| /* |
| * Copyright 2012 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/mmzone.h> |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/capability.h> |
| #include <linux/sched.h> |
| #include <linux/errno.h> |
| #include <linux/irq.h> |
| #include <linux/msi.h> |
| #include <linux/io.h> |
| #include <linux/uaccess.h> |
| #include <linux/ctype.h> |
| |
| #include <asm/processor.h> |
| #include <asm/sections.h> |
| #include <asm/byteorder.h> |
| |
| #include <gxio/iorpc_globals.h> |
| #include <gxio/kiorpc.h> |
| #include <gxio/trio.h> |
| #include <gxio/iorpc_trio.h> |
| #include <hv/drv_trio_intf.h> |
| |
| #include <arch/sim.h> |
| |
| /* |
| * This file containes the routines to search for PCI buses, |
| * enumerate the buses, and configure any attached devices. |
| */ |
| |
| #define DEBUG_PCI_CFG 0 |
| |
| #if DEBUG_PCI_CFG |
| #define TRACE_CFG_WR(size, val, bus, dev, func, offset) \ |
| pr_info("CFG WR %d-byte VAL %#x to bus %d dev %d func %d addr %u\n", \ |
| size, val, bus, dev, func, offset & 0xFFF); |
| #define TRACE_CFG_RD(size, val, bus, dev, func, offset) \ |
| pr_info("CFG RD %d-byte VAL %#x from bus %d dev %d func %d addr %u\n", \ |
| size, val, bus, dev, func, offset & 0xFFF); |
| #else |
| #define TRACE_CFG_WR(...) |
| #define TRACE_CFG_RD(...) |
| #endif |
| |
| static int __devinitdata pci_probe = 1; |
| |
| /* Information on the PCIe RC ports configuration. */ |
| static int __devinitdata pcie_rc[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES]; |
| |
| /* |
| * On some platforms with one or more Gx endpoint ports, we need to |
| * delay the PCIe RC port probe for a few seconds to work around |
| * a HW PCIe link-training bug. The exact delay is specified with |
| * a kernel boot argument in the form of "pcie_rc_delay=T,P,S", |
| * where T is the TRIO instance number, P is the port number and S is |
| * the delay in seconds. If the delay is not provided, the value |
| * will be DEFAULT_RC_DELAY. |
| */ |
| static int __devinitdata rc_delay[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES]; |
| |
| /* Default number of seconds that the PCIe RC port probe can be delayed. */ |
| #define DEFAULT_RC_DELAY 10 |
| |
| /* Max number of seconds that the PCIe RC port probe can be delayed. */ |
| #define MAX_RC_DELAY 20 |
| |
| /* Array of the PCIe ports configuration info obtained from the BIB. */ |
| struct pcie_port_property pcie_ports[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES]; |
| |
| /* All drivers share the TRIO contexts defined here. */ |
| gxio_trio_context_t trio_contexts[TILEGX_NUM_TRIO]; |
| |
| /* Pointer to an array of PCIe RC controllers. */ |
| struct pci_controller pci_controllers[TILEGX_NUM_TRIO * TILEGX_TRIO_PCIES]; |
| int num_rc_controllers; |
| static int num_ep_controllers; |
| |
| static struct pci_ops tile_cfg_ops; |
| |
| /* Mask of CPUs that should receive PCIe interrupts. */ |
| static struct cpumask intr_cpus_map; |
| |
| /* |
| * We don't need to worry about the alignment of resources. |
| */ |
| resource_size_t pcibios_align_resource(void *data, const struct resource *res, |
| resource_size_t size, resource_size_t align) |
| { |
| return res->start; |
| } |
| EXPORT_SYMBOL(pcibios_align_resource); |
| |
| |
| /* |
| * Pick a CPU to receive and handle the PCIe interrupts, based on the IRQ #. |
| * For now, we simply send interrupts to non-dataplane CPUs. |
| * We may implement methods to allow user to specify the target CPUs, |
| * e.g. via boot arguments. |
| */ |
| static int tile_irq_cpu(int irq) |
| { |
| unsigned int count; |
| int i = 0; |
| int cpu; |
| |
| count = cpumask_weight(&intr_cpus_map); |
| if (unlikely(count == 0)) { |
| pr_warning("intr_cpus_map empty, interrupts will be" |
| " delievered to dataplane tiles\n"); |
| return irq % (smp_height * smp_width); |
| } |
| |
| count = irq % count; |
| for_each_cpu(cpu, &intr_cpus_map) { |
| if (i++ == count) |
| break; |
| } |
| return cpu; |
| } |
| |
| /* |
| * Open a file descriptor to the TRIO shim. |
| */ |
| static int __devinit tile_pcie_open(int trio_index) |
| { |
| gxio_trio_context_t *context = &trio_contexts[trio_index]; |
| int ret; |
| |
| /* |
| * This opens a file descriptor to the TRIO shim. |
| */ |
| ret = gxio_trio_init(context, trio_index); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * Allocate an ASID for the kernel. |
| */ |
| ret = gxio_trio_alloc_asids(context, 1, 0, 0); |
| if (ret < 0) { |
| pr_err("PCI: ASID alloc failure on TRIO %d, give up\n", |
| trio_index); |
| goto asid_alloc_failure; |
| } |
| |
| context->asid = ret; |
| |
| #ifdef USE_SHARED_PCIE_CONFIG_REGION |
| /* |
| * Alloc a PIO region for config access, shared by all MACs per TRIO. |
| * This shouldn't fail since the kernel is supposed to the first |
| * client of the TRIO's PIO regions. |
| */ |
| ret = gxio_trio_alloc_pio_regions(context, 1, 0, 0); |
| if (ret < 0) { |
| pr_err("PCI: CFG PIO alloc failure on TRIO %d, give up\n", |
| trio_index); |
| goto pio_alloc_failure; |
| } |
| |
| context->pio_cfg_index = ret; |
| |
| /* |
| * For PIO CFG, the bus_address_hi parameter is 0. The mac parameter |
| * is also 0 because it is specified in PIO_REGION_SETUP_CFG_ADDR. |
| */ |
| ret = gxio_trio_init_pio_region_aux(context, context->pio_cfg_index, |
| 0, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE); |
| if (ret < 0) { |
| pr_err("PCI: CFG PIO init failure on TRIO %d, give up\n", |
| trio_index); |
| goto pio_alloc_failure; |
| } |
| #endif |
| |
| return ret; |
| |
| asid_alloc_failure: |
| #ifdef USE_SHARED_PCIE_CONFIG_REGION |
| pio_alloc_failure: |
| #endif |
| hv_dev_close(context->fd); |
| |
| return ret; |
| } |
| |
| static void |
| tilegx_legacy_irq_ack(struct irq_data *d) |
| { |
| __insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq); |
| } |
| |
| static void |
| tilegx_legacy_irq_mask(struct irq_data *d) |
| { |
| __insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq); |
| } |
| |
| static void |
| tilegx_legacy_irq_unmask(struct irq_data *d) |
| { |
| __insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq); |
| } |
| |
| static struct irq_chip tilegx_legacy_irq_chip = { |
| .name = "tilegx_legacy_irq", |
| .irq_ack = tilegx_legacy_irq_ack, |
| .irq_mask = tilegx_legacy_irq_mask, |
| .irq_unmask = tilegx_legacy_irq_unmask, |
| |
| /* TBD: support set_affinity. */ |
| }; |
| |
| /* |
| * This is a wrapper function of the kernel level-trigger interrupt |
| * handler handle_level_irq() for PCI legacy interrupts. The TRIO |
| * is configured such that only INTx Assert interrupts are proxied |
| * to Linux which just calls handle_level_irq() after clearing the |
| * MAC INTx Assert status bit associated with this interrupt. |
| */ |
| static void |
| trio_handle_level_irq(unsigned int irq, struct irq_desc *desc) |
| { |
| struct pci_controller *controller = irq_desc_get_handler_data(desc); |
| gxio_trio_context_t *trio_context = controller->trio; |
| uint64_t intx = (uint64_t)irq_desc_get_chip_data(desc); |
| int mac = controller->mac; |
| unsigned int reg_offset; |
| uint64_t level_mask; |
| |
| handle_level_irq(irq, desc); |
| |
| /* |
| * Clear the INTx Level status, otherwise future interrupts are |
| * not sent. |
| */ |
| reg_offset = (TRIO_PCIE_INTFC_MAC_INT_STS << |
| TRIO_CFG_REGION_ADDR__REG_SHIFT) | |
| (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE << |
| TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | |
| (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); |
| |
| level_mask = TRIO_PCIE_INTFC_MAC_INT_STS__INT_LEVEL_MASK << intx; |
| |
| __gxio_mmio_write(trio_context->mmio_base_mac + reg_offset, level_mask); |
| } |
| |
| /* |
| * Create kernel irqs and set up the handlers for the legacy interrupts. |
| * Also some minimum initialization for the MSI support. |
| */ |
| static int __devinit tile_init_irqs(struct pci_controller *controller) |
| { |
| int i; |
| int j; |
| int irq; |
| int result; |
| |
| cpumask_copy(&intr_cpus_map, cpu_online_mask); |
| |
| |
| for (i = 0; i < 4; i++) { |
| gxio_trio_context_t *context = controller->trio; |
| int cpu; |
| |
| /* Ask the kernel to allocate an IRQ. */ |
| irq = create_irq(); |
| if (irq < 0) { |
| pr_err("PCI: no free irq vectors, failed for %d\n", i); |
| |
| goto free_irqs; |
| } |
| controller->irq_intx_table[i] = irq; |
| |
| /* Distribute the 4 IRQs to different tiles. */ |
| cpu = tile_irq_cpu(irq); |
| |
| /* Configure the TRIO intr binding for this IRQ. */ |
| result = gxio_trio_config_legacy_intr(context, cpu_x(cpu), |
| cpu_y(cpu), KERNEL_PL, |
| irq, controller->mac, i); |
| if (result < 0) { |
| pr_err("PCI: MAC intx config failed for %d\n", i); |
| |
| goto free_irqs; |
| } |
| |
| /* |
| * Register the IRQ handler with the kernel. |
| */ |
| irq_set_chip_and_handler(irq, &tilegx_legacy_irq_chip, |
| trio_handle_level_irq); |
| irq_set_chip_data(irq, (void *)(uint64_t)i); |
| irq_set_handler_data(irq, controller); |
| } |
| |
| return 0; |
| |
| free_irqs: |
| for (j = 0; j < i; j++) |
| destroy_irq(controller->irq_intx_table[j]); |
| |
| return -1; |
| } |
| |
| /* |
| * Find valid controllers and fill in pci_controller structs for each |
| * of them. |
| * |
| * Returns the number of controllers discovered. |
| */ |
| int __init tile_pci_init(void) |
| { |
| int num_trio_shims = 0; |
| int ctl_index = 0; |
| int i, j; |
| |
| if (!pci_probe) { |
| pr_info("PCI: disabled by boot argument\n"); |
| return 0; |
| } |
| |
| pr_info("PCI: Searching for controllers...\n"); |
| |
| /* |
| * We loop over all the TRIO shims. |
| */ |
| for (i = 0; i < TILEGX_NUM_TRIO; i++) { |
| int ret; |
| |
| ret = tile_pcie_open(i); |
| if (ret < 0) |
| continue; |
| |
| num_trio_shims++; |
| } |
| |
| if (num_trio_shims == 0 || sim_is_simulator()) |
| return 0; |
| |
| /* |
| * Now determine which PCIe ports are configured to operate in RC mode. |
| * We look at the Board Information Block first and then see if there |
| * are any overriding configuration by the HW strapping pin. |
| */ |
| for (i = 0; i < TILEGX_NUM_TRIO; i++) { |
| gxio_trio_context_t *context = &trio_contexts[i]; |
| int ret; |
| |
| if (context->fd < 0) |
| continue; |
| |
| ret = hv_dev_pread(context->fd, 0, |
| (HV_VirtAddr)&pcie_ports[i][0], |
| sizeof(struct pcie_port_property) * TILEGX_TRIO_PCIES, |
| GXIO_TRIO_OP_GET_PORT_PROPERTY); |
| if (ret < 0) { |
| pr_err("PCI: PCIE_GET_PORT_PROPERTY failure, error %d," |
| " on TRIO %d\n", ret, i); |
| continue; |
| } |
| |
| for (j = 0; j < TILEGX_TRIO_PCIES; j++) { |
| if (pcie_ports[i][j].allow_rc) { |
| pcie_rc[i][j] = 1; |
| num_rc_controllers++; |
| } |
| else if (pcie_ports[i][j].allow_ep) { |
| num_ep_controllers++; |
| } |
| } |
| } |
| |
| /* |
| * Return if no PCIe ports are configured to operate in RC mode. |
| */ |
| if (num_rc_controllers == 0) |
| return 0; |
| |
| /* |
| * Set the TRIO pointer and MAC index for each PCIe RC port. |
| */ |
| for (i = 0; i < TILEGX_NUM_TRIO; i++) { |
| for (j = 0; j < TILEGX_TRIO_PCIES; j++) { |
| if (pcie_rc[i][j]) { |
| pci_controllers[ctl_index].trio = |
| &trio_contexts[i]; |
| pci_controllers[ctl_index].mac = j; |
| pci_controllers[ctl_index].trio_index = i; |
| ctl_index++; |
| if (ctl_index == num_rc_controllers) |
| goto out; |
| } |
| } |
| } |
| |
| out: |
| /* |
| * Configure each PCIe RC port. |
| */ |
| for (i = 0; i < num_rc_controllers; i++) { |
| /* |
| * Configure the PCIe MAC to run in RC mode. |
| */ |
| |
| struct pci_controller *controller = &pci_controllers[i]; |
| |
| controller->index = i; |
| controller->ops = &tile_cfg_ops; |
| |
| /* |
| * The PCI memory resource is located above the PA space. |
| * For every host bridge, the BAR window or the MMIO aperture |
| * is in range [3GB, 4GB - 1] of a 4GB space beyond the |
| * PA space. |
| */ |
| |
| controller->mem_offset = TILE_PCI_MEM_START + |
| (i * TILE_PCI_BAR_WINDOW_TOP); |
| controller->mem_space.start = controller->mem_offset + |
| TILE_PCI_BAR_WINDOW_TOP - TILE_PCI_BAR_WINDOW_SIZE; |
| controller->mem_space.end = controller->mem_offset + |
| TILE_PCI_BAR_WINDOW_TOP - 1; |
| controller->mem_space.flags = IORESOURCE_MEM; |
| snprintf(controller->mem_space_name, |
| sizeof(controller->mem_space_name), |
| "PCI mem domain %d", i); |
| controller->mem_space.name = controller->mem_space_name; |
| } |
| |
| return num_rc_controllers; |
| } |
| |
| /* |
| * (pin - 1) converts from the PCI standard's [1:4] convention to |
| * a normal [0:3] range. |
| */ |
| static int tile_map_irq(const struct pci_dev *dev, u8 device, u8 pin) |
| { |
| struct pci_controller *controller = |
| (struct pci_controller *)dev->sysdata; |
| return controller->irq_intx_table[pin - 1]; |
| } |
| |
| |
| static void __devinit fixup_read_and_payload_sizes(struct pci_controller * |
| controller) |
| { |
| gxio_trio_context_t *trio_context = controller->trio; |
| struct pci_bus *root_bus = controller->root_bus; |
| TRIO_PCIE_RC_DEVICE_CONTROL_t dev_control; |
| TRIO_PCIE_RC_DEVICE_CAP_t rc_dev_cap; |
| unsigned int reg_offset; |
| struct pci_bus *child; |
| int mac; |
| int err; |
| |
| mac = controller->mac; |
| |
| /* |
| * Set our max read request size to be 4KB. |
| */ |
| reg_offset = |
| (TRIO_PCIE_RC_DEVICE_CONTROL << |
| TRIO_CFG_REGION_ADDR__REG_SHIFT) | |
| (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD << |
| TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | |
| (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); |
| |
| dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac + |
| reg_offset); |
| dev_control.max_read_req_sz = 5; |
| __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset, |
| dev_control.word); |
| |
| /* |
| * Set the max payload size supported by this Gx PCIe MAC. |
| * Though Gx PCIe supports Max Payload Size of up to 1024 bytes, |
| * experiments have shown that setting MPS to 256 yields the |
| * best performance. |
| */ |
| reg_offset = |
| (TRIO_PCIE_RC_DEVICE_CAP << |
| TRIO_CFG_REGION_ADDR__REG_SHIFT) | |
| (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD << |
| TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | |
| (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); |
| |
| rc_dev_cap.word = __gxio_mmio_read32(trio_context->mmio_base_mac + |
| reg_offset); |
| rc_dev_cap.mps_sup = 1; |
| __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset, |
| rc_dev_cap.word); |
| |
| /* Configure PCI Express MPS setting. */ |
| list_for_each_entry(child, &root_bus->children, node) { |
| struct pci_dev *self = child->self; |
| if (!self) |
| continue; |
| |
| pcie_bus_configure_settings(child, self->pcie_mpss); |
| } |
| |
| /* |
| * Set the mac_config register in trio based on the MPS/MRS of the link. |
| */ |
| reg_offset = |
| (TRIO_PCIE_RC_DEVICE_CONTROL << |
| TRIO_CFG_REGION_ADDR__REG_SHIFT) | |
| (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD << |
| TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | |
| (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); |
| |
| dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac + |
| reg_offset); |
| |
| err = gxio_trio_set_mps_mrs(trio_context, |
| dev_control.max_payload_size, |
| dev_control.max_read_req_sz, |
| mac); |
| if (err < 0) { |
| pr_err("PCI: PCIE_CONFIGURE_MAC_MPS_MRS failure, " |
| "MAC %d on TRIO %d\n", |
| mac, controller->trio_index); |
| } |
| } |
| |
| static int __devinit setup_pcie_rc_delay(char *str) |
| { |
| unsigned long delay = 0; |
| unsigned long trio_index; |
| unsigned long mac; |
| |
| if (str == NULL || !isdigit(*str)) |
| return -EINVAL; |
| trio_index = simple_strtoul(str, (char **)&str, 10); |
| if (trio_index >= TILEGX_NUM_TRIO) |
| return -EINVAL; |
| |
| if (*str != ',') |
| return -EINVAL; |
| |
| str++; |
| if (!isdigit(*str)) |
| return -EINVAL; |
| mac = simple_strtoul(str, (char **)&str, 10); |
| if (mac >= TILEGX_TRIO_PCIES) |
| return -EINVAL; |
| |
| if (*str != '\0') { |
| if (*str != ',') |
| return -EINVAL; |
| |
| str++; |
| if (!isdigit(*str)) |
| return -EINVAL; |
| delay = simple_strtoul(str, (char **)&str, 10); |
| if (delay > MAX_RC_DELAY) |
| return -EINVAL; |
| } |
| |
| rc_delay[trio_index][mac] = delay ? : DEFAULT_RC_DELAY; |
| pr_info("Delaying PCIe RC link training for %u sec" |
| " on MAC %lu on TRIO %lu\n", rc_delay[trio_index][mac], |
| mac, trio_index); |
| return 0; |
| } |
| early_param("pcie_rc_delay", setup_pcie_rc_delay); |
| |
| /* |
| * PCI initialization entry point, called by subsys_initcall. |
| */ |
| int __init pcibios_init(void) |
| { |
| resource_size_t offset; |
| LIST_HEAD(resources); |
| int next_busno; |
| int i; |
| |
| tile_pci_init(); |
| |
| if (num_rc_controllers == 0 && num_ep_controllers == 0) |
| return 0; |
| |
| /* |
| * We loop over all the TRIO shims and set up the MMIO mappings. |
| */ |
| for (i = 0; i < TILEGX_NUM_TRIO; i++) { |
| gxio_trio_context_t *context = &trio_contexts[i]; |
| |
| if (context->fd < 0) |
| continue; |
| |
| /* |
| * Map in the MMIO space for the MAC. |
| */ |
| offset = 0; |
| context->mmio_base_mac = |
| iorpc_ioremap(context->fd, offset, |
| HV_TRIO_CONFIG_IOREMAP_SIZE); |
| if (context->mmio_base_mac == NULL) { |
| pr_err("PCI: MAC map failure on TRIO %d\n", i); |
| |
| hv_dev_close(context->fd); |
| context->fd = -1; |
| continue; |
| } |
| } |
| |
| /* |
| * Delay a bit in case devices aren't ready. Some devices are |
| * known to require at least 20ms here, but we use a more |
| * conservative value. |
| */ |
| msleep(250); |
| |
| /* Scan all of the recorded PCI controllers. */ |
| for (next_busno = 0, i = 0; i < num_rc_controllers; i++) { |
| struct pci_controller *controller = &pci_controllers[i]; |
| gxio_trio_context_t *trio_context = controller->trio; |
| TRIO_PCIE_INTFC_PORT_CONFIG_t port_config; |
| TRIO_PCIE_INTFC_PORT_STATUS_t port_status; |
| TRIO_PCIE_INTFC_TX_FIFO_CTL_t tx_fifo_ctl; |
| struct pci_bus *bus; |
| unsigned int reg_offset; |
| unsigned int class_code_revision; |
| int trio_index; |
| int mac; |
| int ret; |
| |
| if (trio_context->fd < 0) |
| continue; |
| |
| trio_index = controller->trio_index; |
| mac = controller->mac; |
| |
| /* |
| * Check the port strap state which will override the BIB |
| * setting. |
| */ |
| |
| reg_offset = |
| (TRIO_PCIE_INTFC_PORT_CONFIG << |
| TRIO_CFG_REGION_ADDR__REG_SHIFT) | |
| (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE << |
| TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | |
| (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); |
| |
| port_config.word = |
| __gxio_mmio_read(trio_context->mmio_base_mac + |
| reg_offset); |
| |
| if ((port_config.strap_state != |
| TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC) && |
| (port_config.strap_state != |
| TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC_G1)) { |
| /* |
| * If this is really intended to be an EP port, |
| * record it so that the endpoint driver will know about it. |
| */ |
| if (port_config.strap_state == |
| TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT || |
| port_config.strap_state == |
| TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT_G1) |
| pcie_ports[trio_index][mac].allow_ep = 1; |
| |
| continue; |
| } |
| |
| /* |
| * Delay the RC link training if needed. |
| */ |
| if (rc_delay[trio_index][mac]) |
| msleep(rc_delay[trio_index][mac] * 1000); |
| |
| ret = gxio_trio_force_rc_link_up(trio_context, mac); |
| if (ret < 0) |
| pr_err("PCI: PCIE_FORCE_LINK_UP failure, " |
| "MAC %d on TRIO %d\n", mac, trio_index); |
| |
| pr_info("PCI: Found PCI controller #%d on TRIO %d MAC %d\n", i, |
| trio_index, controller->mac); |
| |
| /* |
| * Wait a bit here because some EP devices take longer |
| * to come up. |
| */ |
| msleep(1000); |
| |
| /* |
| * Check for PCIe link-up status. |
| */ |
| |
| reg_offset = |
| (TRIO_PCIE_INTFC_PORT_STATUS << |
| TRIO_CFG_REGION_ADDR__REG_SHIFT) | |
| (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE << |
| TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | |
| (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); |
| |
| port_status.word = |
| __gxio_mmio_read(trio_context->mmio_base_mac + |
| reg_offset); |
| if (!port_status.dl_up) { |
| pr_err("PCI: link is down, MAC %d on TRIO %d\n", |
| mac, trio_index); |
| continue; |
| } |
| |
| /* |
| * Ensure that the link can come out of L1 power down state. |
| * Strictly speaking, this is needed only in the case of |
| * heavy RC-initiated DMAs. |
| */ |
| reg_offset = |
| (TRIO_PCIE_INTFC_TX_FIFO_CTL << |
| TRIO_CFG_REGION_ADDR__REG_SHIFT) | |
| (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE << |
| TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | |
| (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); |
| tx_fifo_ctl.word = |
| __gxio_mmio_read(trio_context->mmio_base_mac + |
| reg_offset); |
| tx_fifo_ctl.min_p_credits = 0; |
| __gxio_mmio_write(trio_context->mmio_base_mac + reg_offset, |
| tx_fifo_ctl.word); |
| |
| /* |
| * Change the device ID so that Linux bus crawl doesn't confuse |
| * the internal bridge with any Tilera endpoints. |
| */ |
| |
| reg_offset = |
| (TRIO_PCIE_RC_DEVICE_ID_VEN_ID << |
| TRIO_CFG_REGION_ADDR__REG_SHIFT) | |
| (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD << |
| TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | |
| (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); |
| |
| __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset, |
| (TILERA_GX36_RC_DEV_ID << |
| TRIO_PCIE_RC_DEVICE_ID_VEN_ID__DEV_ID_SHIFT) | |
| TILERA_VENDOR_ID); |
| |
| /* |
| * Set the internal P2P bridge class code. |
| */ |
| |
| reg_offset = |
| (TRIO_PCIE_RC_REVISION_ID << |
| TRIO_CFG_REGION_ADDR__REG_SHIFT) | |
| (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD << |
| TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | |
| (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); |
| |
| class_code_revision = |
| __gxio_mmio_read32(trio_context->mmio_base_mac + |
| reg_offset); |
| class_code_revision = (class_code_revision & 0xff ) | |
| (PCI_CLASS_BRIDGE_PCI << 16); |
| |
| __gxio_mmio_write32(trio_context->mmio_base_mac + |
| reg_offset, class_code_revision); |
| |
| #ifdef USE_SHARED_PCIE_CONFIG_REGION |
| |
| /* |
| * Map in the MMIO space for the PIO region. |
| */ |
| offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index) | |
| (((unsigned long long)mac) << |
| TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT); |
| |
| #else |
| |
| /* |
| * Alloc a PIO region for PCI config access per MAC. |
| */ |
| ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0); |
| if (ret < 0) { |
| pr_err("PCI: PCI CFG PIO alloc failure for mac %d " |
| "on TRIO %d, give up\n", mac, trio_index); |
| |
| continue; |
| } |
| |
| trio_context->pio_cfg_index[mac] = ret; |
| |
| /* |
| * For PIO CFG, the bus_address_hi parameter is 0. |
| */ |
| ret = gxio_trio_init_pio_region_aux(trio_context, |
| trio_context->pio_cfg_index[mac], |
| mac, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE); |
| if (ret < 0) { |
| pr_err("PCI: PCI CFG PIO init failure for mac %d " |
| "on TRIO %d, give up\n", mac, trio_index); |
| |
| continue; |
| } |
| |
| offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index[mac]) | |
| (((unsigned long long)mac) << |
| TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT); |
| |
| #endif |
| |
| trio_context->mmio_base_pio_cfg[mac] = |
| iorpc_ioremap(trio_context->fd, offset, |
| (1 << TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT)); |
| if (trio_context->mmio_base_pio_cfg[mac] == NULL) { |
| pr_err("PCI: PIO map failure for mac %d on TRIO %d\n", |
| mac, trio_index); |
| |
| continue; |
| } |
| |
| /* |
| * Initialize the PCIe interrupts. |
| */ |
| if (tile_init_irqs(controller)) { |
| pr_err("PCI: IRQs init failure for mac %d on TRIO %d\n", |
| mac, trio_index); |
| |
| continue; |
| } |
| |
| /* |
| * The PCI memory resource is located above the PA space. |
| * The memory range for the PCI root bus should not overlap |
| * with the physical RAM |
| */ |
| pci_add_resource_offset(&resources, &controller->mem_space, |
| controller->mem_offset); |
| |
| controller->first_busno = next_busno; |
| bus = pci_scan_root_bus(NULL, next_busno, controller->ops, |
| controller, &resources); |
| controller->root_bus = bus; |
| next_busno = bus->busn_res.end + 1; |
| |
| } |
| |
| /* Do machine dependent PCI interrupt routing */ |
| pci_fixup_irqs(pci_common_swizzle, tile_map_irq); |
| |
| /* |
| * This comes from the generic Linux PCI driver. |
| * |
| * It allocates all of the resources (I/O memory, etc) |
| * associated with the devices read in above. |
| */ |
| |
| pci_assign_unassigned_resources(); |
| |
| /* Record the I/O resources in the PCI controller structure. */ |
| for (i = 0; i < num_rc_controllers; i++) { |
| struct pci_controller *controller = &pci_controllers[i]; |
| gxio_trio_context_t *trio_context = controller->trio; |
| struct pci_bus *root_bus = pci_controllers[i].root_bus; |
| struct pci_bus *next_bus; |
| uint32_t bus_address_hi; |
| struct pci_dev *dev; |
| int ret; |
| int j; |
| |
| /* |
| * Skip controllers that are not properly initialized or |
| * have down links. |
| */ |
| if (root_bus == NULL) |
| continue; |
| |
| /* Configure the max_payload_size values for this domain. */ |
| fixup_read_and_payload_sizes(controller); |
| |
| list_for_each_entry(dev, &root_bus->devices, bus_list) { |
| /* Find the PCI host controller, ie. the 1st bridge. */ |
| if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI && |
| (PCI_SLOT(dev->devfn) == 0)) { |
| next_bus = dev->subordinate; |
| pci_controllers[i].mem_resources[0] = |
| *next_bus->resource[0]; |
| pci_controllers[i].mem_resources[1] = |
| *next_bus->resource[1]; |
| pci_controllers[i].mem_resources[2] = |
| *next_bus->resource[2]; |
| |
| break; |
| } |
| } |
| |
| if (pci_controllers[i].mem_resources[1].flags & IORESOURCE_MEM) |
| bus_address_hi = |
| pci_controllers[i].mem_resources[1].start >> 32; |
| else if (pci_controllers[i].mem_resources[2].flags & IORESOURCE_PREFETCH) |
| bus_address_hi = |
| pci_controllers[i].mem_resources[2].start >> 32; |
| else { |
| /* This is unlikely. */ |
| pr_err("PCI: no memory resources on TRIO %d mac %d\n", |
| controller->trio_index, controller->mac); |
| continue; |
| } |
| |
| /* |
| * Alloc a PIO region for PCI memory access for each RC port. |
| */ |
| ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0); |
| if (ret < 0) { |
| pr_err("PCI: MEM PIO alloc failure on TRIO %d mac %d, " |
| "give up\n", controller->trio_index, |
| controller->mac); |
| |
| continue; |
| } |
| |
| controller->pio_mem_index = ret; |
| |
| /* |
| * For PIO MEM, the bus_address_hi parameter is hard-coded 0 |
| * because we always assign 32-bit PCI bus BAR ranges. |
| */ |
| ret = gxio_trio_init_pio_region_aux(trio_context, |
| controller->pio_mem_index, |
| controller->mac, |
| 0, |
| 0); |
| if (ret < 0) { |
| pr_err("PCI: MEM PIO init failure on TRIO %d mac %d, " |
| "give up\n", controller->trio_index, |
| controller->mac); |
| |
| continue; |
| } |
| |
| /* |
| * Configure a Mem-Map region for each memory controller so |
| * that Linux can map all of its PA space to the PCI bus. |
| * Use the IOMMU to handle hash-for-home memory. |
| */ |
| for_each_online_node(j) { |
| unsigned long start_pfn = node_start_pfn[j]; |
| unsigned long end_pfn = node_end_pfn[j]; |
| unsigned long nr_pages = end_pfn - start_pfn; |
| |
| ret = gxio_trio_alloc_memory_maps(trio_context, 1, 0, |
| 0); |
| if (ret < 0) { |
| pr_err("PCI: Mem-Map alloc failure on TRIO %d " |
| "mac %d for MC %d, give up\n", |
| controller->trio_index, |
| controller->mac, j); |
| |
| goto alloc_mem_map_failed; |
| } |
| |
| controller->mem_maps[j] = ret; |
| |
| /* |
| * Initialize the Mem-Map and the I/O MMU so that all |
| * the physical memory can be accessed by the endpoint |
| * devices. The base bus address is set to the base CPA |
| * of this memory controller plus an offset (see pci.h). |
| * The region's base VA is set to the base CPA. The |
| * I/O MMU table essentially translates the CPA to |
| * the real PA. Implicitly, for node 0, we create |
| * a separate Mem-Map region that serves as the inbound |
| * window for legacy 32-bit devices. This is a direct |
| * map of the low 4GB CPA space. |
| */ |
| ret = gxio_trio_init_memory_map_mmu_aux(trio_context, |
| controller->mem_maps[j], |
| start_pfn << PAGE_SHIFT, |
| nr_pages << PAGE_SHIFT, |
| trio_context->asid, |
| controller->mac, |
| (start_pfn << PAGE_SHIFT) + |
| TILE_PCI_MEM_MAP_BASE_OFFSET, |
| j, |
| GXIO_TRIO_ORDER_MODE_UNORDERED); |
| if (ret < 0) { |
| pr_err("PCI: Mem-Map init failure on TRIO %d " |
| "mac %d for MC %d, give up\n", |
| controller->trio_index, |
| controller->mac, j); |
| |
| goto alloc_mem_map_failed; |
| } |
| continue; |
| |
| alloc_mem_map_failed: |
| break; |
| } |
| |
| } |
| |
| return 0; |
| } |
| subsys_initcall(pcibios_init); |
| |
| /* Note: to be deleted after Linux 3.6 merge. */ |
| void __devinit pcibios_fixup_bus(struct pci_bus *bus) |
| { |
| } |
| |
| /* |
| * This can be called from the generic PCI layer, but doesn't need to |
| * do anything. |
| */ |
| char __devinit *pcibios_setup(char *str) |
| { |
| if (!strcmp(str, "off")) { |
| pci_probe = 0; |
| return NULL; |
| } |
| return str; |
| } |
| |
| /* |
| * Enable memory address decoding, as appropriate, for the |
| * device described by the 'dev' struct. The I/O decoding |
| * is disabled, though the TILE-Gx supports I/O addressing. |
| * |
| * This is called from the generic PCI layer, and can be called |
| * for bridges or endpoints. |
| */ |
| int pcibios_enable_device(struct pci_dev *dev, int mask) |
| { |
| return pci_enable_resources(dev, mask); |
| } |
| |
| /* Called for each device after PCI setup is done. */ |
| static void __init |
| pcibios_fixup_final(struct pci_dev *pdev) |
| { |
| set_dma_ops(&pdev->dev, gx_pci_dma_map_ops); |
| set_dma_offset(&pdev->dev, TILE_PCI_MEM_MAP_BASE_OFFSET); |
| pdev->dev.archdata.max_direct_dma_addr = |
| TILE_PCI_MAX_DIRECT_DMA_ADDRESS; |
| } |
| DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_final); |
| |
| /* Map a PCI MMIO bus address into VA space. */ |
| void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) |
| { |
| struct pci_controller *controller = NULL; |
| resource_size_t bar_start; |
| resource_size_t bar_end; |
| resource_size_t offset; |
| resource_size_t start; |
| resource_size_t end; |
| int trio_fd; |
| int i, j; |
| |
| start = phys_addr; |
| end = phys_addr + size - 1; |
| |
| /* |
| * In the following, each PCI controller's mem_resources[1] |
| * represents its (non-prefetchable) PCI memory resource and |
| * mem_resources[2] refers to its prefetchable PCI memory resource. |
| * By searching phys_addr in each controller's mem_resources[], we can |
| * determine the controller that should accept the PCI memory access. |
| */ |
| |
| for (i = 0; i < num_rc_controllers; i++) { |
| /* |
| * Skip controllers that are not properly initialized or |
| * have down links. |
| */ |
| if (pci_controllers[i].root_bus == NULL) |
| continue; |
| |
| for (j = 1; j < 3; j++) { |
| bar_start = |
| pci_controllers[i].mem_resources[j].start; |
| bar_end = |
| pci_controllers[i].mem_resources[j].end; |
| |
| if ((start >= bar_start) && (end <= bar_end)) { |
| |
| controller = &pci_controllers[i]; |
| |
| goto got_it; |
| } |
| } |
| } |
| |
| if (controller == NULL) |
| return NULL; |
| |
| got_it: |
| trio_fd = controller->trio->fd; |
| |
| /* Convert the resource start to the bus address offset. */ |
| start = phys_addr - controller->mem_offset; |
| |
| offset = HV_TRIO_PIO_OFFSET(controller->pio_mem_index) + start; |
| |
| /* |
| * We need to keep the PCI bus address's in-page offset in the VA. |
| */ |
| return iorpc_ioremap(trio_fd, offset, size) + |
| (phys_addr & (PAGE_SIZE - 1)); |
| } |
| EXPORT_SYMBOL(ioremap); |
| |
| void pci_iounmap(struct pci_dev *dev, void __iomem *addr) |
| { |
| iounmap(addr); |
| } |
| EXPORT_SYMBOL(pci_iounmap); |
| |
| /**************************************************************** |
| * |
| * Tile PCI config space read/write routines |
| * |
| ****************************************************************/ |
| |
| /* |
| * These are the normal read and write ops |
| * These are expanded with macros from pci_bus_read_config_byte() etc. |
| * |
| * devfn is the combined PCI device & function. |
| * |
| * offset is in bytes, from the start of config space for the |
| * specified bus & device. |
| */ |
| |
| static int __devinit tile_cfg_read(struct pci_bus *bus, |
| unsigned int devfn, |
| int offset, |
| int size, |
| u32 *val) |
| { |
| struct pci_controller *controller = bus->sysdata; |
| gxio_trio_context_t *trio_context = controller->trio; |
| int busnum = bus->number & 0xff; |
| int device = PCI_SLOT(devfn); |
| int function = PCI_FUNC(devfn); |
| int config_type = 1; |
| TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr; |
| void *mmio_addr; |
| |
| /* |
| * Map all accesses to the local device on root bus into the |
| * MMIO space of the MAC. Accesses to the downstream devices |
| * go to the PIO space. |
| */ |
| if (pci_is_root_bus(bus)) { |
| if (device == 0) { |
| /* |
| * This is the internal downstream P2P bridge, |
| * access directly. |
| */ |
| unsigned int reg_offset; |
| |
| reg_offset = ((offset & 0xFFF) << |
| TRIO_CFG_REGION_ADDR__REG_SHIFT) | |
| (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED |
| << TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | |
| (controller->mac << |
| TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); |
| |
| mmio_addr = trio_context->mmio_base_mac + reg_offset; |
| |
| goto valid_device; |
| |
| } else { |
| /* |
| * We fake an empty device for (device > 0), |
| * since there is only one device on bus 0. |
| */ |
| goto invalid_device; |
| } |
| } |
| |
| /* |
| * Accesses to the directly attached device have to be |
| * sent as type-0 configs. |
| */ |
| |
| if (busnum == (controller->first_busno + 1)) { |
| /* |
| * There is only one device off of our built-in P2P bridge. |
| */ |
| if (device != 0) |
| goto invalid_device; |
| |
| config_type = 0; |
| } |
| |
| cfg_addr.word = 0; |
| cfg_addr.reg_addr = (offset & 0xFFF); |
| cfg_addr.fn = function; |
| cfg_addr.dev = device; |
| cfg_addr.bus = busnum; |
| cfg_addr.type = config_type; |
| |
| /* |
| * Note that we don't set the mac field in cfg_addr because the |
| * mapping is per port. |
| */ |
| |
| mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] + |
| cfg_addr.word; |
| |
| valid_device: |
| |
| switch (size) { |
| case 4: |
| *val = __gxio_mmio_read32(mmio_addr); |
| break; |
| |
| case 2: |
| *val = __gxio_mmio_read16(mmio_addr); |
| break; |
| |
| case 1: |
| *val = __gxio_mmio_read8(mmio_addr); |
| break; |
| |
| default: |
| return PCIBIOS_FUNC_NOT_SUPPORTED; |
| } |
| |
| TRACE_CFG_RD(size, *val, busnum, device, function, offset); |
| |
| return 0; |
| |
| invalid_device: |
| |
| switch (size) { |
| case 4: |
| *val = 0xFFFFFFFF; |
| break; |
| |
| case 2: |
| *val = 0xFFFF; |
| break; |
| |
| case 1: |
| *val = 0xFF; |
| break; |
| |
| default: |
| return PCIBIOS_FUNC_NOT_SUPPORTED; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* |
| * See tile_cfg_read() for relevent comments. |
| * Note that "val" is the value to write, not a pointer to that value. |
| */ |
| static int __devinit tile_cfg_write(struct pci_bus *bus, |
| unsigned int devfn, |
| int offset, |
| int size, |
| u32 val) |
| { |
| struct pci_controller *controller = bus->sysdata; |
| gxio_trio_context_t *trio_context = controller->trio; |
| int busnum = bus->number & 0xff; |
| int device = PCI_SLOT(devfn); |
| int function = PCI_FUNC(devfn); |
| int config_type = 1; |
| TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr; |
| void *mmio_addr; |
| u32 val_32 = (u32)val; |
| u16 val_16 = (u16)val; |
| u8 val_8 = (u8)val; |
| |
| /* |
| * Map all accesses to the local device on root bus into the |
| * MMIO space of the MAC. Accesses to the downstream devices |
| * go to the PIO space. |
| */ |
| if (pci_is_root_bus(bus)) { |
| if (device == 0) { |
| /* |
| * This is the internal downstream P2P bridge, |
| * access directly. |
| */ |
| unsigned int reg_offset; |
| |
| reg_offset = ((offset & 0xFFF) << |
| TRIO_CFG_REGION_ADDR__REG_SHIFT) | |
| (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED |
| << TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | |
| (controller->mac << |
| TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); |
| |
| mmio_addr = trio_context->mmio_base_mac + reg_offset; |
| |
| goto valid_device; |
| |
| } else { |
| /* |
| * We fake an empty device for (device > 0), |
| * since there is only one device on bus 0. |
| */ |
| goto invalid_device; |
| } |
| } |
| |
| /* |
| * Accesses to the directly attached device have to be |
| * sent as type-0 configs. |
| */ |
| |
| if (busnum == (controller->first_busno + 1)) { |
| /* |
| * There is only one device off of our built-in P2P bridge. |
| */ |
| if (device != 0) |
| goto invalid_device; |
| |
| config_type = 0; |
| } |
| |
| cfg_addr.word = 0; |
| cfg_addr.reg_addr = (offset & 0xFFF); |
| cfg_addr.fn = function; |
| cfg_addr.dev = device; |
| cfg_addr.bus = busnum; |
| cfg_addr.type = config_type; |
| |
| /* |
| * Note that we don't set the mac field in cfg_addr because the |
| * mapping is per port. |
| */ |
| |
| mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] + |
| cfg_addr.word; |
| |
| valid_device: |
| |
| switch (size) { |
| case 4: |
| __gxio_mmio_write32(mmio_addr, val_32); |
| TRACE_CFG_WR(size, val_32, busnum, device, function, offset); |
| break; |
| |
| case 2: |
| __gxio_mmio_write16(mmio_addr, val_16); |
| TRACE_CFG_WR(size, val_16, busnum, device, function, offset); |
| break; |
| |
| case 1: |
| __gxio_mmio_write8(mmio_addr, val_8); |
| TRACE_CFG_WR(size, val_8, busnum, device, function, offset); |
| break; |
| |
| default: |
| return PCIBIOS_FUNC_NOT_SUPPORTED; |
| } |
| |
| invalid_device: |
| |
| return 0; |
| } |
| |
| |
| static struct pci_ops tile_cfg_ops = { |
| .read = tile_cfg_read, |
| .write = tile_cfg_write, |
| }; |
| |
| |
| /* |
| * MSI support starts here. |
| */ |
| static unsigned int |
| tilegx_msi_startup(struct irq_data *d) |
| { |
| if (d->msi_desc) |
| unmask_msi_irq(d); |
| |
| return 0; |
| } |
| |
| static void |
| tilegx_msi_ack(struct irq_data *d) |
| { |
| __insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq); |
| } |
| |
| static void |
| tilegx_msi_mask(struct irq_data *d) |
| { |
| mask_msi_irq(d); |
| __insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq); |
| } |
| |
| static void |
| tilegx_msi_unmask(struct irq_data *d) |
| { |
| __insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq); |
| unmask_msi_irq(d); |
| } |
| |
| static struct irq_chip tilegx_msi_chip = { |
| .name = "tilegx_msi", |
| .irq_startup = tilegx_msi_startup, |
| .irq_ack = tilegx_msi_ack, |
| .irq_mask = tilegx_msi_mask, |
| .irq_unmask = tilegx_msi_unmask, |
| |
| /* TBD: support set_affinity. */ |
| }; |
| |
| int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc) |
| { |
| struct pci_controller *controller; |
| gxio_trio_context_t *trio_context; |
| struct msi_msg msg; |
| int default_irq; |
| uint64_t mem_map_base; |
| uint64_t mem_map_limit; |
| u64 msi_addr; |
| int mem_map; |
| int cpu; |
| int irq; |
| int ret; |
| |
| irq = create_irq(); |
| if (irq < 0) |
| return irq; |
| |
| /* |
| * Since we use a 64-bit Mem-Map to accept the MSI write, we fail |
| * devices that are not capable of generating a 64-bit message address. |
| * These devices will fall back to using the legacy interrupts. |
| * Most PCIe endpoint devices do support 64-bit message addressing. |
| */ |
| if (desc->msi_attrib.is_64 == 0) { |
| dev_printk(KERN_INFO, &pdev->dev, |
| "64-bit MSI message address not supported, " |
| "falling back to legacy interrupts.\n"); |
| |
| ret = -ENOMEM; |
| goto is_64_failure; |
| } |
| |
| default_irq = desc->msi_attrib.default_irq; |
| controller = irq_get_handler_data(default_irq); |
| |
| BUG_ON(!controller); |
| |
| trio_context = controller->trio; |
| |
| /* |
| * Allocate the Mem-Map that will accept the MSI write and |
| * trigger the TILE-side interrupts. |
| */ |
| mem_map = gxio_trio_alloc_memory_maps(trio_context, 1, 0, 0); |
| if (mem_map < 0) { |
| dev_printk(KERN_INFO, &pdev->dev, |
| "%s Mem-Map alloc failure. " |
| "Failed to initialize MSI interrupts. " |
| "Falling back to legacy interrupts.\n", |
| desc->msi_attrib.is_msix ? "MSI-X" : "MSI"); |
| |
| ret = -ENOMEM; |
| goto msi_mem_map_alloc_failure; |
| } |
| |
| /* We try to distribute different IRQs to different tiles. */ |
| cpu = tile_irq_cpu(irq); |
| |
| /* |
| * Now call up to the HV to configure the Mem-Map interrupt and |
| * set up the IPI binding. |
| */ |
| mem_map_base = MEM_MAP_INTR_REGIONS_BASE + |
| mem_map * MEM_MAP_INTR_REGION_SIZE; |
| mem_map_limit = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 1; |
| |
| ret = gxio_trio_config_msi_intr(trio_context, cpu_x(cpu), cpu_y(cpu), |
| KERNEL_PL, irq, controller->mac, |
| mem_map, mem_map_base, mem_map_limit, |
| trio_context->asid); |
| if (ret < 0) { |
| dev_printk(KERN_INFO, &pdev->dev, "HV MSI config failed.\n"); |
| |
| goto hv_msi_config_failure; |
| } |
| |
| irq_set_msi_desc(irq, desc); |
| |
| msi_addr = mem_map_base + TRIO_MAP_MEM_REG_INT3 - TRIO_MAP_MEM_REG_INT0; |
| |
| msg.address_hi = msi_addr >> 32; |
| msg.address_lo = msi_addr & 0xffffffff; |
| |
| msg.data = mem_map; |
| |
| write_msi_msg(irq, &msg); |
| irq_set_chip_and_handler(irq, &tilegx_msi_chip, handle_level_irq); |
| irq_set_handler_data(irq, controller); |
| |
| return 0; |
| |
| hv_msi_config_failure: |
| /* Free mem-map */ |
| msi_mem_map_alloc_failure: |
| is_64_failure: |
| destroy_irq(irq); |
| return ret; |
| } |
| |
| void arch_teardown_msi_irq(unsigned int irq) |
| { |
| destroy_irq(irq); |
| } |