| /* |
| * lib/reed_solomon/decode_rs.c |
| * |
| * Overview: |
| * Generic Reed Solomon encoder / decoder library |
| * |
| * Copyright 2002, Phil Karn, KA9Q |
| * May be used under the terms of the GNU General Public License (GPL) |
| * |
| * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de) |
| * |
| * $Id: decode_rs.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $ |
| * |
| */ |
| |
| /* Generic data width independent code which is included by the |
| * wrappers. |
| */ |
| { |
| int deg_lambda, el, deg_omega; |
| int i, j, r, k, pad; |
| int nn = rs->nn; |
| int nroots = rs->nroots; |
| int fcr = rs->fcr; |
| int prim = rs->prim; |
| int iprim = rs->iprim; |
| uint16_t *alpha_to = rs->alpha_to; |
| uint16_t *index_of = rs->index_of; |
| uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error; |
| /* Err+Eras Locator poly and syndrome poly The maximum value |
| * of nroots is 8. So the necessary stack size will be about |
| * 220 bytes max. |
| */ |
| uint16_t lambda[nroots + 1], syn[nroots]; |
| uint16_t b[nroots + 1], t[nroots + 1], omega[nroots + 1]; |
| uint16_t root[nroots], reg[nroots + 1], loc[nroots]; |
| int count = 0; |
| uint16_t msk = (uint16_t) rs->nn; |
| |
| /* Check length parameter for validity */ |
| pad = nn - nroots - len; |
| BUG_ON(pad < 0 || pad >= nn); |
| |
| /* Does the caller provide the syndrome ? */ |
| if (s != NULL) { |
| for (i = 0; i < nroots; i++) { |
| /* The syndrome is in index form, |
| * so nn represents zero |
| */ |
| if (s[i] != nn) |
| goto decode; |
| } |
| |
| /* syndrome is zero, no errors to correct */ |
| return 0; |
| } |
| |
| /* form the syndromes; i.e., evaluate data(x) at roots of |
| * g(x) */ |
| for (i = 0; i < nroots; i++) |
| syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk; |
| |
| for (j = 1; j < len; j++) { |
| for (i = 0; i < nroots; i++) { |
| if (syn[i] == 0) { |
| syn[i] = (((uint16_t) data[j]) ^ |
| invmsk) & msk; |
| } else { |
| syn[i] = ((((uint16_t) data[j]) ^ |
| invmsk) & msk) ^ |
| alpha_to[rs_modnn(rs, index_of[syn[i]] + |
| (fcr + i) * prim)]; |
| } |
| } |
| } |
| |
| for (j = 0; j < nroots; j++) { |
| for (i = 0; i < nroots; i++) { |
| if (syn[i] == 0) { |
| syn[i] = ((uint16_t) par[j]) & msk; |
| } else { |
| syn[i] = (((uint16_t) par[j]) & msk) ^ |
| alpha_to[rs_modnn(rs, index_of[syn[i]] + |
| (fcr+i)*prim)]; |
| } |
| } |
| } |
| s = syn; |
| |
| /* Convert syndromes to index form, checking for nonzero condition */ |
| syn_error = 0; |
| for (i = 0; i < nroots; i++) { |
| syn_error |= s[i]; |
| s[i] = index_of[s[i]]; |
| } |
| |
| if (!syn_error) { |
| /* if syndrome is zero, data[] is a codeword and there are no |
| * errors to correct. So return data[] unmodified |
| */ |
| count = 0; |
| goto finish; |
| } |
| |
| decode: |
| memset(&lambda[1], 0, nroots * sizeof(lambda[0])); |
| lambda[0] = 1; |
| |
| if (no_eras > 0) { |
| /* Init lambda to be the erasure locator polynomial */ |
| lambda[1] = alpha_to[rs_modnn(rs, |
| prim * (nn - 1 - (eras_pos[0] + pad)))]; |
| for (i = 1; i < no_eras; i++) { |
| u = rs_modnn(rs, prim * (nn - 1 - (eras_pos[i] + pad))); |
| for (j = i + 1; j > 0; j--) { |
| tmp = index_of[lambda[j - 1]]; |
| if (tmp != nn) { |
| lambda[j] ^= |
| alpha_to[rs_modnn(rs, u + tmp)]; |
| } |
| } |
| } |
| } |
| |
| for (i = 0; i < nroots + 1; i++) |
| b[i] = index_of[lambda[i]]; |
| |
| /* |
| * Begin Berlekamp-Massey algorithm to determine error+erasure |
| * locator polynomial |
| */ |
| r = no_eras; |
| el = no_eras; |
| while (++r <= nroots) { /* r is the step number */ |
| /* Compute discrepancy at the r-th step in poly-form */ |
| discr_r = 0; |
| for (i = 0; i < r; i++) { |
| if ((lambda[i] != 0) && (s[r - i - 1] != nn)) { |
| discr_r ^= |
| alpha_to[rs_modnn(rs, |
| index_of[lambda[i]] + |
| s[r - i - 1])]; |
| } |
| } |
| discr_r = index_of[discr_r]; /* Index form */ |
| if (discr_r == nn) { |
| /* 2 lines below: B(x) <-- x*B(x) */ |
| memmove (&b[1], b, nroots * sizeof (b[0])); |
| b[0] = nn; |
| } else { |
| /* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */ |
| t[0] = lambda[0]; |
| for (i = 0; i < nroots; i++) { |
| if (b[i] != nn) { |
| t[i + 1] = lambda[i + 1] ^ |
| alpha_to[rs_modnn(rs, discr_r + |
| b[i])]; |
| } else |
| t[i + 1] = lambda[i + 1]; |
| } |
| if (2 * el <= r + no_eras - 1) { |
| el = r + no_eras - el; |
| /* |
| * 2 lines below: B(x) <-- inv(discr_r) * |
| * lambda(x) |
| */ |
| for (i = 0; i <= nroots; i++) { |
| b[i] = (lambda[i] == 0) ? nn : |
| rs_modnn(rs, index_of[lambda[i]] |
| - discr_r + nn); |
| } |
| } else { |
| /* 2 lines below: B(x) <-- x*B(x) */ |
| memmove(&b[1], b, nroots * sizeof(b[0])); |
| b[0] = nn; |
| } |
| memcpy(lambda, t, (nroots + 1) * sizeof(t[0])); |
| } |
| } |
| |
| /* Convert lambda to index form and compute deg(lambda(x)) */ |
| deg_lambda = 0; |
| for (i = 0; i < nroots + 1; i++) { |
| lambda[i] = index_of[lambda[i]]; |
| if (lambda[i] != nn) |
| deg_lambda = i; |
| } |
| /* Find roots of error+erasure locator polynomial by Chien search */ |
| memcpy(®[1], &lambda[1], nroots * sizeof(reg[0])); |
| count = 0; /* Number of roots of lambda(x) */ |
| for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) { |
| q = 1; /* lambda[0] is always 0 */ |
| for (j = deg_lambda; j > 0; j--) { |
| if (reg[j] != nn) { |
| reg[j] = rs_modnn(rs, reg[j] + j); |
| q ^= alpha_to[reg[j]]; |
| } |
| } |
| if (q != 0) |
| continue; /* Not a root */ |
| /* store root (index-form) and error location number */ |
| root[count] = i; |
| loc[count] = k; |
| /* If we've already found max possible roots, |
| * abort the search to save time |
| */ |
| if (++count == deg_lambda) |
| break; |
| } |
| if (deg_lambda != count) { |
| /* |
| * deg(lambda) unequal to number of roots => uncorrectable |
| * error detected |
| */ |
| count = -EBADMSG; |
| goto finish; |
| } |
| /* |
| * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo |
| * x**nroots). in index form. Also find deg(omega). |
| */ |
| deg_omega = deg_lambda - 1; |
| for (i = 0; i <= deg_omega; i++) { |
| tmp = 0; |
| for (j = i; j >= 0; j--) { |
| if ((s[i - j] != nn) && (lambda[j] != nn)) |
| tmp ^= |
| alpha_to[rs_modnn(rs, s[i - j] + lambda[j])]; |
| } |
| omega[i] = index_of[tmp]; |
| } |
| |
| /* |
| * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = |
| * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form |
| */ |
| for (j = count - 1; j >= 0; j--) { |
| num1 = 0; |
| for (i = deg_omega; i >= 0; i--) { |
| if (omega[i] != nn) |
| num1 ^= alpha_to[rs_modnn(rs, omega[i] + |
| i * root[j])]; |
| } |
| num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)]; |
| den = 0; |
| |
| /* lambda[i+1] for i even is the formal derivative |
| * lambda_pr of lambda[i] */ |
| for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) { |
| if (lambda[i + 1] != nn) { |
| den ^= alpha_to[rs_modnn(rs, lambda[i + 1] + |
| i * root[j])]; |
| } |
| } |
| /* Apply error to data */ |
| if (num1 != 0 && loc[j] >= pad) { |
| uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] + |
| index_of[num2] + |
| nn - index_of[den])]; |
| /* Store the error correction pattern, if a |
| * correction buffer is available */ |
| if (corr) { |
| corr[j] = cor; |
| } else { |
| /* If a data buffer is given and the |
| * error is inside the message, |
| * correct it */ |
| if (data && (loc[j] < (nn - nroots))) |
| data[loc[j] - pad] ^= cor; |
| } |
| } |
| } |
| |
| finish: |
| if (eras_pos != NULL) { |
| for (i = 0; i < count; i++) |
| eras_pos[i] = loc[i] - pad; |
| } |
| return count; |
| |
| } |