blob: 180567408ee8a0310eed2185fbafa2d06ae991d5 [file] [log] [blame]
/*
* arch/arm/include/asm/io.h
*
* Copyright (C) 1996-2000 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Modifications:
* 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both
* constant addresses and variable addresses.
* 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture
* specific IO header files.
* 27-Mar-1999 PJB Second parameter of memcpy_toio is const..
* 04-Apr-1999 PJB Added check_signature.
* 12-Dec-1999 RMK More cleanups
* 18-Jun-2000 RMK Removed virt_to_* and friends definitions
* 05-Oct-2004 BJD Moved memory string functions to use void __iomem
*/
#ifndef __ASM_ARM_IO_H
#define __ASM_ARM_IO_H
#ifdef __KERNEL__
#include <linux/types.h>
#include <linux/blk_types.h>
#include <asm/byteorder.h>
#include <asm/memory.h>
#include <asm-generic/pci_iomap.h>
#include <xen/xen.h>
/*
* ISA I/O bus memory addresses are 1:1 with the physical address.
*/
#define isa_virt_to_bus virt_to_phys
#define isa_page_to_bus page_to_phys
#define isa_bus_to_virt phys_to_virt
/*
* Atomic MMIO-wide IO modify
*/
extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set);
extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set);
/*
* Generic IO read/write. These perform native-endian accesses. Note
* that some architectures will want to re-define __raw_{read,write}w.
*/
extern void __raw_writesb(void __iomem *addr, const void *data, int bytelen);
extern void __raw_writesw(void __iomem *addr, const void *data, int wordlen);
extern void __raw_writesl(void __iomem *addr, const void *data, int longlen);
extern void __raw_readsb(const void __iomem *addr, void *data, int bytelen);
extern void __raw_readsw(const void __iomem *addr, void *data, int wordlen);
extern void __raw_readsl(const void __iomem *addr, void *data, int longlen);
#if __LINUX_ARM_ARCH__ < 6
/*
* Half-word accesses are problematic with RiscPC due to limitations of
* the bus. Rather than special-case the machine, just let the compiler
* generate the access for CPUs prior to ARMv6.
*/
#define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
#define __raw_writew(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)))
#else
/*
* When running under a hypervisor, we want to avoid I/O accesses with
* writeback addressing modes as these incur a significant performance
* overhead (the address generation must be emulated in software).
*/
static inline void __raw_writew(u16 val, volatile void __iomem *addr)
{
asm volatile("strh %1, %0"
: "+Q" (*(volatile u16 __force *)addr)
: "r" (val));
}
static inline u16 __raw_readw(const volatile void __iomem *addr)
{
u16 val;
asm volatile("ldrh %1, %0"
: "+Q" (*(volatile u16 __force *)addr),
"=r" (val));
return val;
}
#endif
static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
{
asm volatile("strb %1, %0"
: "+Qo" (*(volatile u8 __force *)addr)
: "r" (val));
}
static inline void __raw_writel(u32 val, volatile void __iomem *addr)
{
asm volatile("str %1, %0"
: "+Qo" (*(volatile u32 __force *)addr)
: "r" (val));
}
static inline u8 __raw_readb(const volatile void __iomem *addr)
{
u8 val;
asm volatile("ldrb %1, %0"
: "+Qo" (*(volatile u8 __force *)addr),
"=r" (val));
return val;
}
static inline u32 __raw_readl(const volatile void __iomem *addr)
{
u32 val;
asm volatile("ldr %1, %0"
: "+Qo" (*(volatile u32 __force *)addr),
"=r" (val));
return val;
}
/*
* Architecture ioremap implementation.
*/
#define MT_DEVICE 0
#define MT_DEVICE_NONSHARED 1
#define MT_DEVICE_CACHED 2
#define MT_DEVICE_WC 3
/*
* types 4 onwards can be found in asm/mach/map.h and are undefined
* for ioremap
*/
/*
* __arm_ioremap takes CPU physical address.
* __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
* The _caller variety takes a __builtin_return_address(0) value for
* /proc/vmalloc to use - and should only be used in non-inline functions.
*/
extern void __iomem *__arm_ioremap_pfn_caller(unsigned long, unsigned long,
size_t, unsigned int, void *);
extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int,
void *);
extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
extern void __iomem *__arm_ioremap(phys_addr_t, size_t, unsigned int);
extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached);
extern void __iounmap(volatile void __iomem *addr);
extern void __arm_iounmap(volatile void __iomem *addr);
extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
unsigned int, void *);
extern void (*arch_iounmap)(volatile void __iomem *);
/*
* Bad read/write accesses...
*/
extern void __readwrite_bug(const char *fn);
/*
* A typesafe __io() helper
*/
static inline void __iomem *__typesafe_io(unsigned long addr)
{
return (void __iomem *)addr;
}
#define IOMEM(x) ((void __force __iomem *)(x))
/* IO barriers */
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
#include <asm/barrier.h>
#define __iormb() rmb()
#define __iowmb() wmb()
#else
#define __iormb() do { } while (0)
#define __iowmb() do { } while (0)
#endif
/* PCI fixed i/o mapping */
#define PCI_IO_VIRT_BASE 0xfee00000
#define PCI_IOBASE ((void __iomem *)PCI_IO_VIRT_BASE)
#if defined(CONFIG_PCI)
void pci_ioremap_set_mem_type(int mem_type);
#else
static inline void pci_ioremap_set_mem_type(int mem_type) {}
#endif
extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr);
/*
* Now, pick up the machine-defined IO definitions
*/
#ifdef CONFIG_NEED_MACH_IO_H
#include <mach/io.h>
#elif defined(CONFIG_PCI)
#define IO_SPACE_LIMIT ((resource_size_t)0xfffff)
#define __io(a) __typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT))
#else
#define __io(a) __typesafe_io((a) & IO_SPACE_LIMIT)
#endif
/*
* This is the limit of PC card/PCI/ISA IO space, which is by default
* 64K if we have PC card, PCI or ISA support. Otherwise, default to
* zero to prevent ISA/PCI drivers claiming IO space (and potentially
* oopsing.)
*
* Only set this larger if you really need inb() et.al. to operate over
* a larger address space. Note that SOC_COMMON ioremaps each sockets
* IO space area, and so inb() et.al. must be defined to operate as per
* readb() et.al. on such platforms.
*/
#ifndef IO_SPACE_LIMIT
#if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE)
#define IO_SPACE_LIMIT ((resource_size_t)0xffffffff)
#elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD)
#define IO_SPACE_LIMIT ((resource_size_t)0xffff)
#else
#define IO_SPACE_LIMIT ((resource_size_t)0)
#endif
#endif
/*
* IO port access primitives
* -------------------------
*
* The ARM doesn't have special IO access instructions; all IO is memory
* mapped. Note that these are defined to perform little endian accesses
* only. Their primary purpose is to access PCI and ISA peripherals.
*
* Note that for a big endian machine, this implies that the following
* big endian mode connectivity is in place, as described by numerous
* ARM documents:
*
* PCI: D0-D7 D8-D15 D16-D23 D24-D31
* ARM: D24-D31 D16-D23 D8-D15 D0-D7
*
* The machine specific io.h include defines __io to translate an "IO"
* address to a memory address.
*
* Note that we prevent GCC re-ordering or caching values in expressions
* by introducing sequence points into the in*() definitions. Note that
* __raw_* do not guarantee this behaviour.
*
* The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
*/
#ifdef __io
#define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); })
#define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \
cpu_to_le16(v),__io(p)); })
#define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \
cpu_to_le32(v),__io(p)); })
#define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
#define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \
__raw_readw(__io(p))); __iormb(); __v; })
#define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \
__raw_readl(__io(p))); __iormb(); __v; })
#define outsb(p,d,l) __raw_writesb(__io(p),d,l)
#define outsw(p,d,l) __raw_writesw(__io(p),d,l)
#define outsl(p,d,l) __raw_writesl(__io(p),d,l)
#define insb(p,d,l) __raw_readsb(__io(p),d,l)
#define insw(p,d,l) __raw_readsw(__io(p),d,l)
#define insl(p,d,l) __raw_readsl(__io(p),d,l)
#endif
#define outb_p(val,port) outb((val),(port))
#define outw_p(val,port) outw((val),(port))
#define outl_p(val,port) outl((val),(port))
#define inb_p(port) inb((port))
#define inw_p(port) inw((port))
#define inl_p(port) inl((port))
#define outsb_p(port,from,len) outsb(port,from,len)
#define outsw_p(port,from,len) outsw(port,from,len)
#define outsl_p(port,from,len) outsl(port,from,len)
#define insb_p(port,to,len) insb(port,to,len)
#define insw_p(port,to,len) insw(port,to,len)
#define insl_p(port,to,len) insl(port,to,len)
/*
* String version of IO memory access ops:
*/
extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
extern void _memset_io(volatile void __iomem *, int, size_t);
#define mmiowb()
/*
* Memory access primitives
* ------------------------
*
* These perform PCI memory accesses via an ioremap region. They don't
* take an address as such, but a cookie.
*
* Again, this are defined to perform little endian accesses. See the
* IO port primitives for more information.
*/
#ifndef readl
#define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; })
#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
__raw_readw(c)); __r; })
#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
__raw_readl(c)); __r; })
#define writeb_relaxed(v,c) __raw_writeb(v,c)
#define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c)
#define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c)
#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
#define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); })
#define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); })
#define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); })
#define readsb(p,d,l) __raw_readsb(p,d,l)
#define readsw(p,d,l) __raw_readsw(p,d,l)
#define readsl(p,d,l) __raw_readsl(p,d,l)
#define writesb(p,d,l) __raw_writesb(p,d,l)
#define writesw(p,d,l) __raw_writesw(p,d,l)
#define writesl(p,d,l) __raw_writesl(p,d,l)
#define memset_io(c,v,l) _memset_io(c,(v),(l))
#define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l))
#define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l))
#endif /* readl */
/*
* ioremap and friends.
*
* ioremap takes a PCI memory address, as specified in
* Documentation/io-mapping.txt.
*
*/
#define ioremap(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE)
#define ioremap_nocache(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE)
#define ioremap_cache(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE_CACHED)
#define ioremap_wc(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE_WC)
#define iounmap __arm_iounmap
/*
* io{read,write}{8,16,32} macros
*/
#ifndef ioread8
#define ioread8(p) ({ unsigned int __v = __raw_readb(p); __iormb(); __v; })
#define ioread16(p) ({ unsigned int __v = le16_to_cpu((__force __le16)__raw_readw(p)); __iormb(); __v; })
#define ioread32(p) ({ unsigned int __v = le32_to_cpu((__force __le32)__raw_readl(p)); __iormb(); __v; })
#define ioread16be(p) ({ unsigned int __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
#define ioread32be(p) ({ unsigned int __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })
#define iowrite8(v,p) ({ __iowmb(); __raw_writeb(v, p); })
#define iowrite16(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_le16(v), p); })
#define iowrite32(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_le32(v), p); })
#define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
#define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
#define ioread8_rep(p,d,c) __raw_readsb(p,d,c)
#define ioread16_rep(p,d,c) __raw_readsw(p,d,c)
#define ioread32_rep(p,d,c) __raw_readsl(p,d,c)
#define iowrite8_rep(p,s,c) __raw_writesb(p,s,c)
#define iowrite16_rep(p,s,c) __raw_writesw(p,s,c)
#define iowrite32_rep(p,s,c) __raw_writesl(p,s,c)
extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
extern void ioport_unmap(void __iomem *addr);
#endif
struct pci_dev;
extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
/*
* can the hardware map this into one segment or not, given no other
* constraints.
*/
#define BIOVEC_MERGEABLE(vec1, vec2) \
((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
struct bio_vec;
extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1,
const struct bio_vec *vec2);
#define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \
(__BIOVEC_PHYS_MERGEABLE(vec1, vec2) && \
(!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2)))
#ifdef CONFIG_MMU
#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
extern int devmem_is_allowed(unsigned long pfn);
#endif
/*
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
* access
*/
#define xlate_dev_mem_ptr(p) __va(p)
/*
* Convert a virtual cached pointer to an uncached pointer
*/
#define xlate_dev_kmem_ptr(p) p
/*
* Register ISA memory and port locations for glibc iopl/inb/outb
* emulation.
*/
extern void register_isa_ports(unsigned int mmio, unsigned int io,
unsigned int io_shift);
#endif /* __KERNEL__ */
#endif /* __ASM_ARM_IO_H */