| /* |
| * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| * |
| * This file contains the functions and defines necessary to modify and use |
| * the TILE page table tree. |
| */ |
| |
| #ifndef _ASM_TILE_PGTABLE_H |
| #define _ASM_TILE_PGTABLE_H |
| |
| #include <hv/hypervisor.h> |
| |
| #ifndef __ASSEMBLY__ |
| |
| #include <linux/bitops.h> |
| #include <linux/threads.h> |
| #include <linux/slab.h> |
| #include <linux/list.h> |
| #include <linux/spinlock.h> |
| #include <asm/processor.h> |
| #include <asm/fixmap.h> |
| #include <asm/system.h> |
| |
| struct mm_struct; |
| struct vm_area_struct; |
| |
| /* |
| * ZERO_PAGE is a global shared page that is always zero: used |
| * for zero-mapped memory areas etc.. |
| */ |
| extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| |
| extern pgd_t swapper_pg_dir[]; |
| extern pgprot_t swapper_pgprot; |
| extern struct kmem_cache *pgd_cache; |
| extern spinlock_t pgd_lock; |
| extern struct list_head pgd_list; |
| |
| /* |
| * The very last slots in the pgd_t are for addresses unusable by Linux |
| * (pgd_addr_invalid() returns true). So we use them for the list structure. |
| * The x86 code we are modelled on uses the page->private/index fields |
| * (older 2.6 kernels) or the lru list (newer 2.6 kernels), but since |
| * our pgds are so much smaller than a page, it seems a waste to |
| * spend a whole page on each pgd. |
| */ |
| #define PGD_LIST_OFFSET \ |
| ((PTRS_PER_PGD * sizeof(pgd_t)) - sizeof(struct list_head)) |
| #define pgd_to_list(pgd) \ |
| ((struct list_head *)((char *)(pgd) + PGD_LIST_OFFSET)) |
| #define list_to_pgd(list) \ |
| ((pgd_t *)((char *)(list) - PGD_LIST_OFFSET)) |
| |
| extern void pgtable_cache_init(void); |
| extern void paging_init(void); |
| extern void set_page_homes(void); |
| |
| #define FIRST_USER_ADDRESS 0 |
| |
| #define _PAGE_PRESENT HV_PTE_PRESENT |
| #define _PAGE_HUGE_PAGE HV_PTE_PAGE |
| #define _PAGE_READABLE HV_PTE_READABLE |
| #define _PAGE_WRITABLE HV_PTE_WRITABLE |
| #define _PAGE_EXECUTABLE HV_PTE_EXECUTABLE |
| #define _PAGE_ACCESSED HV_PTE_ACCESSED |
| #define _PAGE_DIRTY HV_PTE_DIRTY |
| #define _PAGE_GLOBAL HV_PTE_GLOBAL |
| #define _PAGE_USER HV_PTE_USER |
| |
| /* |
| * All the "standard" bits. Cache-control bits are managed elsewhere. |
| * This is used to test for valid level-2 page table pointers by checking |
| * all the bits, and to mask away the cache control bits for mprotect. |
| */ |
| #define _PAGE_ALL (\ |
| _PAGE_PRESENT | \ |
| _PAGE_HUGE_PAGE | \ |
| _PAGE_READABLE | \ |
| _PAGE_WRITABLE | \ |
| _PAGE_EXECUTABLE | \ |
| _PAGE_ACCESSED | \ |
| _PAGE_DIRTY | \ |
| _PAGE_GLOBAL | \ |
| _PAGE_USER \ |
| ) |
| |
| #define PAGE_NONE \ |
| __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) |
| #define PAGE_SHARED \ |
| __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \ |
| _PAGE_USER | _PAGE_ACCESSED) |
| |
| #define PAGE_SHARED_EXEC \ |
| __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \ |
| _PAGE_EXECUTABLE | _PAGE_USER | _PAGE_ACCESSED) |
| #define PAGE_COPY_NOEXEC \ |
| __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE) |
| #define PAGE_COPY_EXEC \ |
| __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \ |
| _PAGE_READABLE | _PAGE_EXECUTABLE) |
| #define PAGE_COPY \ |
| PAGE_COPY_NOEXEC |
| #define PAGE_READONLY \ |
| __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE) |
| #define PAGE_READONLY_EXEC \ |
| __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \ |
| _PAGE_READABLE | _PAGE_EXECUTABLE) |
| |
| #define _PAGE_KERNEL_RO \ |
| (_PAGE_PRESENT | _PAGE_GLOBAL | _PAGE_READABLE | _PAGE_ACCESSED) |
| #define _PAGE_KERNEL \ |
| (_PAGE_KERNEL_RO | _PAGE_WRITABLE | _PAGE_DIRTY) |
| #define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXECUTABLE) |
| |
| #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) |
| #define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO) |
| #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC) |
| |
| #define page_to_kpgprot(p) PAGE_KERNEL |
| |
| /* |
| * We could tighten these up, but for now writable or executable |
| * implies readable. |
| */ |
| #define __P000 PAGE_NONE |
| #define __P001 PAGE_READONLY |
| #define __P010 PAGE_COPY /* this is write-only, which we won't support */ |
| #define __P011 PAGE_COPY |
| #define __P100 PAGE_READONLY_EXEC |
| #define __P101 PAGE_READONLY_EXEC |
| #define __P110 PAGE_COPY_EXEC |
| #define __P111 PAGE_COPY_EXEC |
| |
| #define __S000 PAGE_NONE |
| #define __S001 PAGE_READONLY |
| #define __S010 PAGE_SHARED |
| #define __S011 PAGE_SHARED |
| #define __S100 PAGE_READONLY_EXEC |
| #define __S101 PAGE_READONLY_EXEC |
| #define __S110 PAGE_SHARED_EXEC |
| #define __S111 PAGE_SHARED_EXEC |
| |
| /* |
| * All the normal _PAGE_ALL bits are ignored for PMDs, except PAGE_PRESENT |
| * and PAGE_HUGE_PAGE, which must be one and zero, respectively. |
| * We set the ignored bits to zero. |
| */ |
| #define _PAGE_TABLE _PAGE_PRESENT |
| |
| /* Inherit the caching flags from the old protection bits. */ |
| #define pgprot_modify(oldprot, newprot) \ |
| (pgprot_t) { ((oldprot).val & ~_PAGE_ALL) | (newprot).val } |
| |
| /* Just setting the PFN to zero suffices. */ |
| #define pte_pgprot(x) hv_pte_set_pfn((x), 0) |
| |
| /* |
| * For PTEs and PDEs, we must clear the Present bit first when |
| * clearing a page table entry, so clear the bottom half first and |
| * enforce ordering with a barrier. |
| */ |
| static inline void __pte_clear(pte_t *ptep) |
| { |
| #ifdef __tilegx__ |
| ptep->val = 0; |
| #else |
| u32 *tmp = (u32 *)ptep; |
| tmp[0] = 0; |
| barrier(); |
| tmp[1] = 0; |
| #endif |
| } |
| #define pte_clear(mm, addr, ptep) __pte_clear(ptep) |
| |
| /* |
| * The following only work if pte_present() is true. |
| * Undefined behaviour if not.. |
| */ |
| #define pte_present hv_pte_get_present |
| #define pte_user hv_pte_get_user |
| #define pte_read hv_pte_get_readable |
| #define pte_dirty hv_pte_get_dirty |
| #define pte_young hv_pte_get_accessed |
| #define pte_write hv_pte_get_writable |
| #define pte_exec hv_pte_get_executable |
| #define pte_huge hv_pte_get_page |
| #define pte_rdprotect hv_pte_clear_readable |
| #define pte_exprotect hv_pte_clear_executable |
| #define pte_mkclean hv_pte_clear_dirty |
| #define pte_mkold hv_pte_clear_accessed |
| #define pte_wrprotect hv_pte_clear_writable |
| #define pte_mksmall hv_pte_clear_page |
| #define pte_mkread hv_pte_set_readable |
| #define pte_mkexec hv_pte_set_executable |
| #define pte_mkdirty hv_pte_set_dirty |
| #define pte_mkyoung hv_pte_set_accessed |
| #define pte_mkwrite hv_pte_set_writable |
| #define pte_mkhuge hv_pte_set_page |
| |
| #define pte_special(pte) 0 |
| #define pte_mkspecial(pte) (pte) |
| |
| /* |
| * Use some spare bits in the PTE for user-caching tags. |
| */ |
| #define pte_set_forcecache hv_pte_set_client0 |
| #define pte_get_forcecache hv_pte_get_client0 |
| #define pte_clear_forcecache hv_pte_clear_client0 |
| #define pte_set_anyhome hv_pte_set_client1 |
| #define pte_get_anyhome hv_pte_get_client1 |
| #define pte_clear_anyhome hv_pte_clear_client1 |
| |
| /* |
| * A migrating PTE has PAGE_PRESENT clear but all the other bits preserved. |
| */ |
| #define pte_migrating hv_pte_get_migrating |
| #define pte_mkmigrate(x) hv_pte_set_migrating(hv_pte_clear_present(x)) |
| #define pte_donemigrate(x) hv_pte_set_present(hv_pte_clear_migrating(x)) |
| |
| #define pte_ERROR(e) \ |
| pr_err("%s:%d: bad pte 0x%016llx.\n", __FILE__, __LINE__, pte_val(e)) |
| #define pgd_ERROR(e) \ |
| pr_err("%s:%d: bad pgd 0x%016llx.\n", __FILE__, __LINE__, pgd_val(e)) |
| |
| /* |
| * set_pte_order() sets the given PTE and also sanity-checks the |
| * requested PTE against the page homecaching. Unspecified parts |
| * of the PTE are filled in when it is written to memory, i.e. all |
| * caching attributes if "!forcecache", or the home cpu if "anyhome". |
| */ |
| extern void set_pte_order(pte_t *ptep, pte_t pte, int order); |
| |
| #define set_pte(ptep, pteval) set_pte_order(ptep, pteval, 0) |
| #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval) |
| #define set_pte_atomic(pteptr, pteval) set_pte(pteptr, pteval) |
| |
| #define pte_page(x) pfn_to_page(pte_pfn(x)) |
| |
| static inline int pte_none(pte_t pte) |
| { |
| return !pte.val; |
| } |
| |
| static inline unsigned long pte_pfn(pte_t pte) |
| { |
| return hv_pte_get_pfn(pte); |
| } |
| |
| /* Set or get the remote cache cpu in a pgprot with remote caching. */ |
| extern pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu); |
| extern int get_remote_cache_cpu(pgprot_t prot); |
| |
| static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) |
| { |
| return hv_pte_set_pfn(prot, pfn); |
| } |
| |
| /* Support for priority mappings. */ |
| extern void start_mm_caching(struct mm_struct *mm); |
| extern void check_mm_caching(struct mm_struct *prev, struct mm_struct *next); |
| |
| /* |
| * Support non-linear file mappings (see sys_remap_file_pages). |
| * This is defined by CLIENT1 set but CLIENT0 and _PAGE_PRESENT clear, and the |
| * file offset in the 32 high bits. |
| */ |
| #define _PAGE_FILE HV_PTE_CLIENT1 |
| #define PTE_FILE_MAX_BITS 32 |
| #define pte_file(pte) (hv_pte_get_client1(pte) && !hv_pte_get_client0(pte)) |
| #define pte_to_pgoff(pte) ((pte).val >> 32) |
| #define pgoff_to_pte(off) ((pte_t) { (((long long)(off)) << 32) | _PAGE_FILE }) |
| |
| /* |
| * Encode and de-code a swap entry (see <linux/swapops.h>). |
| * We put the swap file type+offset in the 32 high bits; |
| * I believe we can just leave the low bits clear. |
| */ |
| #define __swp_type(swp) ((swp).val & 0x1f) |
| #define __swp_offset(swp) ((swp).val >> 5) |
| #define __swp_entry(type, off) ((swp_entry_t) { (type) | ((off) << 5) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).val >> 32 }) |
| #define __swp_entry_to_pte(swp) ((pte_t) { (((long long) ((swp).val)) << 32) }) |
| |
| /* |
| * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); |
| * |
| * dst - pointer to pgd range anwhere on a pgd page |
| * src - "" |
| * count - the number of pgds to copy. |
| * |
| * dst and src can be on the same page, but the range must not overlap, |
| * and must not cross a page boundary. |
| */ |
| static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) |
| { |
| memcpy(dst, src, count * sizeof(pgd_t)); |
| } |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| |
| #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) |
| |
| /* |
| * If we are doing an mprotect(), just accept the new vma->vm_page_prot |
| * value and combine it with the PFN from the old PTE to get a new PTE. |
| */ |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| return pfn_pte(hv_pte_get_pfn(pte), newprot); |
| } |
| |
| /* |
| * The pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] |
| * |
| * This macro returns the index of the entry in the pgd page which would |
| * control the given virtual address. |
| */ |
| #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) |
| |
| /* |
| * pgd_offset() returns a (pgd_t *) |
| * pgd_index() is used get the offset into the pgd page's array of pgd_t's. |
| */ |
| #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) |
| |
| /* |
| * A shortcut which implies the use of the kernel's pgd, instead |
| * of a process's. |
| */ |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| |
| #if defined(CONFIG_HIGHPTE) |
| extern pte_t *_pte_offset_map(pmd_t *, unsigned long address, enum km_type); |
| #define pte_offset_map(dir, address) \ |
| _pte_offset_map(dir, address, KM_PTE0) |
| #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) |
| #else |
| #define pte_offset_map(dir, address) pte_offset_kernel(dir, address) |
| #define pte_unmap(pte) do { } while (0) |
| #endif |
| |
| /* Clear a non-executable kernel PTE and flush it from the TLB. */ |
| #define kpte_clear_flush(ptep, vaddr) \ |
| do { \ |
| pte_clear(&init_mm, (vaddr), (ptep)); \ |
| local_flush_tlb_page(FLUSH_NONEXEC, (vaddr), PAGE_SIZE); \ |
| } while (0) |
| |
| /* |
| * The kernel page tables contain what we need, and we flush when we |
| * change specific page table entries. |
| */ |
| #define update_mmu_cache(vma, address, pte) do { } while (0) |
| |
| #ifdef CONFIG_FLATMEM |
| #define kern_addr_valid(addr) (1) |
| #endif /* CONFIG_FLATMEM */ |
| |
| #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ |
| remap_pfn_range(vma, vaddr, pfn, size, prot) |
| |
| extern void vmalloc_sync_all(void); |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #ifdef __tilegx__ |
| #include <asm/pgtable_64.h> |
| #else |
| #include <asm/pgtable_32.h> |
| #endif |
| |
| #ifndef __ASSEMBLY__ |
| |
| static inline int pmd_none(pmd_t pmd) |
| { |
| /* |
| * Only check low word on 32-bit platforms, since it might be |
| * out of sync with upper half. |
| */ |
| return (unsigned long)pmd_val(pmd) == 0; |
| } |
| |
| static inline int pmd_present(pmd_t pmd) |
| { |
| return pmd_val(pmd) & _PAGE_PRESENT; |
| } |
| |
| static inline int pmd_bad(pmd_t pmd) |
| { |
| return ((pmd_val(pmd) & _PAGE_ALL) != _PAGE_TABLE); |
| } |
| |
| static inline unsigned long pages_to_mb(unsigned long npg) |
| { |
| return npg >> (20 - PAGE_SHIFT); |
| } |
| |
| /* |
| * The pmd can be thought of an array like this: pmd_t[PTRS_PER_PMD] |
| * |
| * This function returns the index of the entry in the pmd which would |
| * control the given virtual address. |
| */ |
| static inline unsigned long pmd_index(unsigned long address) |
| { |
| return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); |
| } |
| |
| /* |
| * A given kernel pmd_t maps to a specific virtual address (either a |
| * kernel huge page or a kernel pte_t table). Since kernel pte_t |
| * tables can be aligned at sub-page granularity, this function can |
| * return non-page-aligned pointers, despite its name. |
| */ |
| static inline unsigned long pmd_page_vaddr(pmd_t pmd) |
| { |
| phys_addr_t pa = |
| (phys_addr_t)pmd_ptfn(pmd) << HV_LOG2_PAGE_TABLE_ALIGN; |
| return (unsigned long)__va(pa); |
| } |
| |
| /* |
| * A pmd_t points to the base of a huge page or to a pte_t array. |
| * If a pte_t array, since we can have multiple per page, we don't |
| * have a one-to-one mapping of pmd_t's to pages. However, this is |
| * OK for pte_lockptr(), since we just end up with potentially one |
| * lock being used for several pte_t arrays. |
| */ |
| #define pmd_page(pmd) pfn_to_page(HV_PTFN_TO_PFN(pmd_ptfn(pmd))) |
| |
| /* |
| * The pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] |
| * |
| * This macro returns the index of the entry in the pte page which would |
| * control the given virtual address. |
| */ |
| static inline unsigned long pte_index(unsigned long address) |
| { |
| return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); |
| } |
| |
| static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) |
| { |
| return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); |
| } |
| |
| static inline int pmd_huge_page(pmd_t pmd) |
| { |
| return pmd_val(pmd) & _PAGE_HUGE_PAGE; |
| } |
| |
| #include <asm-generic/pgtable.h> |
| |
| /* Support /proc/NN/pgtable API. */ |
| struct seq_file; |
| int arch_proc_pgtable_show(struct seq_file *m, struct mm_struct *mm, |
| unsigned long vaddr, pte_t *ptep, void **datap); |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* _ASM_TILE_PGTABLE_H */ |