| #include <linux/clocksource.h> |
| #include <linux/clockchips.h> |
| #include <linux/interrupt.h> |
| #include <linux/sysdev.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/slab.h> |
| #include <linux/hpet.h> |
| #include <linux/init.h> |
| #include <linux/cpu.h> |
| #include <linux/pm.h> |
| #include <linux/io.h> |
| |
| #include <asm/fixmap.h> |
| #include <asm/i8253.h> |
| #include <asm/hpet.h> |
| |
| #define HPET_MASK CLOCKSOURCE_MASK(32) |
| |
| /* FSEC = 10^-15 |
| NSEC = 10^-9 */ |
| #define FSEC_PER_NSEC 1000000L |
| |
| #define HPET_DEV_USED_BIT 2 |
| #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT) |
| #define HPET_DEV_VALID 0x8 |
| #define HPET_DEV_FSB_CAP 0x1000 |
| #define HPET_DEV_PERI_CAP 0x2000 |
| |
| #define HPET_MIN_CYCLES 128 |
| #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1)) |
| |
| #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt) |
| |
| /* |
| * HPET address is set in acpi/boot.c, when an ACPI entry exists |
| */ |
| unsigned long hpet_address; |
| u8 hpet_blockid; /* OS timer block num */ |
| u8 hpet_msi_disable; |
| |
| #ifdef CONFIG_PCI_MSI |
| static unsigned long hpet_num_timers; |
| #endif |
| static void __iomem *hpet_virt_address; |
| |
| struct hpet_dev { |
| struct clock_event_device evt; |
| unsigned int num; |
| int cpu; |
| unsigned int irq; |
| unsigned int flags; |
| char name[10]; |
| }; |
| |
| inline unsigned int hpet_readl(unsigned int a) |
| { |
| return readl(hpet_virt_address + a); |
| } |
| |
| static inline void hpet_writel(unsigned int d, unsigned int a) |
| { |
| writel(d, hpet_virt_address + a); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| #include <asm/pgtable.h> |
| #endif |
| |
| static inline void hpet_set_mapping(void) |
| { |
| hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE); |
| #ifdef CONFIG_X86_64 |
| __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE); |
| #endif |
| } |
| |
| static inline void hpet_clear_mapping(void) |
| { |
| iounmap(hpet_virt_address); |
| hpet_virt_address = NULL; |
| } |
| |
| /* |
| * HPET command line enable / disable |
| */ |
| static int boot_hpet_disable; |
| int hpet_force_user; |
| static int hpet_verbose; |
| |
| static int __init hpet_setup(char *str) |
| { |
| if (str) { |
| if (!strncmp("disable", str, 7)) |
| boot_hpet_disable = 1; |
| if (!strncmp("force", str, 5)) |
| hpet_force_user = 1; |
| if (!strncmp("verbose", str, 7)) |
| hpet_verbose = 1; |
| } |
| return 1; |
| } |
| __setup("hpet=", hpet_setup); |
| |
| static int __init disable_hpet(char *str) |
| { |
| boot_hpet_disable = 1; |
| return 1; |
| } |
| __setup("nohpet", disable_hpet); |
| |
| static inline int is_hpet_capable(void) |
| { |
| return !boot_hpet_disable && hpet_address; |
| } |
| |
| /* |
| * HPET timer interrupt enable / disable |
| */ |
| static int hpet_legacy_int_enabled; |
| |
| /** |
| * is_hpet_enabled - check whether the hpet timer interrupt is enabled |
| */ |
| int is_hpet_enabled(void) |
| { |
| return is_hpet_capable() && hpet_legacy_int_enabled; |
| } |
| EXPORT_SYMBOL_GPL(is_hpet_enabled); |
| |
| static void _hpet_print_config(const char *function, int line) |
| { |
| u32 i, timers, l, h; |
| printk(KERN_INFO "hpet: %s(%d):\n", function, line); |
| l = hpet_readl(HPET_ID); |
| h = hpet_readl(HPET_PERIOD); |
| timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; |
| printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h); |
| l = hpet_readl(HPET_CFG); |
| h = hpet_readl(HPET_STATUS); |
| printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h); |
| l = hpet_readl(HPET_COUNTER); |
| h = hpet_readl(HPET_COUNTER+4); |
| printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h); |
| |
| for (i = 0; i < timers; i++) { |
| l = hpet_readl(HPET_Tn_CFG(i)); |
| h = hpet_readl(HPET_Tn_CFG(i)+4); |
| printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", |
| i, l, h); |
| l = hpet_readl(HPET_Tn_CMP(i)); |
| h = hpet_readl(HPET_Tn_CMP(i)+4); |
| printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", |
| i, l, h); |
| l = hpet_readl(HPET_Tn_ROUTE(i)); |
| h = hpet_readl(HPET_Tn_ROUTE(i)+4); |
| printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", |
| i, l, h); |
| } |
| } |
| |
| #define hpet_print_config() \ |
| do { \ |
| if (hpet_verbose) \ |
| _hpet_print_config(__FUNCTION__, __LINE__); \ |
| } while (0) |
| |
| /* |
| * When the hpet driver (/dev/hpet) is enabled, we need to reserve |
| * timer 0 and timer 1 in case of RTC emulation. |
| */ |
| #ifdef CONFIG_HPET |
| |
| static void hpet_reserve_msi_timers(struct hpet_data *hd); |
| |
| static void hpet_reserve_platform_timers(unsigned int id) |
| { |
| struct hpet __iomem *hpet = hpet_virt_address; |
| struct hpet_timer __iomem *timer = &hpet->hpet_timers[2]; |
| unsigned int nrtimers, i; |
| struct hpet_data hd; |
| |
| nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; |
| |
| memset(&hd, 0, sizeof(hd)); |
| hd.hd_phys_address = hpet_address; |
| hd.hd_address = hpet; |
| hd.hd_nirqs = nrtimers; |
| hpet_reserve_timer(&hd, 0); |
| |
| #ifdef CONFIG_HPET_EMULATE_RTC |
| hpet_reserve_timer(&hd, 1); |
| #endif |
| |
| /* |
| * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254 |
| * is wrong for i8259!) not the output IRQ. Many BIOS writers |
| * don't bother configuring *any* comparator interrupts. |
| */ |
| hd.hd_irq[0] = HPET_LEGACY_8254; |
| hd.hd_irq[1] = HPET_LEGACY_RTC; |
| |
| for (i = 2; i < nrtimers; timer++, i++) { |
| hd.hd_irq[i] = (readl(&timer->hpet_config) & |
| Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT; |
| } |
| |
| hpet_reserve_msi_timers(&hd); |
| |
| hpet_alloc(&hd); |
| |
| } |
| #else |
| static void hpet_reserve_platform_timers(unsigned int id) { } |
| #endif |
| |
| /* |
| * Common hpet info |
| */ |
| static unsigned long hpet_period; |
| |
| static void hpet_legacy_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt); |
| static int hpet_legacy_next_event(unsigned long delta, |
| struct clock_event_device *evt); |
| |
| /* |
| * The hpet clock event device |
| */ |
| static struct clock_event_device hpet_clockevent = { |
| .name = "hpet", |
| .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, |
| .set_mode = hpet_legacy_set_mode, |
| .set_next_event = hpet_legacy_next_event, |
| .shift = 32, |
| .irq = 0, |
| .rating = 50, |
| }; |
| |
| static void hpet_stop_counter(void) |
| { |
| unsigned long cfg = hpet_readl(HPET_CFG); |
| cfg &= ~HPET_CFG_ENABLE; |
| hpet_writel(cfg, HPET_CFG); |
| } |
| |
| static void hpet_reset_counter(void) |
| { |
| hpet_writel(0, HPET_COUNTER); |
| hpet_writel(0, HPET_COUNTER + 4); |
| } |
| |
| static void hpet_start_counter(void) |
| { |
| unsigned int cfg = hpet_readl(HPET_CFG); |
| cfg |= HPET_CFG_ENABLE; |
| hpet_writel(cfg, HPET_CFG); |
| } |
| |
| static void hpet_restart_counter(void) |
| { |
| hpet_stop_counter(); |
| hpet_reset_counter(); |
| hpet_start_counter(); |
| } |
| |
| static void hpet_resume_device(void) |
| { |
| force_hpet_resume(); |
| } |
| |
| static void hpet_resume_counter(struct clocksource *cs) |
| { |
| hpet_resume_device(); |
| hpet_restart_counter(); |
| } |
| |
| static void hpet_enable_legacy_int(void) |
| { |
| unsigned int cfg = hpet_readl(HPET_CFG); |
| |
| cfg |= HPET_CFG_LEGACY; |
| hpet_writel(cfg, HPET_CFG); |
| hpet_legacy_int_enabled = 1; |
| } |
| |
| static void hpet_legacy_clockevent_register(void) |
| { |
| /* Start HPET legacy interrupts */ |
| hpet_enable_legacy_int(); |
| |
| /* |
| * The mult factor is defined as (include/linux/clockchips.h) |
| * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h) |
| * hpet_period is in units of femtoseconds (per cycle), so |
| * mult/2^shift = cyc/ns = 10^6/hpet_period |
| * mult = (10^6 * 2^shift)/hpet_period |
| * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period |
| */ |
| hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC, |
| hpet_period, hpet_clockevent.shift); |
| /* Calculate the min / max delta */ |
| hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, |
| &hpet_clockevent); |
| /* Setup minimum reprogramming delta. */ |
| hpet_clockevent.min_delta_ns = clockevent_delta2ns(HPET_MIN_PROG_DELTA, |
| &hpet_clockevent); |
| |
| /* |
| * Start hpet with the boot cpu mask and make it |
| * global after the IO_APIC has been initialized. |
| */ |
| hpet_clockevent.cpumask = cpumask_of(smp_processor_id()); |
| clockevents_register_device(&hpet_clockevent); |
| global_clock_event = &hpet_clockevent; |
| printk(KERN_DEBUG "hpet clockevent registered\n"); |
| } |
| |
| static int hpet_setup_msi_irq(unsigned int irq); |
| |
| static void hpet_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt, int timer) |
| { |
| unsigned int cfg, cmp, now; |
| uint64_t delta; |
| |
| switch (mode) { |
| case CLOCK_EVT_MODE_PERIODIC: |
| hpet_stop_counter(); |
| delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult; |
| delta >>= evt->shift; |
| now = hpet_readl(HPET_COUNTER); |
| cmp = now + (unsigned int) delta; |
| cfg = hpet_readl(HPET_Tn_CFG(timer)); |
| /* Make sure we use edge triggered interrupts */ |
| cfg &= ~HPET_TN_LEVEL; |
| cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | |
| HPET_TN_SETVAL | HPET_TN_32BIT; |
| hpet_writel(cfg, HPET_Tn_CFG(timer)); |
| hpet_writel(cmp, HPET_Tn_CMP(timer)); |
| udelay(1); |
| /* |
| * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL |
| * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL |
| * bit is automatically cleared after the first write. |
| * (See AMD-8111 HyperTransport I/O Hub Data Sheet, |
| * Publication # 24674) |
| */ |
| hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer)); |
| hpet_start_counter(); |
| hpet_print_config(); |
| break; |
| |
| case CLOCK_EVT_MODE_ONESHOT: |
| cfg = hpet_readl(HPET_Tn_CFG(timer)); |
| cfg &= ~HPET_TN_PERIODIC; |
| cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; |
| hpet_writel(cfg, HPET_Tn_CFG(timer)); |
| break; |
| |
| case CLOCK_EVT_MODE_UNUSED: |
| case CLOCK_EVT_MODE_SHUTDOWN: |
| cfg = hpet_readl(HPET_Tn_CFG(timer)); |
| cfg &= ~HPET_TN_ENABLE; |
| hpet_writel(cfg, HPET_Tn_CFG(timer)); |
| break; |
| |
| case CLOCK_EVT_MODE_RESUME: |
| if (timer == 0) { |
| hpet_enable_legacy_int(); |
| } else { |
| struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); |
| hpet_setup_msi_irq(hdev->irq); |
| disable_irq(hdev->irq); |
| irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu)); |
| enable_irq(hdev->irq); |
| } |
| hpet_print_config(); |
| break; |
| } |
| } |
| |
| static int hpet_next_event(unsigned long delta, |
| struct clock_event_device *evt, int timer) |
| { |
| u32 cnt; |
| s32 res; |
| |
| cnt = hpet_readl(HPET_COUNTER); |
| cnt += (u32) delta; |
| hpet_writel(cnt, HPET_Tn_CMP(timer)); |
| |
| /* |
| * HPETs are a complete disaster. The compare register is |
| * based on a equal comparison and neither provides a less |
| * than or equal functionality (which would require to take |
| * the wraparound into account) nor a simple count down event |
| * mode. Further the write to the comparator register is |
| * delayed internally up to two HPET clock cycles in certain |
| * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even |
| * longer delays. We worked around that by reading back the |
| * compare register, but that required another workaround for |
| * ICH9,10 chips where the first readout after write can |
| * return the old stale value. We already had a minimum |
| * programming delta of 5us enforced, but a NMI or SMI hitting |
| * between the counter readout and the comparator write can |
| * move us behind that point easily. Now instead of reading |
| * the compare register back several times, we make the ETIME |
| * decision based on the following: Return ETIME if the |
| * counter value after the write is less than HPET_MIN_CYCLES |
| * away from the event or if the counter is already ahead of |
| * the event. The minimum programming delta for the generic |
| * clockevents code is set to 1.5 * HPET_MIN_CYCLES. |
| */ |
| res = (s32)(cnt - hpet_readl(HPET_COUNTER)); |
| |
| return res < HPET_MIN_CYCLES ? -ETIME : 0; |
| } |
| |
| static void hpet_legacy_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt) |
| { |
| hpet_set_mode(mode, evt, 0); |
| } |
| |
| static int hpet_legacy_next_event(unsigned long delta, |
| struct clock_event_device *evt) |
| { |
| return hpet_next_event(delta, evt, 0); |
| } |
| |
| /* |
| * HPET MSI Support |
| */ |
| #ifdef CONFIG_PCI_MSI |
| |
| static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev); |
| static struct hpet_dev *hpet_devs; |
| |
| void hpet_msi_unmask(struct irq_data *data) |
| { |
| struct hpet_dev *hdev = data->handler_data; |
| unsigned int cfg; |
| |
| /* unmask it */ |
| cfg = hpet_readl(HPET_Tn_CFG(hdev->num)); |
| cfg |= HPET_TN_FSB; |
| hpet_writel(cfg, HPET_Tn_CFG(hdev->num)); |
| } |
| |
| void hpet_msi_mask(struct irq_data *data) |
| { |
| struct hpet_dev *hdev = data->handler_data; |
| unsigned int cfg; |
| |
| /* mask it */ |
| cfg = hpet_readl(HPET_Tn_CFG(hdev->num)); |
| cfg &= ~HPET_TN_FSB; |
| hpet_writel(cfg, HPET_Tn_CFG(hdev->num)); |
| } |
| |
| void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg) |
| { |
| hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num)); |
| hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4); |
| } |
| |
| void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg) |
| { |
| msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num)); |
| msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4); |
| msg->address_hi = 0; |
| } |
| |
| static void hpet_msi_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt) |
| { |
| struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); |
| hpet_set_mode(mode, evt, hdev->num); |
| } |
| |
| static int hpet_msi_next_event(unsigned long delta, |
| struct clock_event_device *evt) |
| { |
| struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); |
| return hpet_next_event(delta, evt, hdev->num); |
| } |
| |
| static int hpet_setup_msi_irq(unsigned int irq) |
| { |
| if (arch_setup_hpet_msi(irq, hpet_blockid)) { |
| destroy_irq(irq); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int hpet_assign_irq(struct hpet_dev *dev) |
| { |
| unsigned int irq; |
| |
| irq = create_irq_nr(0, -1); |
| if (!irq) |
| return -EINVAL; |
| |
| irq_set_handler_data(irq, dev); |
| |
| if (hpet_setup_msi_irq(irq)) |
| return -EINVAL; |
| |
| dev->irq = irq; |
| return 0; |
| } |
| |
| static irqreturn_t hpet_interrupt_handler(int irq, void *data) |
| { |
| struct hpet_dev *dev = (struct hpet_dev *)data; |
| struct clock_event_device *hevt = &dev->evt; |
| |
| if (!hevt->event_handler) { |
| printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n", |
| dev->num); |
| return IRQ_HANDLED; |
| } |
| |
| hevt->event_handler(hevt); |
| return IRQ_HANDLED; |
| } |
| |
| static int hpet_setup_irq(struct hpet_dev *dev) |
| { |
| |
| if (request_irq(dev->irq, hpet_interrupt_handler, |
| IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, |
| dev->name, dev)) |
| return -1; |
| |
| disable_irq(dev->irq); |
| irq_set_affinity(dev->irq, cpumask_of(dev->cpu)); |
| enable_irq(dev->irq); |
| |
| printk(KERN_DEBUG "hpet: %s irq %d for MSI\n", |
| dev->name, dev->irq); |
| |
| return 0; |
| } |
| |
| /* This should be called in specific @cpu */ |
| static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu) |
| { |
| struct clock_event_device *evt = &hdev->evt; |
| uint64_t hpet_freq; |
| |
| WARN_ON(cpu != smp_processor_id()); |
| if (!(hdev->flags & HPET_DEV_VALID)) |
| return; |
| |
| if (hpet_setup_msi_irq(hdev->irq)) |
| return; |
| |
| hdev->cpu = cpu; |
| per_cpu(cpu_hpet_dev, cpu) = hdev; |
| evt->name = hdev->name; |
| hpet_setup_irq(hdev); |
| evt->irq = hdev->irq; |
| |
| evt->rating = 110; |
| evt->features = CLOCK_EVT_FEAT_ONESHOT; |
| if (hdev->flags & HPET_DEV_PERI_CAP) |
| evt->features |= CLOCK_EVT_FEAT_PERIODIC; |
| |
| evt->set_mode = hpet_msi_set_mode; |
| evt->set_next_event = hpet_msi_next_event; |
| evt->shift = 32; |
| |
| /* |
| * The period is a femto seconds value. We need to calculate the |
| * scaled math multiplication factor for nanosecond to hpet tick |
| * conversion. |
| */ |
| hpet_freq = FSEC_PER_SEC; |
| do_div(hpet_freq, hpet_period); |
| evt->mult = div_sc((unsigned long) hpet_freq, |
| NSEC_PER_SEC, evt->shift); |
| /* Calculate the max delta */ |
| evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt); |
| /* 5 usec minimum reprogramming delta. */ |
| evt->min_delta_ns = 5000; |
| |
| evt->cpumask = cpumask_of(hdev->cpu); |
| clockevents_register_device(evt); |
| } |
| |
| #ifdef CONFIG_HPET |
| /* Reserve at least one timer for userspace (/dev/hpet) */ |
| #define RESERVE_TIMERS 1 |
| #else |
| #define RESERVE_TIMERS 0 |
| #endif |
| |
| static void hpet_msi_capability_lookup(unsigned int start_timer) |
| { |
| unsigned int id; |
| unsigned int num_timers; |
| unsigned int num_timers_used = 0; |
| int i; |
| |
| if (hpet_msi_disable) |
| return; |
| |
| if (boot_cpu_has(X86_FEATURE_ARAT)) |
| return; |
| id = hpet_readl(HPET_ID); |
| |
| num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT); |
| num_timers++; /* Value read out starts from 0 */ |
| hpet_print_config(); |
| |
| hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL); |
| if (!hpet_devs) |
| return; |
| |
| hpet_num_timers = num_timers; |
| |
| for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) { |
| struct hpet_dev *hdev = &hpet_devs[num_timers_used]; |
| unsigned int cfg = hpet_readl(HPET_Tn_CFG(i)); |
| |
| /* Only consider HPET timer with MSI support */ |
| if (!(cfg & HPET_TN_FSB_CAP)) |
| continue; |
| |
| hdev->flags = 0; |
| if (cfg & HPET_TN_PERIODIC_CAP) |
| hdev->flags |= HPET_DEV_PERI_CAP; |
| hdev->num = i; |
| |
| sprintf(hdev->name, "hpet%d", i); |
| if (hpet_assign_irq(hdev)) |
| continue; |
| |
| hdev->flags |= HPET_DEV_FSB_CAP; |
| hdev->flags |= HPET_DEV_VALID; |
| num_timers_used++; |
| if (num_timers_used == num_possible_cpus()) |
| break; |
| } |
| |
| printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n", |
| num_timers, num_timers_used); |
| } |
| |
| #ifdef CONFIG_HPET |
| static void hpet_reserve_msi_timers(struct hpet_data *hd) |
| { |
| int i; |
| |
| if (!hpet_devs) |
| return; |
| |
| for (i = 0; i < hpet_num_timers; i++) { |
| struct hpet_dev *hdev = &hpet_devs[i]; |
| |
| if (!(hdev->flags & HPET_DEV_VALID)) |
| continue; |
| |
| hd->hd_irq[hdev->num] = hdev->irq; |
| hpet_reserve_timer(hd, hdev->num); |
| } |
| } |
| #endif |
| |
| static struct hpet_dev *hpet_get_unused_timer(void) |
| { |
| int i; |
| |
| if (!hpet_devs) |
| return NULL; |
| |
| for (i = 0; i < hpet_num_timers; i++) { |
| struct hpet_dev *hdev = &hpet_devs[i]; |
| |
| if (!(hdev->flags & HPET_DEV_VALID)) |
| continue; |
| if (test_and_set_bit(HPET_DEV_USED_BIT, |
| (unsigned long *)&hdev->flags)) |
| continue; |
| return hdev; |
| } |
| return NULL; |
| } |
| |
| struct hpet_work_struct { |
| struct delayed_work work; |
| struct completion complete; |
| }; |
| |
| static void hpet_work(struct work_struct *w) |
| { |
| struct hpet_dev *hdev; |
| int cpu = smp_processor_id(); |
| struct hpet_work_struct *hpet_work; |
| |
| hpet_work = container_of(w, struct hpet_work_struct, work.work); |
| |
| hdev = hpet_get_unused_timer(); |
| if (hdev) |
| init_one_hpet_msi_clockevent(hdev, cpu); |
| |
| complete(&hpet_work->complete); |
| } |
| |
| static int hpet_cpuhp_notify(struct notifier_block *n, |
| unsigned long action, void *hcpu) |
| { |
| unsigned long cpu = (unsigned long)hcpu; |
| struct hpet_work_struct work; |
| struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu); |
| |
| switch (action & 0xf) { |
| case CPU_ONLINE: |
| INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work); |
| init_completion(&work.complete); |
| /* FIXME: add schedule_work_on() */ |
| schedule_delayed_work_on(cpu, &work.work, 0); |
| wait_for_completion(&work.complete); |
| destroy_timer_on_stack(&work.work.timer); |
| break; |
| case CPU_DEAD: |
| if (hdev) { |
| free_irq(hdev->irq, hdev); |
| hdev->flags &= ~HPET_DEV_USED; |
| per_cpu(cpu_hpet_dev, cpu) = NULL; |
| } |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| #else |
| |
| static int hpet_setup_msi_irq(unsigned int irq) |
| { |
| return 0; |
| } |
| static void hpet_msi_capability_lookup(unsigned int start_timer) |
| { |
| return; |
| } |
| |
| #ifdef CONFIG_HPET |
| static void hpet_reserve_msi_timers(struct hpet_data *hd) |
| { |
| return; |
| } |
| #endif |
| |
| static int hpet_cpuhp_notify(struct notifier_block *n, |
| unsigned long action, void *hcpu) |
| { |
| return NOTIFY_OK; |
| } |
| |
| #endif |
| |
| /* |
| * Clock source related code |
| */ |
| static cycle_t read_hpet(struct clocksource *cs) |
| { |
| return (cycle_t)hpet_readl(HPET_COUNTER); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static cycle_t __vsyscall_fn vread_hpet(void) |
| { |
| return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0); |
| } |
| #endif |
| |
| static struct clocksource clocksource_hpet = { |
| .name = "hpet", |
| .rating = 250, |
| .read = read_hpet, |
| .mask = HPET_MASK, |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| .resume = hpet_resume_counter, |
| #ifdef CONFIG_X86_64 |
| .vread = vread_hpet, |
| #endif |
| }; |
| |
| static int hpet_clocksource_register(void) |
| { |
| u64 start, now; |
| u64 hpet_freq; |
| cycle_t t1; |
| |
| /* Start the counter */ |
| hpet_restart_counter(); |
| |
| /* Verify whether hpet counter works */ |
| t1 = hpet_readl(HPET_COUNTER); |
| rdtscll(start); |
| |
| /* |
| * We don't know the TSC frequency yet, but waiting for |
| * 200000 TSC cycles is safe: |
| * 4 GHz == 50us |
| * 1 GHz == 200us |
| */ |
| do { |
| rep_nop(); |
| rdtscll(now); |
| } while ((now - start) < 200000UL); |
| |
| if (t1 == hpet_readl(HPET_COUNTER)) { |
| printk(KERN_WARNING |
| "HPET counter not counting. HPET disabled\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * The definition of mult is (include/linux/clocksource.h) |
| * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc |
| * so we first need to convert hpet_period to ns/cyc units: |
| * mult/2^shift = ns/cyc = hpet_period/10^6 |
| * mult = (hpet_period * 2^shift)/10^6 |
| * mult = (hpet_period << shift)/FSEC_PER_NSEC |
| */ |
| |
| /* Need to convert hpet_period (fsec/cyc) to cyc/sec: |
| * |
| * cyc/sec = FSEC_PER_SEC/hpet_period(fsec/cyc) |
| * cyc/sec = (FSEC_PER_NSEC * NSEC_PER_SEC)/hpet_period |
| */ |
| hpet_freq = FSEC_PER_SEC; |
| do_div(hpet_freq, hpet_period); |
| clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq); |
| |
| return 0; |
| } |
| |
| /** |
| * hpet_enable - Try to setup the HPET timer. Returns 1 on success. |
| */ |
| int __init hpet_enable(void) |
| { |
| unsigned int id; |
| int i; |
| |
| if (!is_hpet_capable()) |
| return 0; |
| |
| hpet_set_mapping(); |
| |
| /* |
| * Read the period and check for a sane value: |
| */ |
| hpet_period = hpet_readl(HPET_PERIOD); |
| |
| /* |
| * AMD SB700 based systems with spread spectrum enabled use a |
| * SMM based HPET emulation to provide proper frequency |
| * setting. The SMM code is initialized with the first HPET |
| * register access and takes some time to complete. During |
| * this time the config register reads 0xffffffff. We check |
| * for max. 1000 loops whether the config register reads a non |
| * 0xffffffff value to make sure that HPET is up and running |
| * before we go further. A counting loop is safe, as the HPET |
| * access takes thousands of CPU cycles. On non SB700 based |
| * machines this check is only done once and has no side |
| * effects. |
| */ |
| for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) { |
| if (i == 1000) { |
| printk(KERN_WARNING |
| "HPET config register value = 0xFFFFFFFF. " |
| "Disabling HPET\n"); |
| goto out_nohpet; |
| } |
| } |
| |
| if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD) |
| goto out_nohpet; |
| |
| /* |
| * Read the HPET ID register to retrieve the IRQ routing |
| * information and the number of channels |
| */ |
| id = hpet_readl(HPET_ID); |
| hpet_print_config(); |
| |
| #ifdef CONFIG_HPET_EMULATE_RTC |
| /* |
| * The legacy routing mode needs at least two channels, tick timer |
| * and the rtc emulation channel. |
| */ |
| if (!(id & HPET_ID_NUMBER)) |
| goto out_nohpet; |
| #endif |
| |
| if (hpet_clocksource_register()) |
| goto out_nohpet; |
| |
| if (id & HPET_ID_LEGSUP) { |
| hpet_legacy_clockevent_register(); |
| return 1; |
| } |
| return 0; |
| |
| out_nohpet: |
| hpet_clear_mapping(); |
| hpet_address = 0; |
| return 0; |
| } |
| |
| /* |
| * Needs to be late, as the reserve_timer code calls kalloc ! |
| * |
| * Not a problem on i386 as hpet_enable is called from late_time_init, |
| * but on x86_64 it is necessary ! |
| */ |
| static __init int hpet_late_init(void) |
| { |
| int cpu; |
| |
| if (boot_hpet_disable) |
| return -ENODEV; |
| |
| if (!hpet_address) { |
| if (!force_hpet_address) |
| return -ENODEV; |
| |
| hpet_address = force_hpet_address; |
| hpet_enable(); |
| } |
| |
| if (!hpet_virt_address) |
| return -ENODEV; |
| |
| if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP) |
| hpet_msi_capability_lookup(2); |
| else |
| hpet_msi_capability_lookup(0); |
| |
| hpet_reserve_platform_timers(hpet_readl(HPET_ID)); |
| hpet_print_config(); |
| |
| if (hpet_msi_disable) |
| return 0; |
| |
| if (boot_cpu_has(X86_FEATURE_ARAT)) |
| return 0; |
| |
| for_each_online_cpu(cpu) { |
| hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu); |
| } |
| |
| /* This notifier should be called after workqueue is ready */ |
| hotcpu_notifier(hpet_cpuhp_notify, -20); |
| |
| return 0; |
| } |
| fs_initcall(hpet_late_init); |
| |
| void hpet_disable(void) |
| { |
| if (is_hpet_capable() && hpet_virt_address) { |
| unsigned int cfg = hpet_readl(HPET_CFG); |
| |
| if (hpet_legacy_int_enabled) { |
| cfg &= ~HPET_CFG_LEGACY; |
| hpet_legacy_int_enabled = 0; |
| } |
| cfg &= ~HPET_CFG_ENABLE; |
| hpet_writel(cfg, HPET_CFG); |
| } |
| } |
| |
| #ifdef CONFIG_HPET_EMULATE_RTC |
| |
| /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET |
| * is enabled, we support RTC interrupt functionality in software. |
| * RTC has 3 kinds of interrupts: |
| * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock |
| * is updated |
| * 2) Alarm Interrupt - generate an interrupt at a specific time of day |
| * 3) Periodic Interrupt - generate periodic interrupt, with frequencies |
| * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) |
| * (1) and (2) above are implemented using polling at a frequency of |
| * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt |
| * overhead. (DEFAULT_RTC_INT_FREQ) |
| * For (3), we use interrupts at 64Hz or user specified periodic |
| * frequency, whichever is higher. |
| */ |
| #include <linux/mc146818rtc.h> |
| #include <linux/rtc.h> |
| #include <asm/rtc.h> |
| |
| #define DEFAULT_RTC_INT_FREQ 64 |
| #define DEFAULT_RTC_SHIFT 6 |
| #define RTC_NUM_INTS 1 |
| |
| static unsigned long hpet_rtc_flags; |
| static int hpet_prev_update_sec; |
| static struct rtc_time hpet_alarm_time; |
| static unsigned long hpet_pie_count; |
| static u32 hpet_t1_cmp; |
| static u32 hpet_default_delta; |
| static u32 hpet_pie_delta; |
| static unsigned long hpet_pie_limit; |
| |
| static rtc_irq_handler irq_handler; |
| |
| /* |
| * Check that the hpet counter c1 is ahead of the c2 |
| */ |
| static inline int hpet_cnt_ahead(u32 c1, u32 c2) |
| { |
| return (s32)(c2 - c1) < 0; |
| } |
| |
| /* |
| * Registers a IRQ handler. |
| */ |
| int hpet_register_irq_handler(rtc_irq_handler handler) |
| { |
| if (!is_hpet_enabled()) |
| return -ENODEV; |
| if (irq_handler) |
| return -EBUSY; |
| |
| irq_handler = handler; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(hpet_register_irq_handler); |
| |
| /* |
| * Deregisters the IRQ handler registered with hpet_register_irq_handler() |
| * and does cleanup. |
| */ |
| void hpet_unregister_irq_handler(rtc_irq_handler handler) |
| { |
| if (!is_hpet_enabled()) |
| return; |
| |
| irq_handler = NULL; |
| hpet_rtc_flags = 0; |
| } |
| EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler); |
| |
| /* |
| * Timer 1 for RTC emulation. We use one shot mode, as periodic mode |
| * is not supported by all HPET implementations for timer 1. |
| * |
| * hpet_rtc_timer_init() is called when the rtc is initialized. |
| */ |
| int hpet_rtc_timer_init(void) |
| { |
| unsigned int cfg, cnt, delta; |
| unsigned long flags; |
| |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| if (!hpet_default_delta) { |
| uint64_t clc; |
| |
| clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; |
| clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT; |
| hpet_default_delta = clc; |
| } |
| |
| if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) |
| delta = hpet_default_delta; |
| else |
| delta = hpet_pie_delta; |
| |
| local_irq_save(flags); |
| |
| cnt = delta + hpet_readl(HPET_COUNTER); |
| hpet_writel(cnt, HPET_T1_CMP); |
| hpet_t1_cmp = cnt; |
| |
| cfg = hpet_readl(HPET_T1_CFG); |
| cfg &= ~HPET_TN_PERIODIC; |
| cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; |
| hpet_writel(cfg, HPET_T1_CFG); |
| |
| local_irq_restore(flags); |
| |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(hpet_rtc_timer_init); |
| |
| /* |
| * The functions below are called from rtc driver. |
| * Return 0 if HPET is not being used. |
| * Otherwise do the necessary changes and return 1. |
| */ |
| int hpet_mask_rtc_irq_bit(unsigned long bit_mask) |
| { |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| hpet_rtc_flags &= ~bit_mask; |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit); |
| |
| int hpet_set_rtc_irq_bit(unsigned long bit_mask) |
| { |
| unsigned long oldbits = hpet_rtc_flags; |
| |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| hpet_rtc_flags |= bit_mask; |
| |
| if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE)) |
| hpet_prev_update_sec = -1; |
| |
| if (!oldbits) |
| hpet_rtc_timer_init(); |
| |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit); |
| |
| int hpet_set_alarm_time(unsigned char hrs, unsigned char min, |
| unsigned char sec) |
| { |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| hpet_alarm_time.tm_hour = hrs; |
| hpet_alarm_time.tm_min = min; |
| hpet_alarm_time.tm_sec = sec; |
| |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(hpet_set_alarm_time); |
| |
| int hpet_set_periodic_freq(unsigned long freq) |
| { |
| uint64_t clc; |
| |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| if (freq <= DEFAULT_RTC_INT_FREQ) |
| hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq; |
| else { |
| clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; |
| do_div(clc, freq); |
| clc >>= hpet_clockevent.shift; |
| hpet_pie_delta = clc; |
| hpet_pie_limit = 0; |
| } |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(hpet_set_periodic_freq); |
| |
| int hpet_rtc_dropped_irq(void) |
| { |
| return is_hpet_enabled(); |
| } |
| EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq); |
| |
| static void hpet_rtc_timer_reinit(void) |
| { |
| unsigned int cfg, delta; |
| int lost_ints = -1; |
| |
| if (unlikely(!hpet_rtc_flags)) { |
| cfg = hpet_readl(HPET_T1_CFG); |
| cfg &= ~HPET_TN_ENABLE; |
| hpet_writel(cfg, HPET_T1_CFG); |
| return; |
| } |
| |
| if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) |
| delta = hpet_default_delta; |
| else |
| delta = hpet_pie_delta; |
| |
| /* |
| * Increment the comparator value until we are ahead of the |
| * current count. |
| */ |
| do { |
| hpet_t1_cmp += delta; |
| hpet_writel(hpet_t1_cmp, HPET_T1_CMP); |
| lost_ints++; |
| } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER))); |
| |
| if (lost_ints) { |
| if (hpet_rtc_flags & RTC_PIE) |
| hpet_pie_count += lost_ints; |
| if (printk_ratelimit()) |
| printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n", |
| lost_ints); |
| } |
| } |
| |
| irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) |
| { |
| struct rtc_time curr_time; |
| unsigned long rtc_int_flag = 0; |
| |
| hpet_rtc_timer_reinit(); |
| memset(&curr_time, 0, sizeof(struct rtc_time)); |
| |
| if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) |
| get_rtc_time(&curr_time); |
| |
| if (hpet_rtc_flags & RTC_UIE && |
| curr_time.tm_sec != hpet_prev_update_sec) { |
| if (hpet_prev_update_sec >= 0) |
| rtc_int_flag = RTC_UF; |
| hpet_prev_update_sec = curr_time.tm_sec; |
| } |
| |
| if (hpet_rtc_flags & RTC_PIE && |
| ++hpet_pie_count >= hpet_pie_limit) { |
| rtc_int_flag |= RTC_PF; |
| hpet_pie_count = 0; |
| } |
| |
| if (hpet_rtc_flags & RTC_AIE && |
| (curr_time.tm_sec == hpet_alarm_time.tm_sec) && |
| (curr_time.tm_min == hpet_alarm_time.tm_min) && |
| (curr_time.tm_hour == hpet_alarm_time.tm_hour)) |
| rtc_int_flag |= RTC_AF; |
| |
| if (rtc_int_flag) { |
| rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); |
| if (irq_handler) |
| irq_handler(rtc_int_flag, dev_id); |
| } |
| return IRQ_HANDLED; |
| } |
| EXPORT_SYMBOL_GPL(hpet_rtc_interrupt); |
| #endif |