blob: c7388fadf225d60b114b87d234d24e8417c92ecb [file] [log] [blame]
/*
* QLogic Fibre Channel HBA Driver
* Copyright (c) 2003-2008 QLogic Corporation
*
* See LICENSE.qla2xxx for copyright and licensing details.
*/
#include "qla_def.h"
#include <linux/delay.h>
#include <linux/vmalloc.h>
#include "qla_devtbl.h"
#ifdef CONFIG_SPARC
#include <asm/prom.h>
#endif
/*
* QLogic ISP2x00 Hardware Support Function Prototypes.
*/
static int qla2x00_isp_firmware(scsi_qla_host_t *);
static void qla2x00_resize_request_q(scsi_qla_host_t *);
static int qla2x00_setup_chip(scsi_qla_host_t *);
static void qla2x00_init_response_q_entries(scsi_qla_host_t *);
static int qla2x00_init_rings(scsi_qla_host_t *);
static int qla2x00_fw_ready(scsi_qla_host_t *);
static int qla2x00_configure_hba(scsi_qla_host_t *);
static int qla2x00_configure_loop(scsi_qla_host_t *);
static int qla2x00_configure_local_loop(scsi_qla_host_t *);
static int qla2x00_configure_fabric(scsi_qla_host_t *);
static int qla2x00_find_all_fabric_devs(scsi_qla_host_t *, struct list_head *);
static int qla2x00_device_resync(scsi_qla_host_t *);
static int qla2x00_fabric_dev_login(scsi_qla_host_t *, fc_port_t *,
uint16_t *);
static int qla2x00_restart_isp(scsi_qla_host_t *);
static int qla2x00_find_new_loop_id(scsi_qla_host_t *ha, fc_port_t *dev);
static struct qla_chip_state_84xx *qla84xx_get_chip(struct scsi_qla_host *);
static int qla84xx_init_chip(scsi_qla_host_t *);
/****************************************************************************/
/* QLogic ISP2x00 Hardware Support Functions. */
/****************************************************************************/
/*
* qla2x00_initialize_adapter
* Initialize board.
*
* Input:
* ha = adapter block pointer.
*
* Returns:
* 0 = success
*/
int
qla2x00_initialize_adapter(scsi_qla_host_t *ha)
{
int rval;
/* Clear adapter flags. */
ha->flags.online = 0;
ha->flags.reset_active = 0;
atomic_set(&ha->loop_down_timer, LOOP_DOWN_TIME);
atomic_set(&ha->loop_state, LOOP_DOWN);
ha->device_flags = DFLG_NO_CABLE;
ha->dpc_flags = 0;
ha->flags.management_server_logged_in = 0;
ha->marker_needed = 0;
ha->mbx_flags = 0;
ha->isp_abort_cnt = 0;
ha->beacon_blink_led = 0;
set_bit(REGISTER_FDMI_NEEDED, &ha->dpc_flags);
qla_printk(KERN_INFO, ha, "Configuring PCI space...\n");
rval = ha->isp_ops->pci_config(ha);
if (rval) {
DEBUG2(printk("scsi(%ld): Unable to configure PCI space.\n",
ha->host_no));
return (rval);
}
ha->isp_ops->reset_chip(ha);
ha->isp_ops->get_flash_version(ha, ha->request_ring);
qla_printk(KERN_INFO, ha, "Configure NVRAM parameters...\n");
ha->isp_ops->nvram_config(ha);
if (ha->flags.disable_serdes) {
/* Mask HBA via NVRAM settings? */
qla_printk(KERN_INFO, ha, "Masking HBA WWPN "
"%02x%02x%02x%02x%02x%02x%02x%02x (via NVRAM).\n",
ha->port_name[0], ha->port_name[1],
ha->port_name[2], ha->port_name[3],
ha->port_name[4], ha->port_name[5],
ha->port_name[6], ha->port_name[7]);
return QLA_FUNCTION_FAILED;
}
qla_printk(KERN_INFO, ha, "Verifying loaded RISC code...\n");
if (qla2x00_isp_firmware(ha) != QLA_SUCCESS) {
rval = ha->isp_ops->chip_diag(ha);
if (rval)
return (rval);
rval = qla2x00_setup_chip(ha);
if (rval)
return (rval);
qla2xxx_get_flash_info(ha);
}
if (IS_QLA84XX(ha)) {
ha->cs84xx = qla84xx_get_chip(ha);
if (!ha->cs84xx) {
qla_printk(KERN_ERR, ha,
"Unable to configure ISP84XX.\n");
return QLA_FUNCTION_FAILED;
}
}
rval = qla2x00_init_rings(ha);
return (rval);
}
/**
* qla2100_pci_config() - Setup ISP21xx PCI configuration registers.
* @ha: HA context
*
* Returns 0 on success.
*/
int
qla2100_pci_config(scsi_qla_host_t *ha)
{
uint16_t w;
uint32_t d;
unsigned long flags;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
pci_set_master(ha->pdev);
pci_try_set_mwi(ha->pdev);
pci_read_config_word(ha->pdev, PCI_COMMAND, &w);
w |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
pci_write_config_word(ha->pdev, PCI_COMMAND, w);
/* Reset expansion ROM address decode enable */
pci_read_config_dword(ha->pdev, PCI_ROM_ADDRESS, &d);
d &= ~PCI_ROM_ADDRESS_ENABLE;
pci_write_config_dword(ha->pdev, PCI_ROM_ADDRESS, d);
/* Get PCI bus information. */
spin_lock_irqsave(&ha->hardware_lock, flags);
ha->pci_attr = RD_REG_WORD(&reg->ctrl_status);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
return QLA_SUCCESS;
}
/**
* qla2300_pci_config() - Setup ISP23xx PCI configuration registers.
* @ha: HA context
*
* Returns 0 on success.
*/
int
qla2300_pci_config(scsi_qla_host_t *ha)
{
uint16_t w;
uint32_t d;
unsigned long flags = 0;
uint32_t cnt;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
pci_set_master(ha->pdev);
pci_try_set_mwi(ha->pdev);
pci_read_config_word(ha->pdev, PCI_COMMAND, &w);
w |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
if (IS_QLA2322(ha) || IS_QLA6322(ha))
w &= ~PCI_COMMAND_INTX_DISABLE;
pci_write_config_word(ha->pdev, PCI_COMMAND, w);
/*
* If this is a 2300 card and not 2312, reset the
* COMMAND_INVALIDATE due to a bug in the 2300. Unfortunately,
* the 2310 also reports itself as a 2300 so we need to get the
* fb revision level -- a 6 indicates it really is a 2300 and
* not a 2310.
*/
if (IS_QLA2300(ha)) {
spin_lock_irqsave(&ha->hardware_lock, flags);
/* Pause RISC. */
WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
for (cnt = 0; cnt < 30000; cnt++) {
if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
break;
udelay(10);
}
/* Select FPM registers. */
WRT_REG_WORD(&reg->ctrl_status, 0x20);
RD_REG_WORD(&reg->ctrl_status);
/* Get the fb rev level */
ha->fb_rev = RD_FB_CMD_REG(ha, reg);
if (ha->fb_rev == FPM_2300)
pci_clear_mwi(ha->pdev);
/* Deselect FPM registers. */
WRT_REG_WORD(&reg->ctrl_status, 0x0);
RD_REG_WORD(&reg->ctrl_status);
/* Release RISC module. */
WRT_REG_WORD(&reg->hccr, HCCR_RELEASE_RISC);
for (cnt = 0; cnt < 30000; cnt++) {
if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) == 0)
break;
udelay(10);
}
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
pci_write_config_byte(ha->pdev, PCI_LATENCY_TIMER, 0x80);
/* Reset expansion ROM address decode enable */
pci_read_config_dword(ha->pdev, PCI_ROM_ADDRESS, &d);
d &= ~PCI_ROM_ADDRESS_ENABLE;
pci_write_config_dword(ha->pdev, PCI_ROM_ADDRESS, d);
/* Get PCI bus information. */
spin_lock_irqsave(&ha->hardware_lock, flags);
ha->pci_attr = RD_REG_WORD(&reg->ctrl_status);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
return QLA_SUCCESS;
}
/**
* qla24xx_pci_config() - Setup ISP24xx PCI configuration registers.
* @ha: HA context
*
* Returns 0 on success.
*/
int
qla24xx_pci_config(scsi_qla_host_t *ha)
{
uint16_t w;
uint32_t d;
unsigned long flags = 0;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
pci_set_master(ha->pdev);
pci_try_set_mwi(ha->pdev);
pci_read_config_word(ha->pdev, PCI_COMMAND, &w);
w |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
w &= ~PCI_COMMAND_INTX_DISABLE;
pci_write_config_word(ha->pdev, PCI_COMMAND, w);
pci_write_config_byte(ha->pdev, PCI_LATENCY_TIMER, 0x80);
/* PCI-X -- adjust Maximum Memory Read Byte Count (2048). */
if (pci_find_capability(ha->pdev, PCI_CAP_ID_PCIX))
pcix_set_mmrbc(ha->pdev, 2048);
/* PCIe -- adjust Maximum Read Request Size (2048). */
if (pci_find_capability(ha->pdev, PCI_CAP_ID_EXP))
pcie_set_readrq(ha->pdev, 2048);
/* Reset expansion ROM address decode enable */
pci_read_config_dword(ha->pdev, PCI_ROM_ADDRESS, &d);
d &= ~PCI_ROM_ADDRESS_ENABLE;
pci_write_config_dword(ha->pdev, PCI_ROM_ADDRESS, d);
ha->chip_revision = ha->pdev->revision;
/* Get PCI bus information. */
spin_lock_irqsave(&ha->hardware_lock, flags);
ha->pci_attr = RD_REG_DWORD(&reg->ctrl_status);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
return QLA_SUCCESS;
}
/**
* qla25xx_pci_config() - Setup ISP25xx PCI configuration registers.
* @ha: HA context
*
* Returns 0 on success.
*/
int
qla25xx_pci_config(scsi_qla_host_t *ha)
{
uint16_t w;
uint32_t d;
pci_set_master(ha->pdev);
pci_try_set_mwi(ha->pdev);
pci_read_config_word(ha->pdev, PCI_COMMAND, &w);
w |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
w &= ~PCI_COMMAND_INTX_DISABLE;
pci_write_config_word(ha->pdev, PCI_COMMAND, w);
/* PCIe -- adjust Maximum Read Request Size (2048). */
if (pci_find_capability(ha->pdev, PCI_CAP_ID_EXP))
pcie_set_readrq(ha->pdev, 2048);
/* Reset expansion ROM address decode enable */
pci_read_config_dword(ha->pdev, PCI_ROM_ADDRESS, &d);
d &= ~PCI_ROM_ADDRESS_ENABLE;
pci_write_config_dword(ha->pdev, PCI_ROM_ADDRESS, d);
ha->chip_revision = ha->pdev->revision;
return QLA_SUCCESS;
}
/**
* qla2x00_isp_firmware() - Choose firmware image.
* @ha: HA context
*
* Returns 0 on success.
*/
static int
qla2x00_isp_firmware(scsi_qla_host_t *ha)
{
int rval;
/* Assume loading risc code */
rval = QLA_FUNCTION_FAILED;
if (ha->flags.disable_risc_code_load) {
DEBUG2(printk("scsi(%ld): RISC CODE NOT loaded\n",
ha->host_no));
qla_printk(KERN_INFO, ha, "RISC CODE NOT loaded\n");
/* Verify checksum of loaded RISC code. */
rval = qla2x00_verify_checksum(ha, ha->fw_srisc_address);
}
if (rval) {
DEBUG2_3(printk("scsi(%ld): **** Load RISC code ****\n",
ha->host_no));
}
return (rval);
}
/**
* qla2x00_reset_chip() - Reset ISP chip.
* @ha: HA context
*
* Returns 0 on success.
*/
void
qla2x00_reset_chip(scsi_qla_host_t *ha)
{
unsigned long flags = 0;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
uint32_t cnt;
uint16_t cmd;
ha->isp_ops->disable_intrs(ha);
spin_lock_irqsave(&ha->hardware_lock, flags);
/* Turn off master enable */
cmd = 0;
pci_read_config_word(ha->pdev, PCI_COMMAND, &cmd);
cmd &= ~PCI_COMMAND_MASTER;
pci_write_config_word(ha->pdev, PCI_COMMAND, cmd);
if (!IS_QLA2100(ha)) {
/* Pause RISC. */
WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
if (IS_QLA2200(ha) || IS_QLA2300(ha)) {
for (cnt = 0; cnt < 30000; cnt++) {
if ((RD_REG_WORD(&reg->hccr) &
HCCR_RISC_PAUSE) != 0)
break;
udelay(100);
}
} else {
RD_REG_WORD(&reg->hccr); /* PCI Posting. */
udelay(10);
}
/* Select FPM registers. */
WRT_REG_WORD(&reg->ctrl_status, 0x20);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
/* FPM Soft Reset. */
WRT_REG_WORD(&reg->fpm_diag_config, 0x100);
RD_REG_WORD(&reg->fpm_diag_config); /* PCI Posting. */
/* Toggle Fpm Reset. */
if (!IS_QLA2200(ha)) {
WRT_REG_WORD(&reg->fpm_diag_config, 0x0);
RD_REG_WORD(&reg->fpm_diag_config); /* PCI Posting. */
}
/* Select frame buffer registers. */
WRT_REG_WORD(&reg->ctrl_status, 0x10);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
/* Reset frame buffer FIFOs. */
if (IS_QLA2200(ha)) {
WRT_FB_CMD_REG(ha, reg, 0xa000);
RD_FB_CMD_REG(ha, reg); /* PCI Posting. */
} else {
WRT_FB_CMD_REG(ha, reg, 0x00fc);
/* Read back fb_cmd until zero or 3 seconds max */
for (cnt = 0; cnt < 3000; cnt++) {
if ((RD_FB_CMD_REG(ha, reg) & 0xff) == 0)
break;
udelay(100);
}
}
/* Select RISC module registers. */
WRT_REG_WORD(&reg->ctrl_status, 0);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
/* Reset RISC processor. */
WRT_REG_WORD(&reg->hccr, HCCR_RESET_RISC);
RD_REG_WORD(&reg->hccr); /* PCI Posting. */
/* Release RISC processor. */
WRT_REG_WORD(&reg->hccr, HCCR_RELEASE_RISC);
RD_REG_WORD(&reg->hccr); /* PCI Posting. */
}
WRT_REG_WORD(&reg->hccr, HCCR_CLR_RISC_INT);
WRT_REG_WORD(&reg->hccr, HCCR_CLR_HOST_INT);
/* Reset ISP chip. */
WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
/* Wait for RISC to recover from reset. */
if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
/*
* It is necessary to for a delay here since the card doesn't
* respond to PCI reads during a reset. On some architectures
* this will result in an MCA.
*/
udelay(20);
for (cnt = 30000; cnt; cnt--) {
if ((RD_REG_WORD(&reg->ctrl_status) &
CSR_ISP_SOFT_RESET) == 0)
break;
udelay(100);
}
} else
udelay(10);
/* Reset RISC processor. */
WRT_REG_WORD(&reg->hccr, HCCR_RESET_RISC);
WRT_REG_WORD(&reg->semaphore, 0);
/* Release RISC processor. */
WRT_REG_WORD(&reg->hccr, HCCR_RELEASE_RISC);
RD_REG_WORD(&reg->hccr); /* PCI Posting. */
if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
for (cnt = 0; cnt < 30000; cnt++) {
if (RD_MAILBOX_REG(ha, reg, 0) != MBS_BUSY)
break;
udelay(100);
}
} else
udelay(100);
/* Turn on master enable */
cmd |= PCI_COMMAND_MASTER;
pci_write_config_word(ha->pdev, PCI_COMMAND, cmd);
/* Disable RISC pause on FPM parity error. */
if (!IS_QLA2100(ha)) {
WRT_REG_WORD(&reg->hccr, HCCR_DISABLE_PARITY_PAUSE);
RD_REG_WORD(&reg->hccr); /* PCI Posting. */
}
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
/**
* qla24xx_reset_risc() - Perform full reset of ISP24xx RISC.
* @ha: HA context
*
* Returns 0 on success.
*/
static inline void
qla24xx_reset_risc(scsi_qla_host_t *ha)
{
int hw_evt = 0;
unsigned long flags = 0;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
uint32_t cnt, d2;
uint16_t wd;
spin_lock_irqsave(&ha->hardware_lock, flags);
/* Reset RISC. */
WRT_REG_DWORD(&reg->ctrl_status, CSRX_DMA_SHUTDOWN|MWB_4096_BYTES);
for (cnt = 0; cnt < 30000; cnt++) {
if ((RD_REG_DWORD(&reg->ctrl_status) & CSRX_DMA_ACTIVE) == 0)
break;
udelay(10);
}
WRT_REG_DWORD(&reg->ctrl_status,
CSRX_ISP_SOFT_RESET|CSRX_DMA_SHUTDOWN|MWB_4096_BYTES);
pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
udelay(100);
/* Wait for firmware to complete NVRAM accesses. */
d2 = (uint32_t) RD_REG_WORD(&reg->mailbox0);
for (cnt = 10000 ; cnt && d2; cnt--) {
udelay(5);
d2 = (uint32_t) RD_REG_WORD(&reg->mailbox0);
barrier();
}
if (cnt == 0)
hw_evt = 1;
/* Wait for soft-reset to complete. */
d2 = RD_REG_DWORD(&reg->ctrl_status);
for (cnt = 6000000 ; cnt && (d2 & CSRX_ISP_SOFT_RESET); cnt--) {
udelay(5);
d2 = RD_REG_DWORD(&reg->ctrl_status);
barrier();
}
if (cnt == 0 || hw_evt)
qla2xxx_hw_event_log(ha, HW_EVENT_RESET_ERR,
RD_REG_WORD(&reg->mailbox1), RD_REG_WORD(&reg->mailbox2),
RD_REG_WORD(&reg->mailbox3));
WRT_REG_DWORD(&reg->hccr, HCCRX_SET_RISC_RESET);
RD_REG_DWORD(&reg->hccr);
WRT_REG_DWORD(&reg->hccr, HCCRX_REL_RISC_PAUSE);
RD_REG_DWORD(&reg->hccr);
WRT_REG_DWORD(&reg->hccr, HCCRX_CLR_RISC_RESET);
RD_REG_DWORD(&reg->hccr);
d2 = (uint32_t) RD_REG_WORD(&reg->mailbox0);
for (cnt = 6000000 ; cnt && d2; cnt--) {
udelay(5);
d2 = (uint32_t) RD_REG_WORD(&reg->mailbox0);
barrier();
}
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
/**
* qla24xx_reset_chip() - Reset ISP24xx chip.
* @ha: HA context
*
* Returns 0 on success.
*/
void
qla24xx_reset_chip(scsi_qla_host_t *ha)
{
ha->isp_ops->disable_intrs(ha);
/* Perform RISC reset. */
qla24xx_reset_risc(ha);
}
/**
* qla2x00_chip_diag() - Test chip for proper operation.
* @ha: HA context
*
* Returns 0 on success.
*/
int
qla2x00_chip_diag(scsi_qla_host_t *ha)
{
int rval;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
unsigned long flags = 0;
uint16_t data;
uint32_t cnt;
uint16_t mb[5];
/* Assume a failed state */
rval = QLA_FUNCTION_FAILED;
DEBUG3(printk("scsi(%ld): Testing device at %lx.\n",
ha->host_no, (u_long)&reg->flash_address));
spin_lock_irqsave(&ha->hardware_lock, flags);
/* Reset ISP chip. */
WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
/*
* We need to have a delay here since the card will not respond while
* in reset causing an MCA on some architectures.
*/
udelay(20);
data = qla2x00_debounce_register(&reg->ctrl_status);
for (cnt = 6000000 ; cnt && (data & CSR_ISP_SOFT_RESET); cnt--) {
udelay(5);
data = RD_REG_WORD(&reg->ctrl_status);
barrier();
}
if (!cnt)
goto chip_diag_failed;
DEBUG3(printk("scsi(%ld): Reset register cleared by chip reset\n",
ha->host_no));
/* Reset RISC processor. */
WRT_REG_WORD(&reg->hccr, HCCR_RESET_RISC);
WRT_REG_WORD(&reg->hccr, HCCR_RELEASE_RISC);
/* Workaround for QLA2312 PCI parity error */
if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
data = qla2x00_debounce_register(MAILBOX_REG(ha, reg, 0));
for (cnt = 6000000; cnt && (data == MBS_BUSY); cnt--) {
udelay(5);
data = RD_MAILBOX_REG(ha, reg, 0);
barrier();
}
} else
udelay(10);
if (!cnt)
goto chip_diag_failed;
/* Check product ID of chip */
DEBUG3(printk("scsi(%ld): Checking product ID of chip\n", ha->host_no));
mb[1] = RD_MAILBOX_REG(ha, reg, 1);
mb[2] = RD_MAILBOX_REG(ha, reg, 2);
mb[3] = RD_MAILBOX_REG(ha, reg, 3);
mb[4] = qla2x00_debounce_register(MAILBOX_REG(ha, reg, 4));
if (mb[1] != PROD_ID_1 || (mb[2] != PROD_ID_2 && mb[2] != PROD_ID_2a) ||
mb[3] != PROD_ID_3) {
qla_printk(KERN_WARNING, ha,
"Wrong product ID = 0x%x,0x%x,0x%x\n", mb[1], mb[2], mb[3]);
goto chip_diag_failed;
}
ha->product_id[0] = mb[1];
ha->product_id[1] = mb[2];
ha->product_id[2] = mb[3];
ha->product_id[3] = mb[4];
/* Adjust fw RISC transfer size */
if (ha->request_q_length > 1024)
ha->fw_transfer_size = REQUEST_ENTRY_SIZE * 1024;
else
ha->fw_transfer_size = REQUEST_ENTRY_SIZE *
ha->request_q_length;
if (IS_QLA2200(ha) &&
RD_MAILBOX_REG(ha, reg, 7) == QLA2200A_RISC_ROM_VER) {
/* Limit firmware transfer size with a 2200A */
DEBUG3(printk("scsi(%ld): Found QLA2200A chip.\n",
ha->host_no));
ha->device_type |= DT_ISP2200A;
ha->fw_transfer_size = 128;
}
/* Wrap Incoming Mailboxes Test. */
spin_unlock_irqrestore(&ha->hardware_lock, flags);
DEBUG3(printk("scsi(%ld): Checking mailboxes.\n", ha->host_no));
rval = qla2x00_mbx_reg_test(ha);
if (rval) {
DEBUG(printk("scsi(%ld): Failed mailbox send register test\n",
ha->host_no));
qla_printk(KERN_WARNING, ha,
"Failed mailbox send register test\n");
}
else {
/* Flag a successful rval */
rval = QLA_SUCCESS;
}
spin_lock_irqsave(&ha->hardware_lock, flags);
chip_diag_failed:
if (rval)
DEBUG2_3(printk("scsi(%ld): Chip diagnostics **** FAILED "
"****\n", ha->host_no));
spin_unlock_irqrestore(&ha->hardware_lock, flags);
return (rval);
}
/**
* qla24xx_chip_diag() - Test ISP24xx for proper operation.
* @ha: HA context
*
* Returns 0 on success.
*/
int
qla24xx_chip_diag(scsi_qla_host_t *ha)
{
int rval;
/* Perform RISC reset. */
qla24xx_reset_risc(ha);
ha->fw_transfer_size = REQUEST_ENTRY_SIZE * 1024;
rval = qla2x00_mbx_reg_test(ha);
if (rval) {
DEBUG(printk("scsi(%ld): Failed mailbox send register test\n",
ha->host_no));
qla_printk(KERN_WARNING, ha,
"Failed mailbox send register test\n");
} else {
/* Flag a successful rval */
rval = QLA_SUCCESS;
}
return rval;
}
void
qla2x00_alloc_fw_dump(scsi_qla_host_t *ha)
{
int rval;
uint32_t dump_size, fixed_size, mem_size, req_q_size, rsp_q_size,
eft_size, fce_size;
dma_addr_t tc_dma;
void *tc;
if (ha->fw_dump) {
qla_printk(KERN_WARNING, ha,
"Firmware dump previously allocated.\n");
return;
}
ha->fw_dumped = 0;
fixed_size = mem_size = eft_size = fce_size = 0;
if (IS_QLA2100(ha) || IS_QLA2200(ha)) {
fixed_size = sizeof(struct qla2100_fw_dump);
} else if (IS_QLA23XX(ha)) {
fixed_size = offsetof(struct qla2300_fw_dump, data_ram);
mem_size = (ha->fw_memory_size - 0x11000 + 1) *
sizeof(uint16_t);
} else if (IS_FWI2_CAPABLE(ha)) {
fixed_size = IS_QLA25XX(ha) ?
offsetof(struct qla25xx_fw_dump, ext_mem):
offsetof(struct qla24xx_fw_dump, ext_mem);
mem_size = (ha->fw_memory_size - 0x100000 + 1) *
sizeof(uint32_t);
/* Allocate memory for Extended Trace Buffer. */
tc = dma_alloc_coherent(&ha->pdev->dev, EFT_SIZE, &tc_dma,
GFP_KERNEL);
if (!tc) {
qla_printk(KERN_WARNING, ha, "Unable to allocate "
"(%d KB) for EFT.\n", EFT_SIZE / 1024);
goto cont_alloc;
}
memset(tc, 0, EFT_SIZE);
rval = qla2x00_enable_eft_trace(ha, tc_dma, EFT_NUM_BUFFERS);
if (rval) {
qla_printk(KERN_WARNING, ha, "Unable to initialize "
"EFT (%d).\n", rval);
dma_free_coherent(&ha->pdev->dev, EFT_SIZE, tc,
tc_dma);
goto cont_alloc;
}
qla_printk(KERN_INFO, ha, "Allocated (%d KB) for EFT...\n",
EFT_SIZE / 1024);
eft_size = EFT_SIZE;
ha->eft_dma = tc_dma;
ha->eft = tc;
/* Allocate memory for Fibre Channel Event Buffer. */
if (!IS_QLA25XX(ha))
goto cont_alloc;
tc = dma_alloc_coherent(&ha->pdev->dev, FCE_SIZE, &tc_dma,
GFP_KERNEL);
if (!tc) {
qla_printk(KERN_WARNING, ha, "Unable to allocate "
"(%d KB) for FCE.\n", FCE_SIZE / 1024);
goto cont_alloc;
}
memset(tc, 0, FCE_SIZE);
rval = qla2x00_enable_fce_trace(ha, tc_dma, FCE_NUM_BUFFERS,
ha->fce_mb, &ha->fce_bufs);
if (rval) {
qla_printk(KERN_WARNING, ha, "Unable to initialize "
"FCE (%d).\n", rval);
dma_free_coherent(&ha->pdev->dev, FCE_SIZE, tc,
tc_dma);
ha->flags.fce_enabled = 0;
goto cont_alloc;
}
qla_printk(KERN_INFO, ha, "Allocated (%d KB) for FCE...\n",
FCE_SIZE / 1024);
fce_size = sizeof(struct qla2xxx_fce_chain) + EFT_SIZE;
ha->flags.fce_enabled = 1;
ha->fce_dma = tc_dma;
ha->fce = tc;
}
cont_alloc:
req_q_size = ha->request_q_length * sizeof(request_t);
rsp_q_size = ha->response_q_length * sizeof(response_t);
dump_size = offsetof(struct qla2xxx_fw_dump, isp);
dump_size += fixed_size + mem_size + req_q_size + rsp_q_size +
eft_size + fce_size;
ha->fw_dump = vmalloc(dump_size);
if (!ha->fw_dump) {
qla_printk(KERN_WARNING, ha, "Unable to allocate (%d KB) for "
"firmware dump!!!\n", dump_size / 1024);
if (ha->eft) {
dma_free_coherent(&ha->pdev->dev, eft_size, ha->eft,
ha->eft_dma);
ha->eft = NULL;
ha->eft_dma = 0;
}
return;
}
qla_printk(KERN_INFO, ha, "Allocated (%d KB) for firmware dump...\n",
dump_size / 1024);
ha->fw_dump_len = dump_size;
ha->fw_dump->signature[0] = 'Q';
ha->fw_dump->signature[1] = 'L';
ha->fw_dump->signature[2] = 'G';
ha->fw_dump->signature[3] = 'C';
ha->fw_dump->version = __constant_htonl(1);
ha->fw_dump->fixed_size = htonl(fixed_size);
ha->fw_dump->mem_size = htonl(mem_size);
ha->fw_dump->req_q_size = htonl(req_q_size);
ha->fw_dump->rsp_q_size = htonl(rsp_q_size);
ha->fw_dump->eft_size = htonl(eft_size);
ha->fw_dump->eft_addr_l = htonl(LSD(ha->eft_dma));
ha->fw_dump->eft_addr_h = htonl(MSD(ha->eft_dma));
ha->fw_dump->header_size =
htonl(offsetof(struct qla2xxx_fw_dump, isp));
}
/**
* qla2x00_resize_request_q() - Resize request queue given available ISP memory.
* @ha: HA context
*
* Returns 0 on success.
*/
static void
qla2x00_resize_request_q(scsi_qla_host_t *ha)
{
int rval;
uint16_t fw_iocb_cnt = 0;
uint16_t request_q_length = REQUEST_ENTRY_CNT_2XXX_EXT_MEM;
dma_addr_t request_dma;
request_t *request_ring;
/* Valid only on recent ISPs. */
if (IS_QLA2100(ha) || IS_QLA2200(ha))
return;
/* Retrieve IOCB counts available to the firmware. */
rval = qla2x00_get_resource_cnts(ha, NULL, NULL, NULL, &fw_iocb_cnt,
&ha->max_npiv_vports);
if (rval)
return;
/* No point in continuing if current settings are sufficient. */
if (fw_iocb_cnt < 1024)
return;
if (ha->request_q_length >= request_q_length)
return;
/* Attempt to claim larger area for request queue. */
request_ring = dma_alloc_coherent(&ha->pdev->dev,
(request_q_length + 1) * sizeof(request_t), &request_dma,
GFP_KERNEL);
if (request_ring == NULL)
return;
/* Resize successful, report extensions. */
qla_printk(KERN_INFO, ha, "Extended memory detected (%d KB)...\n",
(ha->fw_memory_size + 1) / 1024);
qla_printk(KERN_INFO, ha, "Resizing request queue depth "
"(%d -> %d)...\n", ha->request_q_length, request_q_length);
/* Clear old allocations. */
dma_free_coherent(&ha->pdev->dev,
(ha->request_q_length + 1) * sizeof(request_t), ha->request_ring,
ha->request_dma);
/* Begin using larger queue. */
ha->request_q_length = request_q_length;
ha->request_ring = request_ring;
ha->request_dma = request_dma;
}
/**
* qla2x00_setup_chip() - Load and start RISC firmware.
* @ha: HA context
*
* Returns 0 on success.
*/
static int
qla2x00_setup_chip(scsi_qla_host_t *ha)
{
int rval;
uint32_t srisc_address = 0;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
unsigned long flags;
if (!IS_FWI2_CAPABLE(ha) && !IS_QLA2100(ha) && !IS_QLA2200(ha)) {
/* Disable SRAM, Instruction RAM and GP RAM parity. */
spin_lock_irqsave(&ha->hardware_lock, flags);
WRT_REG_WORD(&reg->hccr, (HCCR_ENABLE_PARITY + 0x0));
RD_REG_WORD(&reg->hccr);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
/* Load firmware sequences */
rval = ha->isp_ops->load_risc(ha, &srisc_address);
if (rval == QLA_SUCCESS) {
DEBUG(printk("scsi(%ld): Verifying Checksum of loaded RISC "
"code.\n", ha->host_no));
rval = qla2x00_verify_checksum(ha, srisc_address);
if (rval == QLA_SUCCESS) {
/* Start firmware execution. */
DEBUG(printk("scsi(%ld): Checksum OK, start "
"firmware.\n", ha->host_no));
rval = qla2x00_execute_fw(ha, srisc_address);
/* Retrieve firmware information. */
if (rval == QLA_SUCCESS && ha->fw_major_version == 0) {
qla2x00_get_fw_version(ha,
&ha->fw_major_version,
&ha->fw_minor_version,
&ha->fw_subminor_version,
&ha->fw_attributes, &ha->fw_memory_size);
qla2x00_resize_request_q(ha);
ha->flags.npiv_supported = 0;
if ((IS_QLA24XX(ha) || IS_QLA25XX(ha)) &&
(ha->fw_attributes & BIT_2)) {
ha->flags.npiv_supported = 1;
if ((!ha->max_npiv_vports) ||
((ha->max_npiv_vports + 1) %
MIN_MULTI_ID_FABRIC))
ha->max_npiv_vports =
MIN_MULTI_ID_FABRIC - 1;
}
if (ql2xallocfwdump)
qla2x00_alloc_fw_dump(ha);
}
} else {
DEBUG2(printk(KERN_INFO
"scsi(%ld): ISP Firmware failed checksum.\n",
ha->host_no));
}
}
if (!IS_FWI2_CAPABLE(ha) && !IS_QLA2100(ha) && !IS_QLA2200(ha)) {
/* Enable proper parity. */
spin_lock_irqsave(&ha->hardware_lock, flags);
if (IS_QLA2300(ha))
/* SRAM parity */
WRT_REG_WORD(&reg->hccr, HCCR_ENABLE_PARITY + 0x1);
else
/* SRAM, Instruction RAM and GP RAM parity */
WRT_REG_WORD(&reg->hccr, HCCR_ENABLE_PARITY + 0x7);
RD_REG_WORD(&reg->hccr);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
if (rval) {
DEBUG2_3(printk("scsi(%ld): Setup chip **** FAILED ****.\n",
ha->host_no));
}
return (rval);
}
/**
* qla2x00_init_response_q_entries() - Initializes response queue entries.
* @ha: HA context
*
* Beginning of request ring has initialization control block already built
* by nvram config routine.
*
* Returns 0 on success.
*/
static void
qla2x00_init_response_q_entries(scsi_qla_host_t *ha)
{
uint16_t cnt;
response_t *pkt;
pkt = ha->response_ring_ptr;
for (cnt = 0; cnt < ha->response_q_length; cnt++) {
pkt->signature = RESPONSE_PROCESSED;
pkt++;
}
}
/**
* qla2x00_update_fw_options() - Read and process firmware options.
* @ha: HA context
*
* Returns 0 on success.
*/
void
qla2x00_update_fw_options(scsi_qla_host_t *ha)
{
uint16_t swing, emphasis, tx_sens, rx_sens;
memset(ha->fw_options, 0, sizeof(ha->fw_options));
qla2x00_get_fw_options(ha, ha->fw_options);
if (IS_QLA2100(ha) || IS_QLA2200(ha))
return;
/* Serial Link options. */
DEBUG3(printk("scsi(%ld): Serial link options:\n",
ha->host_no));
DEBUG3(qla2x00_dump_buffer((uint8_t *)&ha->fw_seriallink_options,
sizeof(ha->fw_seriallink_options)));
ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
if (ha->fw_seriallink_options[3] & BIT_2) {
ha->fw_options[1] |= FO1_SET_EMPHASIS_SWING;
/* 1G settings */
swing = ha->fw_seriallink_options[2] & (BIT_2 | BIT_1 | BIT_0);
emphasis = (ha->fw_seriallink_options[2] &
(BIT_4 | BIT_3)) >> 3;
tx_sens = ha->fw_seriallink_options[0] &
(BIT_3 | BIT_2 | BIT_1 | BIT_0);
rx_sens = (ha->fw_seriallink_options[0] &
(BIT_7 | BIT_6 | BIT_5 | BIT_4)) >> 4;
ha->fw_options[10] = (emphasis << 14) | (swing << 8);
if (IS_QLA2300(ha) || IS_QLA2312(ha) || IS_QLA6312(ha)) {
if (rx_sens == 0x0)
rx_sens = 0x3;
ha->fw_options[10] |= (tx_sens << 4) | rx_sens;
} else if (IS_QLA2322(ha) || IS_QLA6322(ha))
ha->fw_options[10] |= BIT_5 |
((rx_sens & (BIT_1 | BIT_0)) << 2) |
(tx_sens & (BIT_1 | BIT_0));
/* 2G settings */
swing = (ha->fw_seriallink_options[2] &
(BIT_7 | BIT_6 | BIT_5)) >> 5;
emphasis = ha->fw_seriallink_options[3] & (BIT_1 | BIT_0);
tx_sens = ha->fw_seriallink_options[1] &
(BIT_3 | BIT_2 | BIT_1 | BIT_0);
rx_sens = (ha->fw_seriallink_options[1] &
(BIT_7 | BIT_6 | BIT_5 | BIT_4)) >> 4;
ha->fw_options[11] = (emphasis << 14) | (swing << 8);
if (IS_QLA2300(ha) || IS_QLA2312(ha) || IS_QLA6312(ha)) {
if (rx_sens == 0x0)
rx_sens = 0x3;
ha->fw_options[11] |= (tx_sens << 4) | rx_sens;
} else if (IS_QLA2322(ha) || IS_QLA6322(ha))
ha->fw_options[11] |= BIT_5 |
((rx_sens & (BIT_1 | BIT_0)) << 2) |
(tx_sens & (BIT_1 | BIT_0));
}
/* FCP2 options. */
/* Return command IOCBs without waiting for an ABTS to complete. */
ha->fw_options[3] |= BIT_13;
/* LED scheme. */
if (ha->flags.enable_led_scheme)
ha->fw_options[2] |= BIT_12;
/* Detect ISP6312. */
if (IS_QLA6312(ha))
ha->fw_options[2] |= BIT_13;
/* Update firmware options. */
qla2x00_set_fw_options(ha, ha->fw_options);
}
void
qla24xx_update_fw_options(scsi_qla_host_t *ha)
{
int rval;
/* Update Serial Link options. */
if ((le16_to_cpu(ha->fw_seriallink_options24[0]) & BIT_0) == 0)
return;
rval = qla2x00_set_serdes_params(ha,
le16_to_cpu(ha->fw_seriallink_options24[1]),
le16_to_cpu(ha->fw_seriallink_options24[2]),
le16_to_cpu(ha->fw_seriallink_options24[3]));
if (rval != QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"Unable to update Serial Link options (%x).\n", rval);
}
}
void
qla2x00_config_rings(struct scsi_qla_host *ha)
{
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
/* Setup ring parameters in initialization control block. */
ha->init_cb->request_q_outpointer = __constant_cpu_to_le16(0);
ha->init_cb->response_q_inpointer = __constant_cpu_to_le16(0);
ha->init_cb->request_q_length = cpu_to_le16(ha->request_q_length);
ha->init_cb->response_q_length = cpu_to_le16(ha->response_q_length);
ha->init_cb->request_q_address[0] = cpu_to_le32(LSD(ha->request_dma));
ha->init_cb->request_q_address[1] = cpu_to_le32(MSD(ha->request_dma));
ha->init_cb->response_q_address[0] = cpu_to_le32(LSD(ha->response_dma));
ha->init_cb->response_q_address[1] = cpu_to_le32(MSD(ha->response_dma));
WRT_REG_WORD(ISP_REQ_Q_IN(ha, reg), 0);
WRT_REG_WORD(ISP_REQ_Q_OUT(ha, reg), 0);
WRT_REG_WORD(ISP_RSP_Q_IN(ha, reg), 0);
WRT_REG_WORD(ISP_RSP_Q_OUT(ha, reg), 0);
RD_REG_WORD(ISP_RSP_Q_OUT(ha, reg)); /* PCI Posting. */
}
void
qla24xx_config_rings(struct scsi_qla_host *ha)
{
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
struct init_cb_24xx *icb;
/* Setup ring parameters in initialization control block. */
icb = (struct init_cb_24xx *)ha->init_cb;
icb->request_q_outpointer = __constant_cpu_to_le16(0);
icb->response_q_inpointer = __constant_cpu_to_le16(0);
icb->request_q_length = cpu_to_le16(ha->request_q_length);
icb->response_q_length = cpu_to_le16(ha->response_q_length);
icb->request_q_address[0] = cpu_to_le32(LSD(ha->request_dma));
icb->request_q_address[1] = cpu_to_le32(MSD(ha->request_dma));
icb->response_q_address[0] = cpu_to_le32(LSD(ha->response_dma));
icb->response_q_address[1] = cpu_to_le32(MSD(ha->response_dma));
WRT_REG_DWORD(&reg->req_q_in, 0);
WRT_REG_DWORD(&reg->req_q_out, 0);
WRT_REG_DWORD(&reg->rsp_q_in, 0);
WRT_REG_DWORD(&reg->rsp_q_out, 0);
RD_REG_DWORD(&reg->rsp_q_out);
}
/**
* qla2x00_init_rings() - Initializes firmware.
* @ha: HA context
*
* Beginning of request ring has initialization control block already built
* by nvram config routine.
*
* Returns 0 on success.
*/
static int
qla2x00_init_rings(scsi_qla_host_t *ha)
{
int rval;
unsigned long flags = 0;
int cnt;
struct mid_init_cb_24xx *mid_init_cb =
(struct mid_init_cb_24xx *) ha->init_cb;
spin_lock_irqsave(&ha->hardware_lock, flags);
/* Clear outstanding commands array. */
for (cnt = 0; cnt < MAX_OUTSTANDING_COMMANDS; cnt++)
ha->outstanding_cmds[cnt] = NULL;
ha->current_outstanding_cmd = 0;
/* Clear RSCN queue. */
ha->rscn_in_ptr = 0;
ha->rscn_out_ptr = 0;
/* Initialize firmware. */
ha->request_ring_ptr = ha->request_ring;
ha->req_ring_index = 0;
ha->req_q_cnt = ha->request_q_length;
ha->response_ring_ptr = ha->response_ring;
ha->rsp_ring_index = 0;
/* Initialize response queue entries */
qla2x00_init_response_q_entries(ha);
ha->isp_ops->config_rings(ha);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
/* Update any ISP specific firmware options before initialization. */
ha->isp_ops->update_fw_options(ha);
DEBUG(printk("scsi(%ld): Issue init firmware.\n", ha->host_no));
if (ha->flags.npiv_supported)
mid_init_cb->count = cpu_to_le16(ha->max_npiv_vports);
mid_init_cb->options = __constant_cpu_to_le16(BIT_1);
rval = qla2x00_init_firmware(ha, ha->init_cb_size);
if (rval) {
DEBUG2_3(printk("scsi(%ld): Init firmware **** FAILED ****.\n",
ha->host_no));
} else {
DEBUG3(printk("scsi(%ld): Init firmware -- success.\n",
ha->host_no));
}
return (rval);
}
/**
* qla2x00_fw_ready() - Waits for firmware ready.
* @ha: HA context
*
* Returns 0 on success.
*/
static int
qla2x00_fw_ready(scsi_qla_host_t *ha)
{
int rval;
unsigned long wtime, mtime, cs84xx_time;
uint16_t min_wait; /* Minimum wait time if loop is down */
uint16_t wait_time; /* Wait time if loop is coming ready */
uint16_t state[3];
rval = QLA_SUCCESS;
/* 20 seconds for loop down. */
min_wait = 20;
/*
* Firmware should take at most one RATOV to login, plus 5 seconds for
* our own processing.
*/
if ((wait_time = (ha->retry_count*ha->login_timeout) + 5) < min_wait) {
wait_time = min_wait;
}
/* Min wait time if loop down */
mtime = jiffies + (min_wait * HZ);
/* wait time before firmware ready */
wtime = jiffies + (wait_time * HZ);
/* Wait for ISP to finish LIP */
if (!ha->flags.init_done)
qla_printk(KERN_INFO, ha, "Waiting for LIP to complete...\n");
DEBUG3(printk("scsi(%ld): Waiting for LIP to complete...\n",
ha->host_no));
do {
rval = qla2x00_get_firmware_state(ha, state);
if (rval == QLA_SUCCESS) {
if (state[0] < FSTATE_LOSS_OF_SYNC) {
ha->device_flags &= ~DFLG_NO_CABLE;
}
if (IS_QLA84XX(ha) && state[0] != FSTATE_READY) {
DEBUG16(printk("scsi(%ld): fw_state=%x "
"84xx=%x.\n", ha->host_no, state[0],
state[2]));
if ((state[2] & FSTATE_LOGGED_IN) &&
(state[2] & FSTATE_WAITING_FOR_VERIFY)) {
DEBUG16(printk("scsi(%ld): Sending "
"verify iocb.\n", ha->host_no));
cs84xx_time = jiffies;
rval = qla84xx_init_chip(ha);
if (rval != QLA_SUCCESS)
break;
/* Add time taken to initialize. */
cs84xx_time = jiffies - cs84xx_time;
wtime += cs84xx_time;
mtime += cs84xx_time;
DEBUG16(printk("scsi(%ld): Increasing "
"wait time by %ld. New time %ld\n",
ha->host_no, cs84xx_time, wtime));
}
} else if (state[0] == FSTATE_READY) {
DEBUG(printk("scsi(%ld): F/W Ready - OK \n",
ha->host_no));
qla2x00_get_retry_cnt(ha, &ha->retry_count,
&ha->login_timeout, &ha->r_a_tov);
rval = QLA_SUCCESS;
break;
}
rval = QLA_FUNCTION_FAILED;
if (atomic_read(&ha->loop_down_timer) &&
state[0] != FSTATE_READY) {
/* Loop down. Timeout on min_wait for states
* other than Wait for Login.
*/
if (time_after_eq(jiffies, mtime)) {
qla_printk(KERN_INFO, ha,
"Cable is unplugged...\n");
ha->device_flags |= DFLG_NO_CABLE;
break;
}
}
} else {
/* Mailbox cmd failed. Timeout on min_wait. */
if (time_after_eq(jiffies, mtime))
break;
}
if (time_after_eq(jiffies, wtime))
break;
/* Delay for a while */
msleep(500);
DEBUG3(printk("scsi(%ld): fw_state=%x curr time=%lx.\n",
ha->host_no, state[0], jiffies));
} while (1);
DEBUG(printk("scsi(%ld): fw_state=%x curr time=%lx.\n",
ha->host_no, state[0], jiffies));
if (rval) {
DEBUG2_3(printk("scsi(%ld): Firmware ready **** FAILED ****.\n",
ha->host_no));
}
return (rval);
}
/*
* qla2x00_configure_hba
* Setup adapter context.
*
* Input:
* ha = adapter state pointer.
*
* Returns:
* 0 = success
*
* Context:
* Kernel context.
*/
static int
qla2x00_configure_hba(scsi_qla_host_t *ha)
{
int rval;
uint16_t loop_id;
uint16_t topo;
uint16_t sw_cap;
uint8_t al_pa;
uint8_t area;
uint8_t domain;
char connect_type[22];
/* Get host addresses. */
rval = qla2x00_get_adapter_id(ha,
&loop_id, &al_pa, &area, &domain, &topo, &sw_cap);
if (rval != QLA_SUCCESS) {
if (LOOP_TRANSITION(ha) || atomic_read(&ha->loop_down_timer) ||
(rval == QLA_COMMAND_ERROR && loop_id == 0x7)) {
DEBUG2(printk("%s(%ld) Loop is in a transition state\n",
__func__, ha->host_no));
} else {
qla_printk(KERN_WARNING, ha,
"ERROR -- Unable to get host loop ID.\n");
set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
}
return (rval);
}
if (topo == 4) {
qla_printk(KERN_INFO, ha,
"Cannot get topology - retrying.\n");
return (QLA_FUNCTION_FAILED);
}
ha->loop_id = loop_id;
/* initialize */
ha->min_external_loopid = SNS_FIRST_LOOP_ID;
ha->operating_mode = LOOP;
ha->switch_cap = 0;
switch (topo) {
case 0:
DEBUG3(printk("scsi(%ld): HBA in NL topology.\n",
ha->host_no));
ha->current_topology = ISP_CFG_NL;
strcpy(connect_type, "(Loop)");
break;
case 1:
DEBUG3(printk("scsi(%ld): HBA in FL topology.\n",
ha->host_no));
ha->switch_cap = sw_cap;
ha->current_topology = ISP_CFG_FL;
strcpy(connect_type, "(FL_Port)");
break;
case 2:
DEBUG3(printk("scsi(%ld): HBA in N P2P topology.\n",
ha->host_no));
ha->operating_mode = P2P;
ha->current_topology = ISP_CFG_N;
strcpy(connect_type, "(N_Port-to-N_Port)");
break;
case 3:
DEBUG3(printk("scsi(%ld): HBA in F P2P topology.\n",
ha->host_no));
ha->switch_cap = sw_cap;
ha->operating_mode = P2P;
ha->current_topology = ISP_CFG_F;
strcpy(connect_type, "(F_Port)");
break;
default:
DEBUG3(printk("scsi(%ld): HBA in unknown topology %x. "
"Using NL.\n",
ha->host_no, topo));
ha->current_topology = ISP_CFG_NL;
strcpy(connect_type, "(Loop)");
break;
}
/* Save Host port and loop ID. */
/* byte order - Big Endian */
ha->d_id.b.domain = domain;
ha->d_id.b.area = area;
ha->d_id.b.al_pa = al_pa;
if (!ha->flags.init_done)
qla_printk(KERN_INFO, ha,
"Topology - %s, Host Loop address 0x%x\n",
connect_type, ha->loop_id);
if (rval) {
DEBUG2_3(printk("scsi(%ld): FAILED.\n", ha->host_no));
} else {
DEBUG3(printk("scsi(%ld): exiting normally.\n", ha->host_no));
}
return(rval);
}
static inline void
qla2x00_set_model_info(scsi_qla_host_t *ha, uint8_t *model, size_t len, char *def)
{
char *st, *en;
uint16_t index;
if (memcmp(model, BINZERO, len) != 0) {
strncpy(ha->model_number, model, len);
st = en = ha->model_number;
en += len - 1;
while (en > st) {
if (*en != 0x20 && *en != 0x00)
break;
*en-- = '\0';
}
index = (ha->pdev->subsystem_device & 0xff);
if (ha->pdev->subsystem_vendor == PCI_VENDOR_ID_QLOGIC &&
index < QLA_MODEL_NAMES)
ha->model_desc = qla2x00_model_name[index * 2 + 1];
} else {
index = (ha->pdev->subsystem_device & 0xff);
if (ha->pdev->subsystem_vendor == PCI_VENDOR_ID_QLOGIC &&
index < QLA_MODEL_NAMES) {
strcpy(ha->model_number,
qla2x00_model_name[index * 2]);
ha->model_desc = qla2x00_model_name[index * 2 + 1];
} else {
strcpy(ha->model_number, def);
}
}
}
/* On sparc systems, obtain port and node WWN from firmware
* properties.
*/
static void qla2xxx_nvram_wwn_from_ofw(scsi_qla_host_t *ha, nvram_t *nv)
{
#ifdef CONFIG_SPARC
struct pci_dev *pdev = ha->pdev;
struct device_node *dp = pci_device_to_OF_node(pdev);
const u8 *val;
int len;
val = of_get_property(dp, "port-wwn", &len);
if (val && len >= WWN_SIZE)
memcpy(nv->port_name, val, WWN_SIZE);
val = of_get_property(dp, "node-wwn", &len);
if (val && len >= WWN_SIZE)
memcpy(nv->node_name, val, WWN_SIZE);
#endif
}
/*
* NVRAM configuration for ISP 2xxx
*
* Input:
* ha = adapter block pointer.
*
* Output:
* initialization control block in response_ring
* host adapters parameters in host adapter block
*
* Returns:
* 0 = success.
*/
int
qla2x00_nvram_config(scsi_qla_host_t *ha)
{
int rval;
uint8_t chksum = 0;
uint16_t cnt;
uint8_t *dptr1, *dptr2;
init_cb_t *icb = ha->init_cb;
nvram_t *nv = ha->nvram;
uint8_t *ptr = ha->nvram;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
rval = QLA_SUCCESS;
/* Determine NVRAM starting address. */
ha->nvram_size = sizeof(nvram_t);
ha->nvram_base = 0;
if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha))
if ((RD_REG_WORD(&reg->ctrl_status) >> 14) == 1)
ha->nvram_base = 0x80;
/* Get NVRAM data and calculate checksum. */
ha->isp_ops->read_nvram(ha, ptr, ha->nvram_base, ha->nvram_size);
for (cnt = 0, chksum = 0; cnt < ha->nvram_size; cnt++)
chksum += *ptr++;
DEBUG5(printk("scsi(%ld): Contents of NVRAM\n", ha->host_no));
DEBUG5(qla2x00_dump_buffer((uint8_t *)nv, ha->nvram_size));
/* Bad NVRAM data, set defaults parameters. */
if (chksum || nv->id[0] != 'I' || nv->id[1] != 'S' ||
nv->id[2] != 'P' || nv->id[3] != ' ' || nv->nvram_version < 1) {
/* Reset NVRAM data. */
qla_printk(KERN_WARNING, ha, "Inconsistent NVRAM detected: "
"checksum=0x%x id=%c version=0x%x.\n", chksum, nv->id[0],
nv->nvram_version);
qla_printk(KERN_WARNING, ha, "Falling back to functioning (yet "
"invalid -- WWPN) defaults.\n");
if (chksum)
qla2xxx_hw_event_log(ha, HW_EVENT_NVRAM_CHKSUM_ERR, 0,
MSW(chksum), LSW(chksum));
/*
* Set default initialization control block.
*/
memset(nv, 0, ha->nvram_size);
nv->parameter_block_version = ICB_VERSION;
if (IS_QLA23XX(ha)) {
nv->firmware_options[0] = BIT_2 | BIT_1;
nv->firmware_options[1] = BIT_7 | BIT_5;
nv->add_firmware_options[0] = BIT_5;
nv->add_firmware_options[1] = BIT_5 | BIT_4;
nv->frame_payload_size = __constant_cpu_to_le16(2048);
nv->special_options[1] = BIT_7;
} else if (IS_QLA2200(ha)) {
nv->firmware_options[0] = BIT_2 | BIT_1;
nv->firmware_options[1] = BIT_7 | BIT_5;
nv->add_firmware_options[0] = BIT_5;
nv->add_firmware_options[1] = BIT_5 | BIT_4;
nv->frame_payload_size = __constant_cpu_to_le16(1024);
} else if (IS_QLA2100(ha)) {
nv->firmware_options[0] = BIT_3 | BIT_1;
nv->firmware_options[1] = BIT_5;
nv->frame_payload_size = __constant_cpu_to_le16(1024);
}
nv->max_iocb_allocation = __constant_cpu_to_le16(256);
nv->execution_throttle = __constant_cpu_to_le16(16);
nv->retry_count = 8;
nv->retry_delay = 1;
nv->port_name[0] = 33;
nv->port_name[3] = 224;
nv->port_name[4] = 139;
qla2xxx_nvram_wwn_from_ofw(ha, nv);
nv->login_timeout = 4;
/*
* Set default host adapter parameters
*/
nv->host_p[1] = BIT_2;
nv->reset_delay = 5;
nv->port_down_retry_count = 8;
nv->max_luns_per_target = __constant_cpu_to_le16(8);
nv->link_down_timeout = 60;
rval = 1;
}
#if defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_SGI_SN2)
/*
* The SN2 does not provide BIOS emulation which means you can't change
* potentially bogus BIOS settings. Force the use of default settings
* for link rate and frame size. Hope that the rest of the settings
* are valid.
*/
if (ia64_platform_is("sn2")) {
nv->frame_payload_size = __constant_cpu_to_le16(2048);
if (IS_QLA23XX(ha))
nv->special_options[1] = BIT_7;
}
#endif
/* Reset Initialization control block */
memset(icb, 0, ha->init_cb_size);
/*
* Setup driver NVRAM options.
*/
nv->firmware_options[0] |= (BIT_6 | BIT_1);
nv->firmware_options[0] &= ~(BIT_5 | BIT_4);
nv->firmware_options[1] |= (BIT_5 | BIT_0);
nv->firmware_options[1] &= ~BIT_4;
if (IS_QLA23XX(ha)) {
nv->firmware_options[0] |= BIT_2;
nv->firmware_options[0] &= ~BIT_3;
nv->add_firmware_options[1] |= BIT_5 | BIT_4;
if (IS_QLA2300(ha)) {
if (ha->fb_rev == FPM_2310) {
strcpy(ha->model_number, "QLA2310");
} else {
strcpy(ha->model_number, "QLA2300");
}
} else {
qla2x00_set_model_info(ha, nv->model_number,
sizeof(nv->model_number), "QLA23xx");
}
} else if (IS_QLA2200(ha)) {
nv->firmware_options[0] |= BIT_2;
/*
* 'Point-to-point preferred, else loop' is not a safe
* connection mode setting.
*/
if ((nv->add_firmware_options[0] & (BIT_6 | BIT_5 | BIT_4)) ==
(BIT_5 | BIT_4)) {
/* Force 'loop preferred, else point-to-point'. */
nv->add_firmware_options[0] &= ~(BIT_6 | BIT_5 | BIT_4);
nv->add_firmware_options[0] |= BIT_5;
}
strcpy(ha->model_number, "QLA22xx");
} else /*if (IS_QLA2100(ha))*/ {
strcpy(ha->model_number, "QLA2100");
}
/*
* Copy over NVRAM RISC parameter block to initialization control block.
*/
dptr1 = (uint8_t *)icb;
dptr2 = (uint8_t *)&nv->parameter_block_version;
cnt = (uint8_t *)&icb->request_q_outpointer - (uint8_t *)&icb->version;
while (cnt--)
*dptr1++ = *dptr2++;
/* Copy 2nd half. */
dptr1 = (uint8_t *)icb->add_firmware_options;
cnt = (uint8_t *)icb->reserved_3 - (uint8_t *)icb->add_firmware_options;
while (cnt--)
*dptr1++ = *dptr2++;
/* Use alternate WWN? */
if (nv->host_p[1] & BIT_7) {
memcpy(icb->node_name, nv->alternate_node_name, WWN_SIZE);
memcpy(icb->port_name, nv->alternate_port_name, WWN_SIZE);
}
/* Prepare nodename */
if ((icb->firmware_options[1] & BIT_6) == 0) {
/*
* Firmware will apply the following mask if the nodename was
* not provided.
*/
memcpy(icb->node_name, icb->port_name, WWN_SIZE);
icb->node_name[0] &= 0xF0;
}
/*
* Set host adapter parameters.
*/
if (nv->host_p[0] & BIT_7)
ql2xextended_error_logging = 1;
ha->flags.disable_risc_code_load = ((nv->host_p[0] & BIT_4) ? 1 : 0);
/* Always load RISC code on non ISP2[12]00 chips. */
if (!IS_QLA2100(ha) && !IS_QLA2200(ha))
ha->flags.disable_risc_code_load = 0;
ha->flags.enable_lip_reset = ((nv->host_p[1] & BIT_1) ? 1 : 0);
ha->flags.enable_lip_full_login = ((nv->host_p[1] & BIT_2) ? 1 : 0);
ha->flags.enable_target_reset = ((nv->host_p[1] & BIT_3) ? 1 : 0);
ha->flags.enable_led_scheme = (nv->special_options[1] & BIT_4) ? 1 : 0;
ha->flags.disable_serdes = 0;
ha->operating_mode =
(icb->add_firmware_options[0] & (BIT_6 | BIT_5 | BIT_4)) >> 4;
memcpy(ha->fw_seriallink_options, nv->seriallink_options,
sizeof(ha->fw_seriallink_options));
/* save HBA serial number */
ha->serial0 = icb->port_name[5];
ha->serial1 = icb->port_name[6];
ha->serial2 = icb->port_name[7];
ha->node_name = icb->node_name;
ha->port_name = icb->port_name;
icb->execution_throttle = __constant_cpu_to_le16(0xFFFF);
ha->retry_count = nv->retry_count;
/* Set minimum login_timeout to 4 seconds. */
if (nv->login_timeout < ql2xlogintimeout)
nv->login_timeout = ql2xlogintimeout;
if (nv->login_timeout < 4)
nv->login_timeout = 4;
ha->login_timeout = nv->login_timeout;
icb->login_timeout = nv->login_timeout;
/* Set minimum RATOV to 100 tenths of a second. */
ha->r_a_tov = 100;
ha->loop_reset_delay = nv->reset_delay;
/* Link Down Timeout = 0:
*
* When Port Down timer expires we will start returning
* I/O's to OS with "DID_NO_CONNECT".
*
* Link Down Timeout != 0:
*
* The driver waits for the link to come up after link down
* before returning I/Os to OS with "DID_NO_CONNECT".
*/
if (nv->link_down_timeout == 0) {
ha->loop_down_abort_time =
(LOOP_DOWN_TIME - LOOP_DOWN_TIMEOUT);
} else {
ha->link_down_timeout = nv->link_down_timeout;
ha->loop_down_abort_time =
(LOOP_DOWN_TIME - ha->link_down_timeout);
}
/*
* Need enough time to try and get the port back.
*/
ha->port_down_retry_count = nv->port_down_retry_count;
if (qlport_down_retry)
ha->port_down_retry_count = qlport_down_retry;
/* Set login_retry_count */
ha->login_retry_count = nv->retry_count;
if (ha->port_down_retry_count == nv->port_down_retry_count &&
ha->port_down_retry_count > 3)
ha->login_retry_count = ha->port_down_retry_count;
else if (ha->port_down_retry_count > (int)ha->login_retry_count)
ha->login_retry_count = ha->port_down_retry_count;
if (ql2xloginretrycount)
ha->login_retry_count = ql2xloginretrycount;
icb->lun_enables = __constant_cpu_to_le16(0);
icb->command_resource_count = 0;
icb->immediate_notify_resource_count = 0;
icb->timeout = __constant_cpu_to_le16(0);
if (IS_QLA2100(ha) || IS_QLA2200(ha)) {
/* Enable RIO */
icb->firmware_options[0] &= ~BIT_3;
icb->add_firmware_options[0] &=
~(BIT_3 | BIT_2 | BIT_1 | BIT_0);
icb->add_firmware_options[0] |= BIT_2;
icb->response_accumulation_timer = 3;
icb->interrupt_delay_timer = 5;
ha->flags.process_response_queue = 1;
} else {
/* Enable ZIO. */
if (!ha->flags.init_done) {
ha->zio_mode = icb->add_firmware_options[0] &
(BIT_3 | BIT_2 | BIT_1 | BIT_0);
ha->zio_timer = icb->interrupt_delay_timer ?
icb->interrupt_delay_timer: 2;
}
icb->add_firmware_options[0] &=
~(BIT_3 | BIT_2 | BIT_1 | BIT_0);
ha->flags.process_response_queue = 0;
if (ha->zio_mode != QLA_ZIO_DISABLED) {
ha->zio_mode = QLA_ZIO_MODE_6;
DEBUG2(printk("scsi(%ld): ZIO mode %d enabled; timer "
"delay (%d us).\n", ha->host_no, ha->zio_mode,
ha->zio_timer * 100));
qla_printk(KERN_INFO, ha,
"ZIO mode %d enabled; timer delay (%d us).\n",
ha->zio_mode, ha->zio_timer * 100);
icb->add_firmware_options[0] |= (uint8_t)ha->zio_mode;
icb->interrupt_delay_timer = (uint8_t)ha->zio_timer;
ha->flags.process_response_queue = 1;
}
}
if (rval) {
DEBUG2_3(printk(KERN_WARNING
"scsi(%ld): NVRAM configuration failed!\n", ha->host_no));
}
return (rval);
}
static void
qla2x00_rport_del(void *data)
{
fc_port_t *fcport = data;
struct fc_rport *rport;
spin_lock_irq(fcport->ha->host->host_lock);
rport = fcport->drport;
fcport->drport = NULL;
spin_unlock_irq(fcport->ha->host->host_lock);
if (rport)
fc_remote_port_delete(rport);
}
/**
* qla2x00_alloc_fcport() - Allocate a generic fcport.
* @ha: HA context
* @flags: allocation flags
*
* Returns a pointer to the allocated fcport, or NULL, if none available.
*/
static fc_port_t *
qla2x00_alloc_fcport(scsi_qla_host_t *ha, gfp_t flags)
{
fc_port_t *fcport;
fcport = kzalloc(sizeof(fc_port_t), flags);
if (!fcport)
return NULL;
/* Setup fcport template structure. */
fcport->ha = ha;
fcport->vp_idx = ha->vp_idx;
fcport->port_type = FCT_UNKNOWN;
fcport->loop_id = FC_NO_LOOP_ID;
atomic_set(&fcport->state, FCS_UNCONFIGURED);
fcport->flags = FCF_RLC_SUPPORT;
fcport->supported_classes = FC_COS_UNSPECIFIED;
return fcport;
}
/*
* qla2x00_configure_loop
* Updates Fibre Channel Device Database with what is actually on loop.
*
* Input:
* ha = adapter block pointer.
*
* Returns:
* 0 = success.
* 1 = error.
* 2 = database was full and device was not configured.
*/
static int
qla2x00_configure_loop(scsi_qla_host_t *ha)
{
int rval;
unsigned long flags, save_flags;
rval = QLA_SUCCESS;
/* Get Initiator ID */
if (test_bit(LOCAL_LOOP_UPDATE, &ha->dpc_flags)) {
rval = qla2x00_configure_hba(ha);
if (rval != QLA_SUCCESS) {
DEBUG(printk("scsi(%ld): Unable to configure HBA.\n",
ha->host_no));
return (rval);
}
}
save_flags = flags = ha->dpc_flags;
DEBUG(printk("scsi(%ld): Configure loop -- dpc flags =0x%lx\n",
ha->host_no, flags));
/*
* If we have both an RSCN and PORT UPDATE pending then handle them
* both at the same time.
*/
clear_bit(LOCAL_LOOP_UPDATE, &ha->dpc_flags);
clear_bit(RSCN_UPDATE, &ha->dpc_flags);
/* Determine what we need to do */
if (ha->current_topology == ISP_CFG_FL &&
(test_bit(LOCAL_LOOP_UPDATE, &flags))) {
ha->flags.rscn_queue_overflow = 1;
set_bit(RSCN_UPDATE, &flags);
} else if (ha->current_topology == ISP_CFG_F &&
(test_bit(LOCAL_LOOP_UPDATE, &flags))) {
ha->flags.rscn_queue_overflow = 1;
set_bit(RSCN_UPDATE, &flags);
clear_bit(LOCAL_LOOP_UPDATE, &flags);
} else if (ha->current_topology == ISP_CFG_N) {
clear_bit(RSCN_UPDATE, &flags);
} else if (!ha->flags.online ||
(test_bit(ABORT_ISP_ACTIVE, &flags))) {
ha->flags.rscn_queue_overflow = 1;
set_bit(RSCN_UPDATE, &flags);
set_bit(LOCAL_LOOP_UPDATE, &flags);
}
if (test_bit(LOCAL_LOOP_UPDATE, &flags)) {
if (test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags)) {
rval = QLA_FUNCTION_FAILED;
} else {
rval = qla2x00_configure_local_loop(ha);
}
}
if (rval == QLA_SUCCESS && test_bit(RSCN_UPDATE, &flags)) {
if (LOOP_TRANSITION(ha)) {
rval = QLA_FUNCTION_FAILED;
} else {
rval = qla2x00_configure_fabric(ha);
}
}
if (rval == QLA_SUCCESS) {
if (atomic_read(&ha->loop_down_timer) ||
test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags)) {
rval = QLA_FUNCTION_FAILED;
} else {
atomic_set(&ha->loop_state, LOOP_READY);
DEBUG(printk("scsi(%ld): LOOP READY\n", ha->host_no));
}
}
if (rval) {
DEBUG2_3(printk("%s(%ld): *** FAILED ***\n",
__func__, ha->host_no));
} else {
DEBUG3(printk("%s: exiting normally\n", __func__));
}
/* Restore state if a resync event occured during processing */
if (test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags)) {
if (test_bit(LOCAL_LOOP_UPDATE, &save_flags))
set_bit(LOCAL_LOOP_UPDATE, &ha->dpc_flags);
if (test_bit(RSCN_UPDATE, &save_flags))
set_bit(RSCN_UPDATE, &ha->dpc_flags);
}
return (rval);
}
/*
* qla2x00_configure_local_loop
* Updates Fibre Channel Device Database with local loop devices.
*
* Input:
* ha = adapter block pointer.
*
* Returns:
* 0 = success.
*/
static int
qla2x00_configure_local_loop(scsi_qla_host_t *ha)
{
int rval, rval2;
int found_devs;
int found;
fc_port_t *fcport, *new_fcport;
uint16_t index;
uint16_t entries;
char *id_iter;
uint16_t loop_id;
uint8_t domain, area, al_pa;
scsi_qla_host_t *pha = to_qla_parent(ha);
found_devs = 0;
new_fcport = NULL;
entries = MAX_FIBRE_DEVICES;
DEBUG3(printk("scsi(%ld): Getting FCAL position map\n", ha->host_no));
DEBUG3(qla2x00_get_fcal_position_map(ha, NULL));
/* Get list of logged in devices. */
memset(ha->gid_list, 0, GID_LIST_SIZE);
rval = qla2x00_get_id_list(ha, ha->gid_list, ha->gid_list_dma,
&entries);
if (rval != QLA_SUCCESS)
goto cleanup_allocation;
DEBUG3(printk("scsi(%ld): Entries in ID list (%d)\n",
ha->host_no, entries));
DEBUG3(qla2x00_dump_buffer((uint8_t *)ha->gid_list,
entries * sizeof(struct gid_list_info)));
/* Allocate temporary fcport for any new fcports discovered. */
new_fcport = qla2x00_alloc_fcport(ha, GFP_KERNEL);
if (new_fcport == NULL) {
rval = QLA_MEMORY_ALLOC_FAILED;
goto cleanup_allocation;
}
new_fcport->flags &= ~FCF_FABRIC_DEVICE;
/*
* Mark local devices that were present with FCF_DEVICE_LOST for now.
*/
list_for_each_entry(fcport, &pha->fcports, list) {
if (fcport->vp_idx != ha->vp_idx)
continue;
if (atomic_read(&fcport->state) == FCS_ONLINE &&
fcport->port_type != FCT_BROADCAST &&
(fcport->flags & FCF_FABRIC_DEVICE) == 0) {
DEBUG(printk("scsi(%ld): Marking port lost, "
"loop_id=0x%04x\n",
ha->host_no, fcport->loop_id));
atomic_set(&fcport->state, FCS_DEVICE_LOST);
fcport->flags &= ~FCF_FARP_DONE;
}
}
/* Add devices to port list. */
id_iter = (char *)ha->gid_list;
for (index = 0; index < entries; index++) {
domain = ((struct gid_list_info *)id_iter)->domain;
area = ((struct gid_list_info *)id_iter)->area;
al_pa = ((struct gid_list_info *)id_iter)->al_pa;
if (IS_QLA2100(ha) || IS_QLA2200(ha))
loop_id = (uint16_t)
((struct gid_list_info *)id_iter)->loop_id_2100;
else
loop_id = le16_to_cpu(
((struct gid_list_info *)id_iter)->loop_id);
id_iter += ha->gid_list_info_size;
/* Bypass reserved domain fields. */
if ((domain & 0xf0) == 0xf0)
continue;
/* Bypass if not same domain and area of adapter. */
if (area && domain &&
(area != ha->d_id.b.area || domain != ha->d_id.b.domain))
continue;
/* Bypass invalid local loop ID. */
if (loop_id > LAST_LOCAL_LOOP_ID)
continue;
/* Fill in member data. */
new_fcport->d_id.b.domain = domain;
new_fcport->d_id.b.area = area;
new_fcport->d_id.b.al_pa = al_pa;
new_fcport->loop_id = loop_id;
new_fcport->vp_idx = ha->vp_idx;
rval2 = qla2x00_get_port_database(ha, new_fcport, 0);
if (rval2 != QLA_SUCCESS) {
DEBUG2(printk("scsi(%ld): Failed to retrieve fcport "
"information -- get_port_database=%x, "
"loop_id=0x%04x\n",
ha->host_no, rval2, new_fcport->loop_id));
DEBUG2(printk("scsi(%ld): Scheduling resync...\n",
ha->host_no));
set_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags);
continue;
}
/* Check for matching device in port list. */
found = 0;
fcport = NULL;
list_for_each_entry(fcport, &pha->fcports, list) {
if (fcport->vp_idx != ha->vp_idx)
continue;
if (memcmp(new_fcport->port_name, fcport->port_name,
WWN_SIZE))
continue;
fcport->flags &= ~(FCF_FABRIC_DEVICE |
FCF_PERSISTENT_BOUND);
fcport->loop_id = new_fcport->loop_id;
fcport->port_type = new_fcport->port_type;
fcport->d_id.b24 = new_fcport->d_id.b24;
memcpy(fcport->node_name, new_fcport->node_name,
WWN_SIZE);
found++;
break;
}
if (!found) {
/* New device, add to fcports list. */
new_fcport->flags &= ~FCF_PERSISTENT_BOUND;
if (ha->parent) {
new_fcport->ha = ha;
new_fcport->vp_idx = ha->vp_idx;
list_add_tail(&new_fcport->vp_fcport,
&ha->vp_fcports);
}
list_add_tail(&new_fcport->list, &pha->fcports);
/* Allocate a new replacement fcport. */
fcport = new_fcport;
new_fcport = qla2x00_alloc_fcport(ha, GFP_KERNEL);
if (new_fcport == NULL) {
rval = QLA_MEMORY_ALLOC_FAILED;
goto cleanup_allocation;
}
new_fcport->flags &= ~FCF_FABRIC_DEVICE;
}
/* Base iIDMA settings on HBA port speed. */
fcport->fp_speed = ha->link_data_rate;
qla2x00_update_fcport(ha, fcport);
found_devs++;
}
cleanup_allocation:
kfree(new_fcport);
if (rval != QLA_SUCCESS) {
DEBUG2(printk("scsi(%ld): Configure local loop error exit: "
"rval=%x\n", ha->host_no, rval));
}
if (found_devs) {
ha->device_flags |= DFLG_LOCAL_DEVICES;
ha->device_flags &= ~DFLG_RETRY_LOCAL_DEVICES;
}
return (rval);
}
static void
qla2x00_iidma_fcport(scsi_qla_host_t *ha, fc_port_t *fcport)
{
#define LS_UNKNOWN 2
static char *link_speeds[5] = { "1", "2", "?", "4", "8" };
int rval;
uint16_t mb[6];
if (!IS_IIDMA_CAPABLE(ha))
return;
if (fcport->fp_speed == PORT_SPEED_UNKNOWN ||
fcport->fp_speed > ha->link_data_rate)
return;
rval = qla2x00_set_idma_speed(ha, fcport->loop_id, fcport->fp_speed,
mb);
if (rval != QLA_SUCCESS) {
DEBUG2(printk("scsi(%ld): Unable to adjust iIDMA "
"%02x%02x%02x%02x%02x%02x%02x%02x -- %04x %x %04x %04x.\n",
ha->host_no, fcport->port_name[0], fcport->port_name[1],
fcport->port_name[2], fcport->port_name[3],
fcport->port_name[4], fcport->port_name[5],
fcport->port_name[6], fcport->port_name[7], rval,
fcport->fp_speed, mb[0], mb[1]));
} else {
DEBUG2(qla_printk(KERN_INFO, ha,
"iIDMA adjusted to %s GB/s on "
"%02x%02x%02x%02x%02x%02x%02x%02x.\n",
link_speeds[fcport->fp_speed], fcport->port_name[0],
fcport->port_name[1], fcport->port_name[2],
fcport->port_name[3], fcport->port_name[4],
fcport->port_name[5], fcport->port_name[6],
fcport->port_name[7]));
}
}
static void
qla2x00_reg_remote_port(scsi_qla_host_t *ha, fc_port_t *fcport)
{
struct fc_rport_identifiers rport_ids;
struct fc_rport *rport;
if (fcport->drport)
qla2x00_rport_del(fcport);
rport_ids.node_name = wwn_to_u64(fcport->node_name);
rport_ids.port_name = wwn_to_u64(fcport->port_name);
rport_ids.port_id = fcport->d_id.b.domain << 16 |
fcport->d_id.b.area << 8 | fcport->d_id.b.al_pa;
rport_ids.roles = FC_RPORT_ROLE_UNKNOWN;
fcport->rport = rport = fc_remote_port_add(ha->host, 0, &rport_ids);
if (!rport) {
qla_printk(KERN_WARNING, ha,
"Unable to allocate fc remote port!\n");
return;
}
spin_lock_irq(fcport->ha->host->host_lock);
*((fc_port_t **)rport->dd_data) = fcport;
spin_unlock_irq(fcport->ha->host->host_lock);
rport->supported_classes = fcport->supported_classes;
rport_ids.roles = FC_RPORT_ROLE_UNKNOWN;
if (fcport->port_type == FCT_INITIATOR)
rport_ids.roles |= FC_RPORT_ROLE_FCP_INITIATOR;
if (fcport->port_type == FCT_TARGET)
rport_ids.roles |= FC_RPORT_ROLE_FCP_TARGET;
fc_remote_port_rolechg(rport, rport_ids.roles);
}
/*
* qla2x00_update_fcport
* Updates device on list.
*
* Input:
* ha = adapter block pointer.
* fcport = port structure pointer.
*
* Return:
* 0 - Success
* BIT_0 - error
*
* Context:
* Kernel context.
*/
void
qla2x00_update_fcport(scsi_qla_host_t *ha, fc_port_t *fcport)
{
scsi_qla_host_t *pha = to_qla_parent(ha);
fcport->ha = ha;
fcport->login_retry = 0;
fcport->port_login_retry_count = pha->port_down_retry_count *
PORT_RETRY_TIME;
atomic_set(&fcport->port_down_timer, pha->port_down_retry_count *
PORT_RETRY_TIME);
fcport->flags &= ~FCF_LOGIN_NEEDED;
qla2x00_iidma_fcport(ha, fcport);
atomic_set(&fcport->state, FCS_ONLINE);
qla2x00_reg_remote_port(ha, fcport);
}
/*
* qla2x00_configure_fabric
* Setup SNS devices with loop ID's.
*
* Input:
* ha = adapter block pointer.
*
* Returns:
* 0 = success.
* BIT_0 = error
*/
static int
qla2x00_configure_fabric(scsi_qla_host_t *ha)
{
int rval, rval2;
fc_port_t *fcport, *fcptemp;
uint16_t next_loopid;
uint16_t mb[MAILBOX_REGISTER_COUNT];
uint16_t loop_id;
LIST_HEAD(new_fcports);
scsi_qla_host_t *pha = to_qla_parent(ha);
/* If FL port exists, then SNS is present */
if (IS_FWI2_CAPABLE(ha))
loop_id = NPH_F_PORT;
else
loop_id = SNS_FL_PORT;
rval = qla2x00_get_port_name(ha, loop_id, ha->fabric_node_name, 1);
if (rval != QLA_SUCCESS) {
DEBUG2(printk("scsi(%ld): MBC_GET_PORT_NAME Failed, No FL "
"Port\n", ha->host_no));
ha->device_flags &= ~SWITCH_FOUND;
return (QLA_SUCCESS);
}
ha->device_flags |= SWITCH_FOUND;
/* Mark devices that need re-synchronization. */
rval2 = qla2x00_device_resync(ha);
if (rval2 == QLA_RSCNS_HANDLED) {
/* No point doing the scan, just continue. */
return (QLA_SUCCESS);
}
do {
/* FDMI support. */
if (ql2xfdmienable &&
test_and_clear_bit(REGISTER_FDMI_NEEDED, &ha->dpc_flags))
qla2x00_fdmi_register(ha);
/* Ensure we are logged into the SNS. */
if (IS_FWI2_CAPABLE(ha))
loop_id = NPH_SNS;
else
loop_id = SIMPLE_NAME_SERVER;
ha->isp_ops->fabric_login(ha, loop_id, 0xff, 0xff,
0xfc, mb, BIT_1 | BIT_0);
if (mb[0] != MBS_COMMAND_COMPLETE) {
DEBUG2(qla_printk(KERN_INFO, ha,
"Failed SNS login: loop_id=%x mb[0]=%x mb[1]=%x "
"mb[2]=%x mb[6]=%x mb[7]=%x\n", loop_id,
mb[0], mb[1], mb[2], mb[6], mb[7]));
return (QLA_SUCCESS);
}
if (test_and_clear_bit(REGISTER_FC4_NEEDED, &ha->dpc_flags)) {
if (qla2x00_rft_id(ha)) {
/* EMPTY */
DEBUG2(printk("scsi(%ld): Register FC-4 "
"TYPE failed.\n", ha->host_no));
}
if (qla2x00_rff_id(ha)) {
/* EMPTY */
DEBUG2(printk("scsi(%ld): Register FC-4 "
"Features failed.\n", ha->host_no));
}
if (qla2x00_rnn_id(ha)) {
/* EMPTY */
DEBUG2(printk("scsi(%ld): Register Node Name "
"failed.\n", ha->host_no));
} else if (qla2x00_rsnn_nn(ha)) {
/* EMPTY */
DEBUG2(printk("scsi(%ld): Register Symbolic "
"Node Name failed.\n", ha->host_no));
}
}
rval = qla2x00_find_all_fabric_devs(ha, &new_fcports);
if (rval != QLA_SUCCESS)
break;
/*
* Logout all previous fabric devices marked lost, except
* tape devices.
*/
list_for_each_entry(fcport, &pha->fcports, list) {
if (fcport->vp_idx !=ha->vp_idx)
continue;
if (test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags))
break;
if ((fcport->flags & FCF_FABRIC_DEVICE) == 0)
continue;
if (atomic_read(&fcport->state) == FCS_DEVICE_LOST) {
qla2x00_mark_device_lost(ha, fcport,
ql2xplogiabsentdevice, 0);
if (fcport->loop_id != FC_NO_LOOP_ID &&
(fcport->flags & FCF_TAPE_PRESENT) == 0 &&
fcport->port_type != FCT_INITIATOR &&
fcport->port_type != FCT_BROADCAST) {
ha->isp_ops->fabric_logout(ha,
fcport->loop_id,
fcport->d_id.b.domain,
fcport->d_id.b.area,
fcport->d_id.b.al_pa);
fcport->loop_id = FC_NO_LOOP_ID;
}
}
}
/* Starting free loop ID. */
next_loopid = pha->min_external_loopid;
/*
* Scan through our port list and login entries that need to be
* logged in.
*/
list_for_each_entry(fcport, &pha->fcports, list) {
if (fcport->vp_idx != ha->vp_idx)
continue;
if (atomic_read(&ha->loop_down_timer) ||
test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags))
break;
if ((fcport->flags & FCF_FABRIC_DEVICE) == 0 ||
(fcport->flags & FCF_LOGIN_NEEDED) == 0)
continue;
if (fcport->loop_id == FC_NO_LOOP_ID) {
fcport->loop_id = next_loopid;
rval = qla2x00_find_new_loop_id(
to_qla_parent(ha), fcport);
if (rval != QLA_SUCCESS) {
/* Ran out of IDs to use */
break;
}
}
/* Login and update database */
qla2x00_fabric_dev_login(ha, fcport, &next_loopid);
}
/* Exit if out of loop IDs. */
if (rval != QLA_SUCCESS) {
break;
}
/*
* Login and add the new devices to our port list.
*/
list_for_each_entry_safe(fcport, fcptemp, &new_fcports, list) {
if (atomic_read(&ha->loop_down_timer) ||
test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags))
break;
/* Find a new loop ID to use. */
fcport->loop_id = next_loopid;
rval = qla2x00_find_new_loop_id(to_qla_parent(ha),
fcport);
if (rval != QLA_SUCCESS) {
/* Ran out of IDs to use */
break;
}
/* Login and update database */
qla2x00_fabric_dev_login(ha, fcport, &next_loopid);
if (ha->parent) {
fcport->ha = ha;
fcport->vp_idx = ha->vp_idx;
list_add_tail(&fcport->vp_fcport,
&ha->vp_fcports);
list_move_tail(&fcport->list,
&ha->parent->fcports);
} else
list_move_tail(&fcport->list, &ha->fcports);
}
} while (0);
/* Free all new device structures not processed. */
list_for_each_entry_safe(fcport, fcptemp, &new_fcports, list) {
list_del(&fcport->list);
kfree(fcport);
}
if (rval) {
DEBUG2(printk("scsi(%ld): Configure fabric error exit: "
"rval=%d\n", ha->host_no, rval));
}
return (rval);
}
/*
* qla2x00_find_all_fabric_devs
*
* Input:
* ha = adapter block pointer.
* dev = database device entry pointer.
*
* Returns:
* 0 = success.
*
* Context:
* Kernel context.
*/
static int
qla2x00_find_all_fabric_devs(scsi_qla_host_t *ha, struct list_head *new_fcports)
{
int rval;
uint16_t loop_id;
fc_port_t *fcport, *new_fcport, *fcptemp;
int found;
sw_info_t *swl;
int swl_idx;
int first_dev, last_dev;
port_id_t wrap, nxt_d_id;
int vp_index;
int empty_vp_index;
int found_vp;
scsi_qla_host_t *vha;
scsi_qla_host_t *pha = to_qla_parent(ha);
rval = QLA_SUCCESS;
/* Try GID_PT to get device list, else GAN. */
swl = kcalloc(MAX_FIBRE_DEVICES, sizeof(sw_info_t), GFP_ATOMIC);
if (!swl) {
/*EMPTY*/
DEBUG2(printk("scsi(%ld): GID_PT allocations failed, fallback "
"on GA_NXT\n", ha->host_no));
} else {
if (qla2x00_gid_pt(ha, swl) != QLA_SUCCESS) {
kfree(swl);
swl = NULL;
} else if (qla2x00_gpn_id(ha, swl) != QLA_SUCCESS) {
kfree(swl);
swl = NULL;
} else if (qla2x00_gnn_id(ha, swl) != QLA_SUCCESS) {
kfree(swl);
swl = NULL;
} else if (qla2x00_gfpn_id(ha, swl) == QLA_SUCCESS) {
qla2x00_gpsc(ha, swl);
}
}
swl_idx = 0;
/* Allocate temporary fcport for any new fcports discovered. */
new_fcport = qla2x00_alloc_fcport(ha, GFP_KERNEL);
if (new_fcport == NULL) {
kfree(swl);
return (QLA_MEMORY_ALLOC_FAILED);
}
new_fcport->flags |= (FCF_FABRIC_DEVICE | FCF_LOGIN_NEEDED);
new_fcport->vp_idx = ha->vp_idx;
/* Set start port ID scan at adapter ID. */
first_dev = 1;
last_dev = 0;
/* Starting free loop ID. */
loop_id = pha->min_external_loopid;
for (; loop_id <= ha->last_loop_id; loop_id++) {
if (qla2x00_is_reserved_id(ha, loop_id))
continue;
if (atomic_read(&ha->loop_down_timer) || LOOP_TRANSITION(ha))
break;
if (swl != NULL) {
if (last_dev) {
wrap.b24 = new_fcport->d_id.b24;
} else {
new_fcport->d_id.b24 = swl[swl_idx].d_id.b24;
memcpy(new_fcport->node_name,
swl[swl_idx].node_name, WWN_SIZE);
memcpy(new_fcport->port_name,
swl[swl_idx].port_name, WWN_SIZE);
memcpy(new_fcport->fabric_port_name,
swl[swl_idx].fabric_port_name, WWN_SIZE);
new_fcport->fp_speed = swl[swl_idx].fp_speed;
if (swl[swl_idx].d_id.b.rsvd_1 != 0) {
last_dev = 1;
}
swl_idx++;
}
} else {
/* Send GA_NXT to the switch */
rval = qla2x00_ga_nxt(ha, new_fcport);
if (rval != QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"SNS scan failed -- assuming zero-entry "
"result...\n");
list_for_each_entry_safe(fcport, fcptemp,
new_fcports, list) {
list_del(&fcport->list);
kfree(fcport);
}
rval = QLA_SUCCESS;
break;
}
}
/* If wrap on switch device list, exit. */
if (first_dev) {
wrap.b24 = new_fcport->d_id.b24;
first_dev = 0;
} else if (new_fcport->d_id.b24 == wrap.b24) {
DEBUG2(printk("scsi(%ld): device wrap (%02x%02x%02x)\n",
ha->host_no, new_fcport->d_id.b.domain,
new_fcport->d_id.b.area, new_fcport->d_id.b.al_pa));
break;
}
/* Bypass if same physical adapter. */
if (new_fcport->d_id.b24 == pha->d_id.b24)
continue;
/* Bypass virtual ports of the same host. */
if (pha->num_vhosts) {
for_each_mapped_vp_idx(pha, vp_index) {
empty_vp_index = 1;
found_vp = 0;
list_for_each_entry(vha, &pha->vp_list,
vp_list) {
if (vp_index == vha->vp_idx) {
empty_vp_index = 0;
found_vp = 1;
break;
}
}
if (empty_vp_index)
continue;
if (found_vp &&
new_fcport->d_id.b24 == vha->d_id.b24)
break;
}
if (vp_index <= pha->max_npiv_vports)
continue;
}
/* Bypass if same domain and area of adapter. */
if (((new_fcport->d_id.b24 & 0xffff00) ==
(ha->d_id.b24 & 0xffff00)) && ha->current_topology ==
ISP_CFG_FL)
continue;
/* Bypass reserved domain fields. */
if ((new_fcport->d_id.b.domain & 0xf0) == 0xf0)
continue;
/* Locate matching device in database. */
found = 0;
list_for_each_entry(fcport, &pha->fcports, list) {
if (new_fcport->vp_idx != fcport->vp_idx)
continue;
if (memcmp(new_fcport->port_name, fcport->port_name,
WWN_SIZE))
continue;
found++;
/* Update port state. */
memcpy(fcport->fabric_port_name,
new_fcport->fabric_port_name, WWN_SIZE);
fcport->fp_speed = new_fcport->fp_speed;
/*
* If address the same and state FCS_ONLINE, nothing
* changed.
*/
if (fcport->d_id.b24 == new_fcport->d_id.b24 &&
atomic_read(&fcport->state) == FCS_ONLINE) {
break;
}
/*
* If device was not a fabric device before.
*/
if ((fcport->flags & FCF_FABRIC_DEVICE) == 0) {
fcport->d_id.b24 = new_fcport->d_id.b24;
fcport->loop_id = FC_NO_LOOP_ID;
fcport->flags |= (FCF_FABRIC_DEVICE |
FCF_LOGIN_NEEDED);
fcport->flags &= ~FCF_PERSISTENT_BOUND;
break;
}
/*
* Port ID changed or device was marked to be updated;
* Log it out if still logged in and mark it for
* relogin later.
*/
fcport->d_id.b24 = new_fcport->d_id.b24;
fcport->flags |= FCF_LOGIN_NEEDED;
if (fcport->loop_id != FC_NO_LOOP_ID &&
(fcport->flags & FCF_TAPE_PRESENT) == 0 &&
fcport->port_type != FCT_INITIATOR &&
fcport->port_type != FCT_BROADCAST) {
ha->isp_ops->fabric_logout(ha, fcport->loop_id,
fcport->d_id.b.domain, fcport->d_id.b.area,
fcport->d_id.b.al_pa);
fcport->loop_id = FC_NO_LOOP_ID;
}
break;
}
if (found)
continue;
/* If device was not in our fcports list, then add it. */
list_add_tail(&new_fcport->list, new_fcports);
/* Allocate a new replacement fcport. */
nxt_d_id.b24 = new_fcport->d_id.b24;
new_fcport = qla2x00_alloc_fcport(ha, GFP_KERNEL);
if (new_fcport == NULL) {
kfree(swl);
return (QLA_MEMORY_ALLOC_FAILED);
}
new_fcport->flags |= (FCF_FABRIC_DEVICE | FCF_LOGIN_NEEDED);
new_fcport->d_id.b24 = nxt_d_id.b24;
new_fcport->vp_idx = ha->vp_idx;
}
kfree(swl);
kfree(new_fcport);
if (!list_empty(new_fcports))
ha->device_flags |= DFLG_FABRIC_DEVICES;
return (rval);
}
/*
* qla2x00_find_new_loop_id
* Scan through our port list and find a new usable loop ID.
*
* Input:
* ha: adapter state pointer.
* dev: port structure pointer.
*
* Returns:
* qla2x00 local function return status code.
*
* Context:
* Kernel context.
*/
static int
qla2x00_find_new_loop_id(scsi_qla_host_t *ha, fc_port_t *dev)
{
int rval;
int found;
fc_port_t *fcport;
uint16_t first_loop_id;
scsi_qla_host_t *pha = to_qla_parent(ha);
rval = QLA_SUCCESS;
/* Save starting loop ID. */
first_loop_id = dev->loop_id;
for (;;) {
/* Skip loop ID if already used by adapter. */
if (dev->loop_id == ha->loop_id) {
dev->loop_id++;
}
/* Skip reserved loop IDs. */
while (qla2x00_is_reserved_id(ha, dev->loop_id)) {
dev->loop_id++;
}
/* Reset loop ID if passed the end. */
if (dev->loop_id > ha->last_loop_id) {
/* first loop ID. */
dev->loop_id = ha->min_external_loopid;
}
/* Check for loop ID being already in use. */
found = 0;
fcport = NULL;
list_for_each_entry(fcport, &pha->fcports, list) {
if (fcport->loop_id == dev->loop_id && fcport != dev) {
/* ID possibly in use */
found++;
break;
}
}
/* If not in use then it is free to use. */
if (!found) {
break;
}
/* ID in use. Try next value. */
dev->loop_id++;
/* If wrap around. No free ID to use. */
if (dev->loop_id == first_loop_id) {
dev->loop_id = FC_NO_LOOP_ID;
rval = QLA_FUNCTION_FAILED;
break;
}
}
return (rval);
}
/*
* qla2x00_device_resync
* Marks devices in the database that needs resynchronization.
*
* Input:
* ha = adapter block pointer.
*
* Context:
* Kernel context.
*/
static int
qla2x00_device_resync(scsi_qla_host_t *ha)
{
int rval;
uint32_t mask;
fc_port_t *fcport;
uint32_t rscn_entry;
uint8_t rscn_out_iter;
uint8_t format;
port_id_t d_id;
scsi_qla_host_t *pha = to_qla_parent(ha);
rval = QLA_RSCNS_HANDLED;
while (ha->rscn_out_ptr != ha->rscn_in_ptr ||
ha->flags.rscn_queue_overflow) {
rscn_entry = ha->rscn_queue[ha->rscn_out_ptr];
format = MSB(MSW(rscn_entry));
d_id.b.domain = LSB(MSW(rscn_entry));
d_id.b.area = MSB(LSW(rscn_entry));
d_id.b.al_pa = LSB(LSW(rscn_entry));
DEBUG(printk("scsi(%ld): RSCN queue entry[%d] = "
"[%02x/%02x%02x%02x].\n",
ha->host_no, ha->rscn_out_ptr, format, d_id.b.domain,
d_id.b.area, d_id.b.al_pa));
ha->rscn_out_ptr++;
if (ha->rscn_out_ptr == MAX_RSCN_COUNT)
ha->rscn_out_ptr = 0;
/* Skip duplicate entries. */
for (rscn_out_iter = ha->rscn_out_ptr;
!ha->flags.rscn_queue_overflow &&
rscn_out_iter != ha->rscn_in_ptr;
rscn_out_iter = (rscn_out_iter ==
(MAX_RSCN_COUNT - 1)) ? 0: rscn_out_iter + 1) {
if (rscn_entry != ha->rscn_queue[rscn_out_iter])
break;
DEBUG(printk("scsi(%ld): Skipping duplicate RSCN queue "
"entry found at [%d].\n", ha->host_no,
rscn_out_iter));
ha->rscn_out_ptr = rscn_out_iter;
}
/* Queue overflow, set switch default case. */
if (ha->flags.rscn_queue_overflow) {
DEBUG(printk("scsi(%ld): device_resync: rscn "
"overflow.\n", ha->host_no));
format = 3;
ha->flags.rscn_queue_overflow = 0;
}
switch (format) {
case 0:
mask = 0xffffff;
break;
case 1:
mask = 0xffff00;
break;
case 2:
mask = 0xff0000;
break;
default:
mask = 0x0;
d_id.b24 = 0;
ha->rscn_out_ptr = ha->rscn_in_ptr;
break;
}
rval = QLA_SUCCESS;
list_for_each_entry(fcport, &pha->fcports, list) {
if (fcport->vp_idx != ha->vp_idx)
continue;
if ((fcport->flags & FCF_FABRIC_DEVICE) == 0 ||
(fcport->d_id.b24 & mask) != d_id.b24 ||
fcport->port_type == FCT_BROADCAST)
continue;
if (atomic_read(&fcport->state) == FCS_ONLINE) {
if (format != 3 ||
fcport->port_type != FCT_INITIATOR) {
qla2x00_mark_device_lost(ha, fcport,
0, 0);
}
}
fcport->flags &= ~FCF_FARP_DONE;
}
}
return (rval);
}
/*
* qla2x00_fabric_dev_login
* Login fabric target device and update FC port database.
*
* Input:
* ha: adapter state pointer.
* fcport: port structure list pointer.
* next_loopid: contains value of a new loop ID that can be used
* by the next login attempt.
*
* Returns:
* qla2x00 local function return status code.
*
* Context:
* Kernel context.
*/
static int
qla2x00_fabric_dev_login(scsi_qla_host_t *ha, fc_port_t *fcport,
uint16_t *next_loopid)
{
int rval;
int retry;
uint8_t opts;
rval = QLA_SUCCESS;
retry = 0;
rval = qla2x00_fabric_login(ha, fcport, next_loopid);
if (rval == QLA_SUCCESS) {
/* Send an ADISC to tape devices.*/
opts = 0;
if (fcport->flags & FCF_TAPE_PRESENT)
opts |= BIT_1;
rval = qla2x00_get_port_database(ha, fcport, opts);
if (rval != QLA_SUCCESS) {
ha->isp_ops->fabric_logout(ha, fcport->loop_id,
fcport->d_id.b.domain, fcport->d_id.b.area,
fcport->d_id.b.al_pa);
qla2x00_mark_device_lost(ha, fcport, 1, 0);
} else {
qla2x00_update_fcport(ha, fcport);
}
}
return (rval);
}
/*
* qla2x00_fabric_login
* Issue fabric login command.
*
* Input:
* ha = adapter block pointer.
* device = pointer to FC device type structure.
*
* Returns:
* 0 - Login successfully
* 1 - Login failed
* 2 - Initiator device
* 3 - Fatal error
*/
int
qla2x00_fabric_login(scsi_qla_host_t *ha, fc_port_t *fcport,
uint16_t *next_loopid)
{
int rval;
int retry;
uint16_t tmp_loopid;
uint16_t mb[MAILBOX_REGISTER_COUNT];
retry = 0;
tmp_loopid = 0;
for (;;) {
DEBUG(printk("scsi(%ld): Trying Fabric Login w/loop id 0x%04x "
"for port %02x%02x%02x.\n",
ha->host_no, fcport->loop_id, fcport->d_id.b.domain,
fcport->d_id.b.area, fcport->d_id.b.al_pa));
/* Login fcport on switch. */
ha->isp_ops->fabric_login(ha, fcport->loop_id,
fcport->d_id.b.domain, fcport->d_id.b.area,
fcport->d_id.b.al_pa, mb, BIT_0);
if (mb[0] == MBS_PORT_ID_USED) {
/*
* Device has another loop ID. The firmware team
* recommends the driver perform an implicit login with
* the specified ID again. The ID we just used is save
* here so we return with an ID that can be tried by
* the next login.
*/
retry++;
tmp_loopid = fcport->loop_id;
fcport->loop_id = mb[1];
DEBUG(printk("Fabric Login: port in use - next "
"loop id=0x%04x, port Id=%02x%02x%02x.\n",
fcport->loop_id, fcport->d_id.b.domain,
fcport->d_id.b.area, fcport->d_id.b.al_pa));
} else if (mb[0] == MBS_COMMAND_COMPLETE) {
/*
* Login succeeded.
*/
if (retry) {
/* A retry occurred before. */
*next_loopid = tmp_loopid;
} else {
/*
* No retry occurred before. Just increment the
* ID value for next login.
*/
*next_loopid = (fcport->loop_id + 1);
}
if (mb[1] & BIT_0) {
fcport->port_type = FCT_INITIATOR;
} else {
fcport->port_type = FCT_TARGET;
if (mb[1] & BIT_1) {
fcport->flags |= FCF_TAPE_PRESENT;
}
}
if (mb[10] & BIT_0)
fcport->supported_classes |= FC_COS_CLASS2;
if (mb[10] & BIT_1)
fcport->supported_classes |= FC_COS_CLASS3;
rval = QLA_SUCCESS;
break;
} else if (mb[0] == MBS_LOOP_ID_USED) {
/*
* Loop ID already used, try next loop ID.
*/
fcport->loop_id++;
rval = qla2x00_find_new_loop_id(ha, fcport);
if (rval != QLA_SUCCESS) {
/* Ran out of loop IDs to use */
break;
}
} else if (mb[0] == MBS_COMMAND_ERROR) {
/*
* Firmware possibly timed out during login. If NO
* retries are left to do then the device is declared
* dead.
*/
*next_loopid = fcport->loop_id;
ha->isp_ops->fabric_logout(ha, fcport->loop_id,
fcport->d_id.b.domain, fcport->d_id.b.area,
fcport->d_id.b.al_pa);
qla2x00_mark_device_lost(ha, fcport, 1, 0);
rval = 1;
break;
} else {
/*
* unrecoverable / not handled error
*/
DEBUG2(printk("%s(%ld): failed=%x port_id=%02x%02x%02x "
"loop_id=%x jiffies=%lx.\n",
__func__, ha->host_no, mb[0],
fcport->d_id.b.domain, fcport->d_id.b.area,
fcport->d_id.b.al_pa, fcport->loop_id, jiffies));
*next_loopid = fcport->loop_id;
ha->isp_ops->fabric_logout(ha, fcport->loop_id,
fcport->d_id.b.domain, fcport->d_id.b.area,
fcport->d_id.b.al_pa);
fcport->loop_id = FC_NO_LOOP_ID;
fcport->login_retry = 0;
rval = 3;
break;
}
}
return (rval);
}
/*
* qla2x00_local_device_login
* Issue local device login command.
*
* Input:
* ha = adapter block pointer.
* loop_id = loop id of device to login to.
*
* Returns (Where's the #define!!!!):
* 0 - Login successfully
* 1 - Login failed
* 3 - Fatal error
*/
int
qla2x00_local_device_login(scsi_qla_host_t *ha, fc_port_t *fcport)
{
int rval;
uint16_t mb[MAILBOX_REGISTER_COUNT];
memset(mb, 0, sizeof(mb));
rval = qla2x00_login_local_device(ha, fcport, mb, BIT_0);
if (rval == QLA_SUCCESS) {
/* Interrogate mailbox registers for any errors */
if (mb[0] == MBS_COMMAND_ERROR)
rval = 1;
else if (mb[0] == MBS_COMMAND_PARAMETER_ERROR)
/* device not in PCB table */
rval = 3;
}
return (rval);
}
/*
* qla2x00_loop_resync
* Resync with fibre channel devices.
*
* Input:
* ha = adapter block pointer.
*
* Returns:
* 0 = success
*/
int
qla2x00_loop_resync(scsi_qla_host_t *ha)
{
int rval;
uint32_t wait_time;
rval = QLA_SUCCESS;
atomic_set(&ha->loop_state, LOOP_UPDATE);
clear_bit(ISP_ABORT_RETRY, &ha->dpc_flags);
if (ha->flags.online) {
if (!(rval = qla2x00_fw_ready(ha))) {
/* Wait at most MAX_TARGET RSCNs for a stable link. */
wait_time = 256;
do {
atomic_set(&ha->loop_state, LOOP_UPDATE);
/* Issue a marker after FW becomes ready. */
qla2x00_marker(ha, 0, 0, MK_SYNC_ALL);
ha->marker_needed = 0;
/* Remap devices on Loop. */
clear_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags);
qla2x00_configure_loop(ha);
wait_time--;
} while (!atomic_read(&ha->loop_down_timer) &&
!(test_bit(ISP_ABORT_NEEDED, &ha->dpc_flags)) &&
wait_time &&
(test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags)));
}
}
if (test_bit(ISP_ABORT_NEEDED, &ha->dpc_flags)) {
return (QLA_FUNCTION_FAILED);
}
if (rval) {
DEBUG2_3(printk("%s(): **** FAILED ****\n", __func__));
}
return (rval);
}
void
qla2x00_update_fcports(scsi_qla_host_t *ha)
{
fc_port_t *fcport;
/* Go with deferred removal of rport references. */
list_for_each_entry(fcport, &ha->fcports, list)
if (fcport->drport)
qla2x00_rport_del(fcport);
}
/*
* qla2x00_abort_isp
* Resets ISP and aborts all outstanding commands.
*
* Input:
* ha = adapter block pointer.
*
* Returns:
* 0 = success
*/
int
qla2x00_abort_isp(scsi_qla_host_t *ha)
{
int rval;
uint8_t status = 0;
if (ha->flags.online) {
ha->flags.online = 0;
clear_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
qla_printk(KERN_INFO, ha,
"Performing ISP error recovery - ha= %p.\n", ha);
ha->isp_ops->reset_chip(ha);
atomic_set(&ha->loop_down_timer, LOOP_DOWN_TIME);
if (atomic_read(&ha->loop_state) != LOOP_DOWN) {
atomic_set(&ha->loop_state, LOOP_DOWN);
qla2x00_mark_all_devices_lost(ha, 0);
} else {
if (!atomic_read(&ha->loop_down_timer))
atomic_set(&ha->loop_down_timer,
LOOP_DOWN_TIME);
}
/* Requeue all commands in outstanding command list. */
qla2x00_abort_all_cmds(ha, DID_RESET << 16);
ha->isp_ops->get_flash_version(ha, ha->request_ring);
ha->isp_ops->nvram_config(ha);
if (!qla2x00_restart_isp(ha)) {
clear_bit(RESET_MARKER_NEEDED, &ha->dpc_flags);
if (!atomic_read(&ha->loop_down_timer)) {
/*
* Issue marker command only when we are going
* to start the I/O .
*/
ha->marker_needed = 1;
}
ha->flags.online = 1;
ha->isp_ops->enable_intrs(ha);
ha->isp_abort_cnt = 0;
clear_bit(ISP_ABORT_RETRY, &ha->dpc_flags);
if (ha->eft) {
memset(ha->eft, 0, EFT_SIZE);
rval = qla2x00_enable_eft_trace(ha,
ha->eft_dma, EFT_NUM_BUFFERS);
if (rval) {
qla_printk(KERN_WARNING, ha,
"Unable to reinitialize EFT "
"(%d).\n", rval);
}
}
if (ha->fce) {
ha->flags.fce_enabled = 1;
memset(ha->fce, 0,
fce_calc_size(ha->fce_bufs));
rval = qla2x00_enable_fce_trace(ha,
ha->fce_dma, ha->fce_bufs, ha->fce_mb,
&ha->fce_bufs);
if (rval) {
qla_printk(KERN_WARNING, ha,
"Unable to reinitialize FCE "
"(%d).\n", rval);
ha->flags.fce_enabled = 0;
}
}
} else { /* failed the ISP abort */
ha->flags.online = 1;
if (test_bit(ISP_ABORT_RETRY, &ha->dpc_flags)) {
if (ha->isp_abort_cnt == 0) {
qla_printk(KERN_WARNING, ha,
"ISP error recovery failed - "
"board disabled\n");
/*
* The next call disables the board
* completely.
*/
ha->isp_ops->reset_adapter(ha);
ha->flags.online = 0;
clear_bit(ISP_ABORT_RETRY,
&ha->dpc_flags);
status = 0;
} else { /* schedule another ISP abort */
ha->isp_abort_cnt--;
DEBUG(printk("qla%ld: ISP abort - "
"retry remaining %d\n",
ha->host_no, ha->isp_abort_cnt));
status = 1;
}
} else {
ha->isp_abort_cnt = MAX_RETRIES_OF_ISP_ABORT;
DEBUG(printk("qla2x00(%ld): ISP error recovery "
"- retrying (%d) more times\n",
ha->host_no, ha->isp_abort_cnt));
set_bit(ISP_ABORT_RETRY, &ha->dpc_flags);
status = 1;
}
}
}
if (status) {
qla_printk(KERN_INFO, ha,
"qla2x00_abort_isp: **** FAILED ****\n");
} else {
DEBUG(printk(KERN_INFO
"qla2x00_abort_isp(%ld): exiting.\n",
ha->host_no));
}
return(status);
}
/*
* qla2x00_restart_isp
* restarts the ISP after a reset
*
* Input:
* ha = adapter block pointer.
*
* Returns:
* 0 = success
*/
static int
qla2x00_restart_isp(scsi_qla_host_t *ha)
{
uint8_t status = 0;
uint32_t wait_time;
/* If firmware needs to be loaded */
if (qla2x00_isp_firmware(ha)) {
ha->flags.online = 0;
if (!(status = ha->isp_ops->chip_diag(ha)))
status = qla2x00_setup_chip(ha);
}
if (!status && !(status = qla2x00_init_rings(ha))) {
clear_bit(RESET_MARKER_NEEDED, &ha->dpc_flags);
if (!(status = qla2x00_fw_ready(ha))) {
DEBUG(printk("%s(): Start configure loop, "
"status = %d\n", __func__, status));
/* Issue a marker after FW becomes ready. */
qla2x00_marker(ha, 0, 0, MK_SYNC_ALL);
ha->flags.online = 1;
/* Wait at most MAX_TARGET RSCNs for a stable link. */
wait_time = 256;
do {
clear_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags);
qla2x00_configure_loop(ha);
wait_time--;
} while (!atomic_read(&ha->loop_down_timer) &&
!(test_bit(ISP_ABORT_NEEDED, &ha->dpc_flags)) &&
wait_time &&
(test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags)));
}
/* if no cable then assume it's good */
if ((ha->device_flags & DFLG_NO_CABLE))
status = 0;
DEBUG(printk("%s(): Configure loop done, status = 0x%x\n",
__func__,
status));
}
return (status);
}
/*
* qla2x00_reset_adapter
* Reset adapter.
*
* Input:
* ha = adapter block pointer.
*/
void
qla2x00_reset_adapter(scsi_qla_host_t *ha)
{
unsigned long flags = 0;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
ha->flags.online = 0;
ha->isp_ops->disable_intrs(ha);
spin_lock_irqsave(&ha->hardware_lock, flags);
WRT_REG_WORD(&reg->hccr, HCCR_RESET_RISC);
RD_REG_WORD(&reg->hccr); /* PCI Posting. */
WRT_REG_WORD(&reg->hccr, HCCR_RELEASE_RISC);
RD_REG_WORD(&reg->hccr); /* PCI Posting. */
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
void
qla24xx_reset_adapter(scsi_qla_host_t *ha)
{
unsigned long flags = 0;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
ha->flags.online = 0;
ha->isp_ops->disable_intrs(ha);
spin_lock_irqsave(&ha->hardware_lock, flags);
WRT_REG_DWORD(&reg->hccr, HCCRX_SET_RISC_RESET);
RD_REG_DWORD(&reg->hccr);
WRT_REG_DWORD(&reg->hccr, HCCRX_REL_RISC_PAUSE);
RD_REG_DWORD(&reg->hccr);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
/* On sparc systems, obtain port and node WWN from firmware
* properties.
*/
static void qla24xx_nvram_wwn_from_ofw(scsi_qla_host_t *ha, struct nvram_24xx *nv)
{
#ifdef CONFIG_SPARC
struct pci_dev *pdev = ha->pdev;
struct device_node *dp = pci_device_to_OF_node(pdev);
const u8 *val;
int len;
val = of_get_property(dp, "port-wwn", &len);
if (val && len >= WWN_SIZE)
memcpy(nv->port_name, val, WWN_SIZE);
val = of_get_property(dp, "node-wwn", &len);
if (val && len >= WWN_SIZE)
memcpy(nv->node_name, val, WWN_SIZE);
#endif
}
int
qla24xx_nvram_config(scsi_qla_host_t *ha)
{
int rval;
struct init_cb_24xx *icb;
struct nvram_24xx *nv;
uint32_t *dptr;
uint8_t *dptr1, *dptr2;
uint32_t chksum;
uint16_t cnt;
rval = QLA_SUCCESS;
icb = (struct init_cb_24xx *)ha->init_cb;
nv = ha->nvram;
/* Determine NVRAM starting address. */
ha->nvram_size = sizeof(struct nvram_24xx);
ha->nvram_base = FA_NVRAM_FUNC0_ADDR;
ha->vpd_size = FA_NVRAM_VPD_SIZE;
ha->vpd_base = FA_NVRAM_VPD0_ADDR;
if (PCI_FUNC(ha->pdev->devfn)) {
ha->nvram_base = FA_NVRAM_FUNC1_ADDR;
ha->vpd_base = FA_NVRAM_VPD1_ADDR;
}
/* Get VPD data into cache */
ha->vpd = ha->nvram + VPD_OFFSET;
ha->isp_ops->read_nvram(ha, (uint8_t *)ha->vpd,
ha->nvram_base - FA_NVRAM_FUNC0_ADDR, FA_NVRAM_VPD_SIZE * 4);
/* Get NVRAM data into cache and calculate checksum. */
dptr = (uint32_t *)nv;
ha->isp_ops->read_nvram(ha, (uint8_t *)dptr, ha->nvram_base,
ha->nvram_size);
for (cnt = 0, chksum = 0; cnt < ha->nvram_size >> 2; cnt++)
chksum += le32_to_cpu(*dptr++);
DEBUG5(printk("scsi(%ld): Contents of NVRAM\n", ha->host_no));
DEBUG5(qla2x00_dump_buffer((uint8_t *)nv, ha->nvram_size));
/* Bad NVRAM data, set defaults parameters. */
if (chksum || nv->id[0] != 'I' || nv->id[1] != 'S' || nv->id[2] != 'P'
|| nv->id[3] != ' ' ||
nv->nvram_version < __constant_cpu_to_le16(ICB_VERSION)) {
/* Reset NVRAM data. */
qla_printk(KERN_WARNING, ha, "Inconsistent NVRAM detected: "
"checksum=0x%x id=%c version=0x%x.\n", chksum, nv->id[0],
le16_to_cpu(nv->nvram_version));
qla_printk(KERN_WARNING, ha, "Falling back to functioning (yet "
"invalid -- WWPN) defaults.\n");
/*
* Set default initialization control block.
*/
memset(nv, 0, ha->nvram_size);
nv->nvram_version = __constant_cpu_to_le16(ICB_VERSION);
nv->version = __constant_cpu_to_le16(ICB_VERSION);
nv->frame_payload_size = __constant_cpu_to_le16(2048);
nv->execution_throttle = __constant_cpu_to_le16(0xFFFF);
nv->exchange_count = __constant_cpu_to_le16(0);
nv->hard_address = __constant_cpu_to_le16(124);
nv->port_name[0] = 0x21;
nv->port_name[1] = 0x00 + PCI_FUNC(ha->pdev->devfn);
nv->port_name[2] = 0x00;
nv->port_name[3] = 0xe0;
nv->port_name[4] = 0x8b;
nv->port_name[5] = 0x1c;
nv->port_name[6] = 0x55;
nv->port_name[7] = 0x86;
nv->node_name[0] = 0x20;
nv->node_name[1] = 0x00;
nv->node_name[2] = 0x00;
nv->node_name[3] = 0xe0;
nv->node_name[4] = 0x8b;
nv->node_name[5] = 0x1c;
nv->node_name[6] = 0x55;
nv->node_name[7] = 0x86;
qla24xx_nvram_wwn_from_ofw(ha, nv);
nv->login_retry_count = __constant_cpu_to_le16(8);
nv->interrupt_delay_timer = __constant_cpu_to_le16(0);
nv->login_timeout = __constant_cpu_to_le16(0);
nv->firmware_options_1 =
__constant_cpu_to_le32(BIT_14|BIT_13|BIT_2|BIT_1);
nv->firmware_options_2 = __constant_cpu_to_le32(2 << 4);
nv->firmware_options_2 |= __constant_cpu_to_le32(BIT_12);
nv->firmware_options_3 = __constant_cpu_to_le32(2 << 13);
nv->host_p = __constant_cpu_to_le32(BIT_11|BIT_10);
nv->efi_parameters = __constant_cpu_to_le32(0);
nv->reset_delay = 5;
nv->max_luns_per_target = __constant_cpu_to_le16(128);
nv->port_down_retry_count = __constant_cpu_to_le16(30);
nv->link_down_timeout = __constant_cpu_to_le16(30);
rval = 1;
}
/* Reset Initialization control block */
memset(icb, 0, sizeof(struct init_cb_24xx));
/* Copy 1st segment. */
dptr1 = (uint8_t *)icb;
dptr2 = (uint8_t *)&nv->version;
cnt = (uint8_t *)&icb->response_q_inpointer - (uint8_t *)&icb->version;
while (cnt--)
*dptr1++ = *dptr2++;
icb->login_retry_count = nv->login_retry_count;
icb->link_down_on_nos = nv->link_down_on_nos;
/* Copy 2nd segment. */
dptr1 = (uint8_t *)&icb->interrupt_delay_timer;
dptr2 = (uint8_t *)&nv->interrupt_delay_timer;
cnt = (uint8_t *)&icb->reserved_3 -
(uint8_t *)&icb->interrupt_delay_timer;
while (cnt--)
*dptr1++ = *dptr2++;
/*
* Setup driver NVRAM options.
*/
qla2x00_set_model_info(ha, nv->model_name, sizeof(nv->model_name),
"QLA2462");
/* Use alternate WWN? */
if (nv->host_p & __constant_cpu_to_le32(BIT_15)) {
memcpy(icb->node_name, nv->alternate_node_name, WWN_SIZE);
memcpy(icb->port_name, nv->alternate_port_name, WWN_SIZE);
}
/* Prepare nodename */
if ((icb->firmware_options_1 & __constant_cpu_to_le32(BIT_14)) == 0) {
/*
* Firmware will apply the following mask if the nodename was
* not provided.
*/
memcpy(icb->node_name, icb->port_name, WWN_SIZE);
icb->node_name[0] &= 0xF0;
}
/* Set host adapter parameters. */
ha->flags.disable_risc_code_load = 0;
ha->flags.enable_lip_reset = 0;
ha->flags.enable_lip_full_login =
le32_to_cpu(nv->host_p) & BIT_10 ? 1: 0;
ha->flags.enable_target_reset =
le32_to_cpu(nv->host_p) & BIT_11 ? 1: 0;
ha->flags.enable_led_scheme = 0;
ha->flags.disable_serdes = le32_to_cpu(nv->host_p) & BIT_5 ? 1: 0;
ha->operating_mode = (le32_to_cpu(icb->firmware_options_2) &
(BIT_6 | BIT_5 | BIT_4)) >> 4;
memcpy(ha->fw_seriallink_options24, nv->seriallink_options,
sizeof(ha->fw_seriallink_options24));
/* save HBA serial number */
ha->serial0 = icb->port_name[5];
ha->serial1 = icb->port_name[6];
ha->serial2 = icb->port_name[7];
ha->node_name = icb->node_name;
ha->port_name = icb->port_name;
icb->execution_throttle = __constant_cpu_to_le16(0xFFFF);
ha->retry_count = le16_to_cpu(nv->login_retry_count);
/* Set minimum login_timeout to 4 seconds. */
if (le16_to_cpu(nv->login_timeout) < ql2xlogintimeout)
nv->login_timeout = cpu_to_le16(ql2xlogintimeout);
if (le16_to_cpu(nv->login_timeout) < 4)
nv->login_timeout = __constant_cpu_to_le16(4);
ha->login_timeout = le16_to_cpu(nv->login_timeout);
icb->login_timeout = nv->login_timeout;
/* Set minimum RATOV to 100 tenths of a second. */
ha->r_a_tov = 100;
ha->loop_reset_delay = nv->reset_delay;
/* Link Down Timeout = 0:
*
* When Port Down timer expires we will start returning
* I/O's to OS with "DID_NO_CONNECT".
*
* Link Down Timeout != 0:
*
* The driver waits for the link to come up after link down
* before returning I/Os to OS with "DID_NO_CONNECT".
*/
if (le16_to_cpu(nv->link_down_timeout) == 0) {
ha->loop_down_abort_time =
(LOOP_DOWN_TIME - LOOP_DOWN_TIMEOUT);
} else {
ha->link_down_timeout = le16_to_cpu(nv->link_down_timeout);
ha->loop_down_abort_time =
(LOOP_DOWN_TIME - ha->link_down_timeout);
}
/* Need enough time to try and get the port back. */
ha->port_down_retry_count = le16_to_cpu(nv->port_down_retry_count);
if (qlport_down_retry)
ha->port_down_retry_count = qlport_down_retry;
/* Set login_retry_count */
ha->login_retry_count = le16_to_cpu(nv->login_retry_count);
if (ha->port_down_retry_count ==
le16_to_cpu(nv->port_down_retry_count) &&
ha->port_down_retry_count > 3)
ha->login_retry_count = ha->port_down_retry_count;
else if (ha->port_down_retry_count > (int)ha->login_retry_count)
ha->login_retry_count = ha->port_down_retry_count;
if (ql2xloginretrycount)
ha->login_retry_count = ql2xloginretrycount;
/* Enable ZIO. */
if (!ha->flags.init_done) {
ha->zio_mode = le32_to_cpu(icb->firmware_options_2) &
(BIT_3 | BIT_2 | BIT_1 | BIT_0);
ha->zio_timer = le16_to_cpu(icb->interrupt_delay_timer) ?
le16_to_cpu(icb->interrupt_delay_timer): 2;
}
icb->firmware_options_2 &= __constant_cpu_to_le32(
~(BIT_3 | BIT_2 | BIT_1 | BIT_0));
ha->flags.process_response_queue = 0;
if (ha->zio_mode != QLA_ZIO_DISABLED) {
ha->zio_mode = QLA_ZIO_MODE_6;
DEBUG2(printk("scsi(%ld): ZIO mode %d enabled; timer delay "
"(%d us).\n", ha->host_no, ha->zio_mode,
ha->zio_timer * 100));
qla_printk(KERN_INFO, ha,
"ZIO mode %d enabled; timer delay (%d us).\n",
ha->zio_mode, ha->zio_timer * 100);
icb->firmware_options_2 |= cpu_to_le32(
(uint32_t)ha->zio_mode);
icb->interrupt_delay_timer = cpu_to_le16(ha->zio_timer);
ha->flags.process_response_queue = 1;
}
if (rval) {
DEBUG2_3(printk(KERN_WARNING
"scsi(%ld): NVRAM configuration failed!\n", ha->host_no));
}
return (rval);
}
static int
qla24xx_load_risc_flash(scsi_qla_host_t *ha, uint32_t *srisc_addr)
{
int rval;
int segments, fragment;
uint32_t faddr;
uint32_t *dcode, dlen;
uint32_t risc_addr;
uint32_t risc_size;
uint32_t i;
rval = QLA_SUCCESS;
segments = FA_RISC_CODE_SEGMENTS;
faddr = FA_RISC_CODE_ADDR;
dcode = (uint32_t *)ha->request_ring;
*srisc_addr = 0;
/* Validate firmware image by checking version. */
qla24xx_read_flash_data(ha, dcode, faddr + 4, 4);
for (i = 0; i < 4; i++)
dcode[i] = be32_to_cpu(dcode[i]);
if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
(dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
dcode[3] == 0)) {
qla_printk(KERN_WARNING, ha,
"Unable to verify integrity of flash firmware image!\n");
qla_printk(KERN_WARNING, ha,
"Firmware data: %08x %08x %08x %08x!\n", dcode[0],
dcode[1], dcode[2], dcode[3]);
return QLA_FUNCTION_FAILED;
}
while (segments && rval == QLA_SUCCESS) {
/* Read segment's load information. */
qla24xx_read_flash_data(ha, dcode, faddr, 4);
risc_addr = be32_to_cpu(dcode[2]);
*srisc_addr = *srisc_addr == 0 ? risc_addr : *srisc_addr;
risc_size = be32_to_cpu(dcode[3]);
fragment = 0;
while (risc_size > 0 && rval == QLA_SUCCESS) {
dlen = (uint32_t)(ha->fw_transfer_size >> 2);
if (dlen > risc_size)
dlen = risc_size;
DEBUG7(printk("scsi(%ld): Loading risc segment@ risc "
"addr %x, number of dwords 0x%x, offset 0x%x.\n",
ha->host_no, risc_addr, dlen, faddr));
qla24xx_read_flash_data(ha, dcode, faddr, dlen);
for (i = 0; i < dlen; i++)
dcode[i] = swab32(dcode[i]);
rval = qla2x00_load_ram(ha, ha->request_dma, risc_addr,
dlen);
if (rval) {
DEBUG(printk("scsi(%ld):[ERROR] Failed to load "
"segment %d of firmware\n", ha->host_no,
fragment));
qla_printk(KERN_WARNING, ha,
"[ERROR] Failed to load segment %d of "
"firmware\n", fragment);
break;
}
faddr += dlen;
risc_addr += dlen;
risc_size -= dlen;
fragment++;
}
/* Next segment. */
segments--;
}
return rval;
}
#define QLA_FW_URL "ftp://ftp.qlogic.com/outgoing/linux/firmware/"
int
qla2x00_load_risc(scsi_qla_host_t *ha, uint32_t *srisc_addr)
{
int rval;
int i, fragment;
uint16_t *wcode, *fwcode;
uint32_t risc_addr, risc_size, fwclen, wlen, *seg;
struct fw_blob *blob;
/* Load firmware blob. */
blob = qla2x00_request_firmware(ha);
if (!blob) {
qla_printk(KERN_ERR, ha, "Firmware image unavailable.\n");
qla_printk(KERN_ERR, ha, "Firmware images can be retrieved "
"from: " QLA_FW_URL ".\n");
return QLA_FUNCTION_FAILED;
}
rval = QLA_SUCCESS;
wcode = (uint16_t *)ha->request_ring;
*srisc_addr = 0;
fwcode = (uint16_t *)blob->fw->data;
fwclen = 0;
/* Validate firmware image by checking version. */
if (blob->fw->size < 8 * sizeof(uint16_t)) {
qla_printk(KERN_WARNING, ha,
"Unable to verify integrity of firmware image (%Zd)!\n",
blob->fw->size);
goto fail_fw_integrity;
}
for (i = 0; i < 4; i++)
wcode[i] = be16_to_cpu(fwcode[i + 4]);
if ((wcode[0] == 0xffff && wcode[1] == 0xffff && wcode[2] == 0xffff &&
wcode[3] == 0xffff) || (wcode[0] == 0 && wcode[1] == 0 &&
wcode[2] == 0 && wcode[3] == 0)) {
qla_printk(KERN_WARNING, ha,
"Unable to verify integrity of firmware image!\n");
qla_printk(KERN_WARNING, ha,
"Firmware data: %04x %04x %04x %04x!\n", wcode[0],
wcode[1], wcode[2], wcode[3]);
goto fail_fw_integrity;
}
seg = blob->segs;
while (*seg && rval == QLA_SUCCESS) {
risc_addr = *seg;
*srisc_addr = *srisc_addr == 0 ? *seg : *srisc_addr;
risc_size = be16_to_cpu(fwcode[3]);
/* Validate firmware image size. */
fwclen += risc_size * sizeof(uint16_t);
if (blob->fw->size < fwclen) {
qla_printk(KERN_WARNING, ha,
"Unable to verify integrity of firmware image "
"(%Zd)!\n", blob->fw->size);
goto fail_fw_integrity;
}
fragment = 0;
while (risc_size > 0 && rval == QLA_SUCCESS) {
wlen = (uint16_t)(ha->fw_transfer_size >> 1);
if (wlen > risc_size)
wlen = risc_size;
DEBUG7(printk("scsi(%ld): Loading risc segment@ risc "
"addr %x, number of words 0x%x.\n", ha->host_no,
risc_addr, wlen));
for (i = 0; i < wlen; i++)
wcode[i] = swab16(fwcode[i]);
rval = qla2x00_load_ram(ha, ha->request_dma, risc_addr,
wlen);
if (rval) {
DEBUG(printk("scsi(%ld):[ERROR] Failed to load "
"segment %d of firmware\n", ha->host_no,
fragment));
qla_printk(KERN_WARNING, ha,
"[ERROR] Failed to load segment %d of "
"firmware\n", fragment);
break;
}
fwcode += wlen;
risc_addr += wlen;
risc_size -= wlen;
fragment++;
}
/* Next segment. */
seg++;
}
return rval;
fail_fw_integrity:
return QLA_FUNCTION_FAILED;
}
int
qla24xx_load_risc(scsi_qla_host_t *ha, uint32_t *srisc_addr)
{
int rval;
int segments, fragment;
uint32_t *dcode, dlen;
uint32_t risc_addr;
uint32_t risc_size;
uint32_t i;
struct fw_blob *blob;
uint32_t *fwcode, fwclen;
/* Load firmware blob. */
blob = qla2x00_request_firmware(ha);
if (!blob) {
qla_printk(KERN_ERR, ha, "Firmware image unavailable.\n");
qla_printk(KERN_ERR, ha, "Firmware images can be retrieved "
"from: " QLA_FW_URL ".\n");
/* Try to load RISC code from flash. */
qla_printk(KERN_ERR, ha, "Attempting to load (potentially "
"outdated) firmware from flash.\n");
return qla24xx_load_risc_flash(ha, srisc_addr);
}
rval = QLA_SUCCESS;
segments = FA_RISC_CODE_SEGMENTS;
dcode = (uint32_t *)ha->request_ring;
*srisc_addr = 0;
fwcode = (uint32_t *)blob->fw->data;
fwclen = 0;
/* Validate firmware image by checking version. */
if (blob->fw->size < 8 * sizeof(uint32_t)) {
qla_printk(KERN_WARNING, ha,
"Unable to verify integrity of firmware image (%Zd)!\n",
blob->fw->size);
goto fail_fw_integrity;
}
for (i = 0; i < 4; i++)
dcode[i] = be32_to_cpu(fwcode[i + 4]);
if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
(dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
dcode[3] == 0)) {
qla_printk(KERN_WARNING, ha,
"Unable to verify integrity of firmware image!\n");
qla_printk(KERN_WARNING, ha,
"Firmware data: %08x %08x %08x %08x!\n", dcode[0],
dcode[1], dcode[2], dcode[3]);
goto fail_fw_integrity;
}
while (segments && rval == QLA_SUCCESS) {
risc_addr = be32_to_cpu(fwcode[2]);
*srisc_addr = *srisc_addr == 0 ? risc_addr : *srisc_addr;
risc_size = be32_to_cpu(fwcode[3]);
/* Validate firmware image size. */
fwclen += risc_size * sizeof(uint32_t);
if (blob->fw->size < fwclen) {
qla_printk(KERN_WARNING, ha,
"Unable to verify integrity of firmware image "
"(%Zd)!\n", blob->fw->size);
goto fail_fw_integrity;
}
fragment = 0;
while (risc_size > 0 && rval == QLA_SUCCESS) {
dlen = (uint32_t)(ha->fw_transfer_size >> 2);
if (dlen > risc_size)
dlen = risc_size;
DEBUG7(printk("scsi(%ld): Loading risc segment@ risc "
"addr %x, number of dwords 0x%x.\n", ha->host_no,
risc_addr, dlen));
for (i = 0; i < dlen; i++)
dcode[i] = swab32(fwcode[i]);
rval = qla2x00_load_ram(ha, ha->request_dma, risc_addr,
dlen);
if (rval) {
DEBUG(printk("scsi(%ld):[ERROR] Failed to load "
"segment %d of firmware\n", ha->host_no,
fragment));
qla_printk(KERN_WARNING, ha,
"[ERROR] Failed to load segment %d of "
"firmware\n", fragment);
break;
}
fwcode += dlen;
risc_addr += dlen;
risc_size -= dlen;
fragment++;
}
/* Next segment. */
segments--;
}
return rval;
fail_fw_integrity:
return QLA_FUNCTION_FAILED;
}
void
qla2x00_try_to_stop_firmware(scsi_qla_host_t *ha)
{
int ret, retries;
if (!IS_FWI2_CAPABLE(ha))
return;
if (!ha->fw_major_version)
return;
ret = qla2x00_stop_firmware(ha);
for (retries = 5; ret != QLA_SUCCESS && ret != QLA_FUNCTION_TIMEOUT &&
retries ; retries--) {
qla2x00_reset_chip(ha);
if (qla2x00_chip_diag(ha) != QLA_SUCCESS)
continue;
if (qla2x00_setup_chip(ha) != QLA_SUCCESS)
continue;
qla_printk(KERN_INFO, ha,
"Attempting retry of stop-firmware command...\n");
ret = qla2x00_stop_firmware(ha);
}
}
int
qla24xx_configure_vhba(scsi_qla_host_t *ha)
{
int rval = QLA_SUCCESS;
uint16_t mb[MAILBOX_REGISTER_COUNT];
if (!ha->parent)
return -EINVAL;
rval = qla2x00_fw_ready(ha->parent);
if (rval == QLA_SUCCESS) {
clear_bit(RESET_MARKER_NEEDED, &ha->dpc_flags);
qla2x00_marker(ha->parent, 0, 0, MK_SYNC_ALL);
}
ha->flags.management_server_logged_in = 0;
/* Login to SNS first */
qla24xx_login_fabric(ha->parent, NPH_SNS, 0xff, 0xff, 0xfc,
mb, BIT_1);
if (mb[0] != MBS_COMMAND_COMPLETE) {
DEBUG15(qla_printk(KERN_INFO, ha,
"Failed SNS login: loop_id=%x mb[0]=%x mb[1]=%x "
"mb[2]=%x mb[6]=%x mb[7]=%x\n", NPH_SNS,
mb[0], mb[1], mb[2], mb[6], mb[7]));
return (QLA_FUNCTION_FAILED);
}
atomic_set(&ha->loop_down_timer, 0);
atomic_set(&ha->loop_state, LOOP_UP);
set_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags);
set_bit(LOCAL_LOOP_UPDATE, &ha->dpc_flags);
rval = qla2x00_loop_resync(ha->parent);
return rval;
}
/* 84XX Support **************************************************************/
static LIST_HEAD(qla_cs84xx_list);
static DEFINE_MUTEX(qla_cs84xx_mutex);
static struct qla_chip_state_84xx *
qla84xx_get_chip(struct scsi_qla_host *ha)
{
struct qla_chip_state_84xx *cs84xx;
mutex_lock(&qla_cs84xx_mutex);
/* Find any shared 84xx chip. */
list_for_each_entry(cs84xx, &qla_cs84xx_list, list) {
if (cs84xx->bus == ha->pdev->bus) {
kref_get(&cs84xx->kref);
goto done;
}
}
cs84xx = kzalloc(sizeof(*cs84xx), GFP_KERNEL);
if (!cs84xx)
goto done;
kref_init(&cs84xx->kref);
spin_lock_init(&cs84xx->access_lock);
mutex_init(&cs84xx->fw_update_mutex);
cs84xx->bus = ha->pdev->bus;
list_add_tail(&cs84xx->list, &qla_cs84xx_list);
done:
mutex_unlock(&qla_cs84xx_mutex);
return cs84xx;
}
static void
__qla84xx_chip_release(struct kref *kref)
{
struct qla_chip_state_84xx *cs84xx =
container_of(kref, struct qla_chip_state_84xx, kref);
mutex_lock(&qla_cs84xx_mutex);
list_del(&cs84xx->list);
mutex_unlock(&qla_cs84xx_mutex);
kfree(cs84xx);
}
void
qla84xx_put_chip(struct scsi_qla_host *ha)
{
if (ha->cs84xx)
kref_put(&ha->cs84xx->kref, __qla84xx_chip_release);
}
static int
qla84xx_init_chip(scsi_qla_host_t *ha)
{
int rval;
uint16_t status[2];
mutex_lock(&ha->cs84xx->fw_update_mutex);
rval = qla84xx_verify_chip(ha, status);
mutex_unlock(&ha->cs84xx->fw_update_mutex);
return rval != QLA_SUCCESS || status[0] ? QLA_FUNCTION_FAILED:
QLA_SUCCESS;
}