |
| pci_release_region(pdev, BAR_NUM); |
| pci_clear_master(pdev); |
| pci_disable_device(pdev); |
| } |
| |
| static int ath10k_pci_probe(struct pci_dev *pdev, |
| const struct pci_device_id *pci_dev) |
| { |
| int ret = 0; |
| struct ath10k *ar; |
| struct ath10k_pci *ar_pci; |
| u32 chip_id; |
| |
| ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, |
| &ath10k_pci_hif_ops); |
| if (!ar) { |
| dev_err(&pdev->dev, "failed to allocate core\n"); |
| return -ENOMEM; |
| } |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI, "pci probe\n"); |
| |
| ar_pci = ath10k_pci_priv(ar); |
| ar_pci->pdev = pdev; |
| ar_pci->dev = &pdev->dev; |
| ar_pci->ar = ar; |
| |
| spin_lock_init(&ar_pci->ce_lock); |
| setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, |
| (unsigned long)ar); |
| |
| ret = ath10k_pci_claim(ar); |
| if (ret) { |
| ath10k_err(ar, "failed to claim device: %d\n", ret); |
| goto err_core_destroy; |
| } |
| |
| ret = ath10k_pci_wake(ar); |
| if (ret) { |
| ath10k_err(ar, "failed to wake up: %d\n", ret); |
| goto err_release; |
| } |
| |
| chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS); |
| if (chip_id == 0xffffffff) { |
| ath10k_err(ar, "failed to get chip id\n"); |
| goto err_sleep; |
| } |
| |
| ret = ath10k_pci_alloc_ce(ar); |
| if (ret) { |
| ath10k_err(ar, "failed to allocate copy engine pipes: %d\n", |
| ret); |
| goto err_sleep; |
| } |
| |
| ath10k_pci_ce_deinit(ar); |
| |
| ret = ath10k_ce_disable_interrupts(ar); |
| if (ret) { |
| ath10k_err(ar, "failed to disable copy engine interrupts: %d\n", |
| ret); |
| goto err_free_ce; |
| } |
| |
| /* Workaround: There's no known way to mask all possible interrupts via |
| * device CSR. The only way to make sure device doesn't assert |
| * interrupts is to reset it. Interrupts are then disabled on host |
| * after handlers are registered. |
| */ |
| ath10k_pci_warm_reset(ar); |
| |
| ret = ath10k_pci_init_irq(ar); |
| if (ret) { |
| ath10k_err(ar, "failed to init irqs: %d\n", ret); |
| goto err_free_ce; |
| } |
| |
| ath10k_info(ar, "pci irq %s interrupts %d irq_mode %d reset_mode %d\n", |
| ath10k_pci_get_irq_method(ar), ar_pci->num_msi_intrs, |
| ath10k_pci_irq_mode, ath10k_pci_reset_mode); |
| |
| ret = ath10k_pci_request_irq(ar); |
| if (ret) { |
| ath10k_warn(ar, "failed to request irqs: %d\n", ret); |
| goto err_deinit_irq; |
| } |
| |
| /* This shouldn't race as the device has been reset above. */ |
| ath10k_pci_irq_disable(ar); |
| |
| ret = ath10k_core_register(ar, chip_id); |
| if (ret) { |
| ath10k_err(ar, "failed to register driver core: %d\n", ret); |
| goto err_free_irq; |
| } |
| |
| return 0; |
| |
| err_free_irq: |
| ath10k_pci_free_irq(ar); |
| |
| err_deinit_irq: |
| ath10k_pci_deinit_irq(ar); |
| |
| err_free_ce: |
| ath10k_pci_free_ce(ar); |
| |
| err_sleep: |
| ath10k_pci_sleep(ar); |
| |
| err_release: |
| ath10k_pci_release(ar); |
| |
| err_core_destroy: |
| ath10k_core_destroy(ar); |
| |
| return ret; |
| } |
| |
| static void ath10k_pci_remove(struct pci_dev *pdev) |
| { |
| struct ath10k *ar = pci_get_drvdata(pdev); |
| struct ath10k_pci *ar_pci; |
| |
| ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n"); |
| |
| if (!ar) |
| return; |
| |
| ar_pci = ath10k_pci_priv(ar); |
| |
| if (!ar_pci) |
| return; |
| |
| ath10k_core_unregister(ar); |
| ath10k_pci_free_irq(ar); |
| ath10k_pci_deinit_irq(ar); |
| ath10k_pci_ce_deinit(ar); |
| ath10k_pci_free_ce(ar); |
| ath10k_pci_sleep(ar); |
| ath10k_pci_release(ar); |
| ath10k_core_destroy(ar); |
| } |
| |
| MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table); |
| |
| static struct pci_driver ath10k_pci_driver = { |
| .name = "ath10k_pci", |
| .id_table = ath10k_pci_id_table, |
| .probe = ath10k_pci_probe, |
| .remove = ath10k_pci_remove, |
| }; |
| |
| static int __init ath10k_pci_init(void) |
| { |
| int ret; |
| |
| ret = pci_register_driver(&ath10k_pci_driver); |
| if (ret) |
| printk(KERN_ERR "failed to register ath10k pci driver: %d\n", |
| ret); |
| |
| return ret; |
| } |
| module_init(ath10k_pci_init); |
| |
| static void __exit ath10k_pci_exit(void) |
| { |
| pci_unregister_driver(&ath10k_pci_driver); |
| } |
| |
| module_exit(ath10k_pci_exit); |
| |
| MODULE_AUTHOR("Qualcomm Atheros"); |
| MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_3_FILE); |
| MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE); |