| /* |
| * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner. |
| * |
| * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of the |
| * License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * |
| * This code is more or less generated from another driver, please |
| * excuse some codingstyle oddities. |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/i2c.h> |
| |
| #include "dvb_frontend.h" |
| |
| #include "dib0090.h" |
| #include "dibx000_common.h" |
| |
| static int debug; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); |
| |
| #define dprintk(args...) do { \ |
| if (debug) { \ |
| printk(KERN_DEBUG "DiB0090: "); \ |
| printk(args); \ |
| printk("\n"); \ |
| } \ |
| } while (0) |
| |
| #define CONFIG_SYS_ISDBT |
| #define CONFIG_BAND_CBAND |
| #define CONFIG_BAND_VHF |
| #define CONFIG_BAND_UHF |
| #define CONFIG_DIB0090_USE_PWM_AGC |
| |
| #define EN_LNA0 0x8000 |
| #define EN_LNA1 0x4000 |
| #define EN_LNA2 0x2000 |
| #define EN_LNA3 0x1000 |
| #define EN_MIX0 0x0800 |
| #define EN_MIX1 0x0400 |
| #define EN_MIX2 0x0200 |
| #define EN_MIX3 0x0100 |
| #define EN_IQADC 0x0040 |
| #define EN_PLL 0x0020 |
| #define EN_TX 0x0010 |
| #define EN_BB 0x0008 |
| #define EN_LO 0x0004 |
| #define EN_BIAS 0x0001 |
| |
| #define EN_IQANA 0x0002 |
| #define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */ |
| #define EN_CRYSTAL 0x0002 |
| |
| #define EN_UHF 0x22E9 |
| #define EN_VHF 0x44E9 |
| #define EN_LBD 0x11E9 |
| #define EN_SBD 0x44E9 |
| #define EN_CAB 0x88E9 |
| |
| #define pgm_read_word(w) (*w) |
| |
| struct dc_calibration; |
| |
| struct dib0090_tuning { |
| u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */ |
| u8 switch_trim; |
| u8 lna_tune; |
| u8 lna_bias; |
| u16 v2i; |
| u16 mix; |
| u16 load; |
| u16 tuner_enable; |
| }; |
| |
| struct dib0090_pll { |
| u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */ |
| u8 vco_band; |
| u8 hfdiv_code; |
| u8 hfdiv; |
| u8 topresc; |
| }; |
| |
| struct dib0090_state { |
| struct i2c_adapter *i2c; |
| struct dvb_frontend *fe; |
| const struct dib0090_config *config; |
| |
| u8 current_band; |
| u16 revision; |
| enum frontend_tune_state tune_state; |
| u32 current_rf; |
| |
| u16 wbd_offset; |
| s16 wbd_target; /* in dB */ |
| |
| s16 rf_gain_limit; /* take-over-point: where to split between bb and rf gain */ |
| s16 current_gain; /* keeps the currently programmed gain */ |
| u8 agc_step; /* new binary search */ |
| |
| u16 gain[2]; /* for channel monitoring */ |
| |
| const u16 *rf_ramp; |
| const u16 *bb_ramp; |
| |
| /* for the software AGC ramps */ |
| u16 bb_1_def; |
| u16 rf_lt_def; |
| u16 gain_reg[4]; |
| |
| /* for the captrim/dc-offset search */ |
| s8 step; |
| s16 adc_diff; |
| s16 min_adc_diff; |
| |
| s8 captrim; |
| s8 fcaptrim; |
| |
| const struct dc_calibration *dc; |
| u16 bb6, bb7; |
| |
| const struct dib0090_tuning *current_tune_table_index; |
| const struct dib0090_pll *current_pll_table_index; |
| |
| u8 tuner_is_tuned; |
| u8 agc_freeze; |
| |
| u8 reset; |
| }; |
| |
| static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg) |
| { |
| u8 b[2]; |
| struct i2c_msg msg[2] = { |
| {.addr = state->config->i2c_address, .flags = 0, .buf = ®, .len = 1}, |
| {.addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = b, .len = 2}, |
| }; |
| if (i2c_transfer(state->i2c, msg, 2) != 2) { |
| printk(KERN_WARNING "DiB0090 I2C read failed\n"); |
| return 0; |
| } |
| return (b[0] << 8) | b[1]; |
| } |
| |
| static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val) |
| { |
| u8 b[3] = { reg & 0xff, val >> 8, val & 0xff }; |
| struct i2c_msg msg = {.addr = state->config->i2c_address, .flags = 0, .buf = b, .len = 3 }; |
| if (i2c_transfer(state->i2c, &msg, 1) != 1) { |
| printk(KERN_WARNING "DiB0090 I2C write failed\n"); |
| return -EREMOTEIO; |
| } |
| return 0; |
| } |
| |
| #define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0) |
| #define ADC_TARGET -220 |
| #define GAIN_ALPHA 5 |
| #define WBD_ALPHA 6 |
| #define LPF 100 |
| static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c) |
| { |
| do { |
| dib0090_write_reg(state, r++, *b++); |
| } while (--c); |
| } |
| |
| static u16 dib0090_identify(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| u16 v; |
| |
| v = dib0090_read_reg(state, 0x1a); |
| |
| #ifdef FIRMWARE_FIREFLY |
| /* pll is not locked locked */ |
| if (!(v & 0x800)) |
| dprintk("FE%d : Identification : pll is not yet locked", fe->id); |
| #endif |
| |
| /* without PLL lock info */ |
| v &= 0x3ff; |
| dprintk("P/V: %04x:", v); |
| |
| if ((v >> 8) & 0xf) |
| dprintk("FE%d : Product ID = 0x%x : KROSUS", fe->id, (v >> 8) & 0xf); |
| else |
| return 0xff; |
| |
| v &= 0xff; |
| if (((v >> 5) & 0x7) == 0x1) |
| dprintk("FE%d : MP001 : 9090/8096", fe->id); |
| else if (((v >> 5) & 0x7) == 0x4) |
| dprintk("FE%d : MP005 : Single Sband", fe->id); |
| else if (((v >> 5) & 0x7) == 0x6) |
| dprintk("FE%d : MP008 : diversity VHF-UHF-LBAND", fe->id); |
| else if (((v >> 5) & 0x7) == 0x7) |
| dprintk("FE%d : MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND", fe->id); |
| else |
| return 0xff; |
| |
| /* revision only */ |
| if ((v & 0x1f) == 0x3) |
| dprintk("FE%d : P1-D/E/F detected", fe->id); |
| else if ((v & 0x1f) == 0x1) |
| dprintk("FE%d : P1C detected", fe->id); |
| else if ((v & 0x1f) == 0x0) { |
| #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT |
| dprintk("FE%d : P1-A/B detected: using previous driver - support will be removed soon", fe->id); |
| dib0090_p1b_register(fe); |
| #else |
| dprintk("FE%d : P1-A/B detected: driver is deactivated - not available", fe->id); |
| return 0xff; |
| #endif |
| } |
| |
| return v; |
| } |
| |
| static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| |
| HARD_RESET(state); |
| |
| dib0090_write_reg(state, 0x24, EN_PLL); |
| dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */ |
| |
| /* adcClkOutRatio=8->7, release reset */ |
| dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0); |
| if (cfg->clkoutdrive != 0) |
| dib0090_write_reg(state, 0x23, |
| (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 10) | (1 << 9) | (0 << 8) | (cfg->clkoutdrive << 5) | (cfg-> |
| clkouttobamse |
| << 4) | (0 |
| << |
| 2) |
| | (0)); |
| else |
| dib0090_write_reg(state, 0x23, |
| (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 10) | (1 << 9) | (0 << 8) | (7 << 5) | (cfg-> |
| clkouttobamse << 4) | (0 |
| << |
| 2) |
| | (0)); |
| |
| /* enable pll, de-activate reset, ratio: 2/1 = 60MHz */ |
| dib0090_write_reg(state, 0x21, |
| (cfg->io.pll_bypass << 15) | (1 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)); |
| |
| } |
| |
| static int dib0090_wakeup(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| if (state->config->sleep) |
| state->config->sleep(fe, 0); |
| return 0; |
| } |
| |
| static int dib0090_sleep(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| if (state->config->sleep) |
| state->config->sleep(fe, 1); |
| return 0; |
| } |
| |
| void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| if (fast) |
| dib0090_write_reg(state, 0x04, 0); |
| else |
| dib0090_write_reg(state, 0x04, 1); |
| } |
| EXPORT_SYMBOL(dib0090_dcc_freq); |
| |
| static const u16 rf_ramp_pwm_cband[] = { |
| 0, /* max RF gain in 10th of dB */ |
| 0, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */ |
| 0, /* ramp_max = maximum X used on the ramp */ |
| (0 << 10) | 0, /* 0x2c, LNA 1 = 0dB */ |
| (0 << 10) | 0, /* 0x2d, LNA 1 */ |
| (0 << 10) | 0, /* 0x2e, LNA 2 = 0dB */ |
| (0 << 10) | 0, /* 0x2f, LNA 2 */ |
| (0 << 10) | 0, /* 0x30, LNA 3 = 0dB */ |
| (0 << 10) | 0, /* 0x31, LNA 3 */ |
| (0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */ |
| (0 << 10) | 0, /* GAIN_4_2, LNA 4 */ |
| }; |
| |
| static const u16 rf_ramp_vhf[] = { |
| 412, /* max RF gain in 10th of dB */ |
| 132, 307, 127, /* LNA1, 13.2dB */ |
| 105, 412, 255, /* LNA2, 10.5dB */ |
| 50, 50, 127, /* LNA3, 5dB */ |
| 125, 175, 127, /* LNA4, 12.5dB */ |
| 0, 0, 127, /* CBAND, 0dB */ |
| }; |
| |
| static const u16 rf_ramp_uhf[] = { |
| 412, /* max RF gain in 10th of dB */ |
| 132, 307, 127, /* LNA1 : total gain = 13.2dB, point on the ramp where this amp is full gain, value to write to get full gain */ |
| 105, 412, 255, /* LNA2 : 10.5 dB */ |
| 50, 50, 127, /* LNA3 : 5.0 dB */ |
| 125, 175, 127, /* LNA4 : 12.5 dB */ |
| 0, 0, 127, /* CBAND : 0.0 dB */ |
| }; |
| |
| static const u16 rf_ramp_cband[] = { |
| 332, /* max RF gain in 10th of dB */ |
| 132, 252, 127, /* LNA1, dB */ |
| 80, 332, 255, /* LNA2, dB */ |
| 0, 0, 127, /* LNA3, dB */ |
| 0, 0, 127, /* LNA4, dB */ |
| 120, 120, 127, /* LT1 CBAND */ |
| }; |
| |
| static const u16 rf_ramp_pwm_vhf[] = { |
| 404, /* max RF gain in 10th of dB */ |
| 25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */ |
| 1011, /* ramp_max = maximum X used on the ramp */ |
| (6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */ |
| (0 << 10) | 756, /* 0x2d, LNA 1 */ |
| (16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */ |
| (0 << 10) | 1011, /* 0x2f, LNA 2 */ |
| (16 << 10) | 290, /* 0x30, LNA 3 = 5dB */ |
| (0 << 10) | 417, /* 0x31, LNA 3 */ |
| (7 << 10) | 0, /* GAIN_4_1, LNA 4 = 12.5dB */ |
| (0 << 10) | 290, /* GAIN_4_2, LNA 4 */ |
| }; |
| |
| static const u16 rf_ramp_pwm_uhf[] = { |
| 404, /* max RF gain in 10th of dB */ |
| 25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */ |
| 1011, /* ramp_max = maximum X used on the ramp */ |
| (6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */ |
| (0 << 10) | 756, /* 0x2d, LNA 1 */ |
| (16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */ |
| (0 << 10) | 1011, /* 0x2f, LNA 2 */ |
| (16 << 10) | 0, /* 0x30, LNA 3 = 5dB */ |
| (0 << 10) | 127, /* 0x31, LNA 3 */ |
| (7 << 10) | 127, /* GAIN_4_1, LNA 4 = 12.5dB */ |
| (0 << 10) | 417, /* GAIN_4_2, LNA 4 */ |
| }; |
| |
| static const u16 bb_ramp_boost[] = { |
| 550, /* max BB gain in 10th of dB */ |
| 260, 260, 26, /* BB1, 26dB */ |
| 290, 550, 29, /* BB2, 29dB */ |
| }; |
| |
| static const u16 bb_ramp_pwm_normal[] = { |
| 500, /* max RF gain in 10th of dB */ |
| 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x34 */ |
| 400, |
| (2 << 9) | 0, /* 0x35 = 21dB */ |
| (0 << 9) | 168, /* 0x36 */ |
| (2 << 9) | 168, /* 0x37 = 29dB */ |
| (0 << 9) | 400, /* 0x38 */ |
| }; |
| |
| struct slope { |
| int16_t range; |
| int16_t slope; |
| }; |
| static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val) |
| { |
| u8 i; |
| u16 rest; |
| u16 ret = 0; |
| for (i = 0; i < num; i++) { |
| if (val > slopes[i].range) |
| rest = slopes[i].range; |
| else |
| rest = val; |
| ret += (rest * slopes[i].slope) / slopes[i].range; |
| val -= rest; |
| } |
| return ret; |
| } |
| |
| static const struct slope dib0090_wbd_slopes[3] = { |
| {66, 120}, /* -64,-52: offset - 65 */ |
| {600, 170}, /* -52,-35: 65 - 665 */ |
| {170, 250}, /* -45,-10: 665 - 835 */ |
| }; |
| |
| static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd) |
| { |
| wbd &= 0x3ff; |
| if (wbd < state->wbd_offset) |
| wbd = 0; |
| else |
| wbd -= state->wbd_offset; |
| /* -64dB is the floor */ |
| return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd); |
| } |
| |
| static void dib0090_wbd_target(struct dib0090_state *state, u32 rf) |
| { |
| u16 offset = 250; |
| |
| /* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */ |
| |
| if (state->current_band == BAND_VHF) |
| offset = 650; |
| #ifndef FIRMWARE_FIREFLY |
| if (state->current_band == BAND_VHF) |
| offset = state->config->wbd_vhf_offset; |
| if (state->current_band == BAND_CBAND) |
| offset = state->config->wbd_cband_offset; |
| #endif |
| |
| state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset); |
| dprintk("wbd-target: %d dB", (u32) state->wbd_target); |
| } |
| |
| static const int gain_reg_addr[4] = { |
| 0x08, 0x0a, 0x0f, 0x01 |
| }; |
| |
| static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force) |
| { |
| u16 rf, bb, ref; |
| u16 i, v, gain_reg[4] = { 0 }, gain; |
| const u16 *g; |
| |
| if (top_delta < -511) |
| top_delta = -511; |
| if (top_delta > 511) |
| top_delta = 511; |
| |
| if (force) { |
| top_delta *= (1 << WBD_ALPHA); |
| gain_delta *= (1 << GAIN_ALPHA); |
| } |
| |
| if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit)) /* overflow */ |
| state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA; |
| else |
| state->rf_gain_limit += top_delta; |
| |
| if (state->rf_gain_limit < 0) /*underflow */ |
| state->rf_gain_limit = 0; |
| |
| /* use gain as a temporary variable and correct current_gain */ |
| gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA; |
| if (gain_delta >= ((s16) gain - state->current_gain)) /* overflow */ |
| state->current_gain = gain; |
| else |
| state->current_gain += gain_delta; |
| /* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */ |
| if (state->current_gain < 0) |
| state->current_gain = 0; |
| |
| /* now split total gain to rf and bb gain */ |
| gain = state->current_gain >> GAIN_ALPHA; |
| |
| /* requested gain is bigger than rf gain limit - ACI/WBD adjustment */ |
| if (gain > (state->rf_gain_limit >> WBD_ALPHA)) { |
| rf = state->rf_gain_limit >> WBD_ALPHA; |
| bb = gain - rf; |
| if (bb > state->bb_ramp[0]) |
| bb = state->bb_ramp[0]; |
| } else { /* high signal level -> all gains put on RF */ |
| rf = gain; |
| bb = 0; |
| } |
| |
| state->gain[0] = rf; |
| state->gain[1] = bb; |
| |
| /* software ramp */ |
| /* Start with RF gains */ |
| g = state->rf_ramp + 1; /* point on RF LNA1 max gain */ |
| ref = rf; |
| for (i = 0; i < 7; i++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */ |
| if (g[0] == 0 || ref < (g[1] - g[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */ |
| v = 0; /* force the gain to write for the current amp to be null */ |
| else if (ref >= g[1]) /* Gain to set is higher than the high working point of this amp */ |
| v = g[2]; /* force this amp to be full gain */ |
| else /* compute the value to set to this amp because we are somewhere in his range */ |
| v = ((ref - (g[1] - g[0])) * g[2]) / g[0]; |
| |
| if (i == 0) /* LNA 1 reg mapping */ |
| gain_reg[0] = v; |
| else if (i == 1) /* LNA 2 reg mapping */ |
| gain_reg[0] |= v << 7; |
| else if (i == 2) /* LNA 3 reg mapping */ |
| gain_reg[1] = v; |
| else if (i == 3) /* LNA 4 reg mapping */ |
| gain_reg[1] |= v << 7; |
| else if (i == 4) /* CBAND LNA reg mapping */ |
| gain_reg[2] = v | state->rf_lt_def; |
| else if (i == 5) /* BB gain 1 reg mapping */ |
| gain_reg[3] = v << 3; |
| else if (i == 6) /* BB gain 2 reg mapping */ |
| gain_reg[3] |= v << 8; |
| |
| g += 3; /* go to next gain bloc */ |
| |
| /* When RF is finished, start with BB */ |
| if (i == 4) { |
| g = state->bb_ramp + 1; /* point on BB gain 1 max gain */ |
| ref = bb; |
| } |
| } |
| gain_reg[3] |= state->bb_1_def; |
| gain_reg[3] |= ((bb % 10) * 100) / 125; |
| |
| #ifdef DEBUG_AGC |
| dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf, bb, rf + bb, |
| gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]); |
| #endif |
| |
| /* Write the amplifier regs */ |
| for (i = 0; i < 4; i++) { |
| v = gain_reg[i]; |
| if (force || state->gain_reg[i] != v) { |
| state->gain_reg[i] = v; |
| dib0090_write_reg(state, gain_reg_addr[i], v); |
| } |
| } |
| } |
| |
| static void dib0090_set_boost(struct dib0090_state *state, int onoff) |
| { |
| state->bb_1_def &= 0xdfff; |
| state->bb_1_def |= onoff << 13; |
| } |
| |
| static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg) |
| { |
| state->rf_ramp = cfg; |
| } |
| |
| static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg) |
| { |
| state->rf_ramp = cfg; |
| |
| dib0090_write_reg(state, 0x2a, 0xffff); |
| |
| dprintk("total RF gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x2a)); |
| |
| dib0090_write_regs(state, 0x2c, cfg + 3, 6); |
| dib0090_write_regs(state, 0x3e, cfg + 9, 2); |
| } |
| |
| static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg) |
| { |
| state->bb_ramp = cfg; |
| dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */ |
| } |
| |
| static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg) |
| { |
| state->bb_ramp = cfg; |
| |
| dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */ |
| |
| dib0090_write_reg(state, 0x33, 0xffff); |
| dprintk("total BB gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x33)); |
| dib0090_write_regs(state, 0x35, cfg + 3, 4); |
| } |
| |
| void dib0090_pwm_gain_reset(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| /* reset the AGC */ |
| |
| if (state->config->use_pwm_agc) { |
| #ifdef CONFIG_BAND_SBAND |
| if (state->current_band == BAND_SBAND) { |
| dib0090_set_rframp_pwm(state, rf_ramp_pwm_sband); |
| dib0090_set_bbramp_pwm(state, bb_ramp_pwm_boost); |
| } else |
| #endif |
| #ifdef CONFIG_BAND_CBAND |
| if (state->current_band == BAND_CBAND) { |
| dib0090_set_rframp_pwm(state, rf_ramp_pwm_cband); |
| dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal); |
| } else |
| #endif |
| #ifdef CONFIG_BAND_VHF |
| if (state->current_band == BAND_VHF) { |
| dib0090_set_rframp_pwm(state, rf_ramp_pwm_vhf); |
| dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal); |
| } else |
| #endif |
| { |
| dib0090_set_rframp_pwm(state, rf_ramp_pwm_uhf); |
| dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal); |
| } |
| |
| if (state->rf_ramp[0] != 0) |
| dib0090_write_reg(state, 0x32, (3 << 11)); |
| else |
| dib0090_write_reg(state, 0x32, (0 << 11)); |
| |
| dib0090_write_reg(state, 0x39, (1 << 10)); |
| } |
| } |
| EXPORT_SYMBOL(dib0090_pwm_gain_reset); |
| |
| int dib0090_gain_control(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| enum frontend_tune_state *tune_state = &state->tune_state; |
| int ret = 10; |
| |
| u16 wbd_val = 0; |
| u8 apply_gain_immediatly = 1; |
| s16 wbd_error = 0, adc_error = 0; |
| |
| if (*tune_state == CT_AGC_START) { |
| state->agc_freeze = 0; |
| dib0090_write_reg(state, 0x04, 0x0); |
| |
| #ifdef CONFIG_BAND_SBAND |
| if (state->current_band == BAND_SBAND) { |
| dib0090_set_rframp(state, rf_ramp_sband); |
| dib0090_set_bbramp(state, bb_ramp_boost); |
| } else |
| #endif |
| #ifdef CONFIG_BAND_VHF |
| if (state->current_band == BAND_VHF) { |
| dib0090_set_rframp(state, rf_ramp_vhf); |
| dib0090_set_bbramp(state, bb_ramp_boost); |
| } else |
| #endif |
| #ifdef CONFIG_BAND_CBAND |
| if (state->current_band == BAND_CBAND) { |
| dib0090_set_rframp(state, rf_ramp_cband); |
| dib0090_set_bbramp(state, bb_ramp_boost); |
| } else |
| #endif |
| { |
| dib0090_set_rframp(state, rf_ramp_uhf); |
| dib0090_set_bbramp(state, bb_ramp_boost); |
| } |
| |
| dib0090_write_reg(state, 0x32, 0); |
| dib0090_write_reg(state, 0x39, 0); |
| |
| dib0090_wbd_target(state, state->current_rf); |
| |
| state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA; |
| state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA; |
| |
| *tune_state = CT_AGC_STEP_0; |
| } else if (!state->agc_freeze) { |
| s16 wbd; |
| |
| int adc; |
| wbd_val = dib0090_read_reg(state, 0x1d); |
| |
| /* read and calc the wbd power */ |
| wbd = dib0090_wbd_to_db(state, wbd_val); |
| wbd_error = state->wbd_target - wbd; |
| |
| if (*tune_state == CT_AGC_STEP_0) { |
| if (wbd_error < 0 && state->rf_gain_limit > 0) { |
| #ifdef CONFIG_BAND_CBAND |
| /* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */ |
| u8 ltg2 = (state->rf_lt_def >> 10) & 0x7; |
| if (state->current_band == BAND_CBAND && ltg2) { |
| ltg2 >>= 1; |
| state->rf_lt_def &= ltg2 << 10; /* reduce in 3 steps from 7 to 0 */ |
| } |
| #endif |
| } else { |
| state->agc_step = 0; |
| *tune_state = CT_AGC_STEP_1; |
| } |
| } else { |
| /* calc the adc power */ |
| adc = state->config->get_adc_power(fe); |
| adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21; /* included in [0:-700] */ |
| |
| adc_error = (s16) (((s32) ADC_TARGET) - adc); |
| #ifdef CONFIG_STANDARD_DAB |
| if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) |
| adc_error += 130; |
| #endif |
| #ifdef CONFIG_STANDARD_DVBT |
| if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT && |
| (state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16)) |
| adc_error += 60; |
| #endif |
| #ifdef CONFIG_SYS_ISDBT |
| if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count > |
| 0) |
| && |
| ((state->fe->dtv_property_cache.layer[0].modulation == |
| QAM_64) |
| || (state->fe->dtv_property_cache.layer[0]. |
| modulation == QAM_16))) |
| || |
| ((state->fe->dtv_property_cache.layer[1].segment_count > |
| 0) |
| && |
| ((state->fe->dtv_property_cache.layer[1].modulation == |
| QAM_64) |
| || (state->fe->dtv_property_cache.layer[1]. |
| modulation == QAM_16))) |
| || |
| ((state->fe->dtv_property_cache.layer[2].segment_count > |
| 0) |
| && |
| ((state->fe->dtv_property_cache.layer[2].modulation == |
| QAM_64) |
| || (state->fe->dtv_property_cache.layer[2]. |
| modulation == QAM_16))) |
| ) |
| ) |
| adc_error += 60; |
| #endif |
| |
| if (*tune_state == CT_AGC_STEP_1) { /* quickly go to the correct range of the ADC power */ |
| if (ABS(adc_error) < 50 || state->agc_step++ > 5) { |
| |
| #ifdef CONFIG_STANDARD_DAB |
| if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) { |
| dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */ |
| dib0090_write_reg(state, 0x04, 0x0); |
| } else |
| #endif |
| { |
| dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32)); |
| dib0090_write_reg(state, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */ |
| } |
| |
| *tune_state = CT_AGC_STOP; |
| } |
| } else { |
| /* everything higher than or equal to CT_AGC_STOP means tracking */ |
| ret = 100; /* 10ms interval */ |
| apply_gain_immediatly = 0; |
| } |
| } |
| #ifdef DEBUG_AGC |
| dprintk |
| ("FE: %d, tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm", |
| (u32) fe->id, (u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val, |
| (u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA)); |
| #endif |
| } |
| |
| /* apply gain */ |
| if (!state->agc_freeze) |
| dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly); |
| return ret; |
| } |
| EXPORT_SYMBOL(dib0090_gain_control); |
| |
| void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| if (rf) |
| *rf = state->gain[0]; |
| if (bb) |
| *bb = state->gain[1]; |
| if (rf_gain_limit) |
| *rf_gain_limit = state->rf_gain_limit; |
| if (rflt) |
| *rflt = (state->rf_lt_def >> 10) & 0x7; |
| } |
| EXPORT_SYMBOL(dib0090_get_current_gain); |
| |
| u16 dib0090_get_wbd_offset(struct dvb_frontend *tuner) |
| { |
| struct dib0090_state *st = tuner->tuner_priv; |
| return st->wbd_offset; |
| } |
| EXPORT_SYMBOL(dib0090_get_wbd_offset); |
| |
| static const u16 dib0090_defaults[] = { |
| |
| 25, 0x01, |
| 0x0000, |
| 0x99a0, |
| 0x6008, |
| 0x0000, |
| 0x8acb, |
| 0x0000, |
| 0x0405, |
| 0x0000, |
| 0x0000, |
| 0x0000, |
| 0xb802, |
| 0x0300, |
| 0x2d12, |
| 0xbac0, |
| 0x7c00, |
| 0xdbb9, |
| 0x0954, |
| 0x0743, |
| 0x8000, |
| 0x0001, |
| 0x0040, |
| 0x0100, |
| 0x0000, |
| 0xe910, |
| 0x149e, |
| |
| 1, 0x1c, |
| 0xff2d, |
| |
| 1, 0x39, |
| 0x0000, |
| |
| 1, 0x1b, |
| EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL, |
| 2, 0x1e, |
| 0x07FF, |
| 0x0007, |
| |
| 1, 0x24, |
| EN_UHF | EN_CRYSTAL, |
| |
| 2, 0x3c, |
| 0x3ff, |
| 0x111, |
| 0 |
| }; |
| |
| static int dib0090_reset(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| u16 l, r, *n; |
| |
| dib0090_reset_digital(fe, state->config); |
| state->revision = dib0090_identify(fe); |
| |
| /* Revision definition */ |
| if (state->revision == 0xff) |
| return -EINVAL; |
| #ifdef EFUSE |
| else if ((state->revision & 0x1f) >= 3) /* Update the efuse : Only available for KROSUS > P1C */ |
| dib0090_set_EFUSE(state); |
| #endif |
| |
| #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT |
| if (!(state->revision & 0x1)) /* it is P1B - reset is already done */ |
| return 0; |
| #endif |
| |
| /* Upload the default values */ |
| n = (u16 *) dib0090_defaults; |
| l = pgm_read_word(n++); |
| while (l) { |
| r = pgm_read_word(n++); |
| do { |
| /* DEBUG_TUNER */ |
| /* dprintk("%d, %d, %d", l, r, pgm_read_word(n)); */ |
| dib0090_write_reg(state, r, pgm_read_word(n++)); |
| r++; |
| } while (--l); |
| l = pgm_read_word(n++); |
| } |
| |
| /* Congigure in function of the crystal */ |
| if (state->config->io.clock_khz >= 24000) |
| l = 1; |
| else |
| l = 2; |
| dib0090_write_reg(state, 0x14, l); |
| dprintk("Pll lock : %d", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1); |
| |
| state->reset = 3; /* enable iq-offset-calibration and wbd-calibration when tuning next time */ |
| |
| return 0; |
| } |
| |
| #define steps(u) (((u) > 15) ? ((u)-16) : (u)) |
| #define INTERN_WAIT 10 |
| static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state) |
| { |
| int ret = INTERN_WAIT * 10; |
| |
| switch (*tune_state) { |
| case CT_TUNER_STEP_2: |
| /* Turns to positive */ |
| dib0090_write_reg(state, 0x1f, 0x7); |
| *tune_state = CT_TUNER_STEP_3; |
| break; |
| |
| case CT_TUNER_STEP_3: |
| state->adc_diff = dib0090_read_reg(state, 0x1d); |
| |
| /* Turns to negative */ |
| dib0090_write_reg(state, 0x1f, 0x4); |
| *tune_state = CT_TUNER_STEP_4; |
| break; |
| |
| case CT_TUNER_STEP_4: |
| state->adc_diff -= dib0090_read_reg(state, 0x1d); |
| *tune_state = CT_TUNER_STEP_5; |
| ret = 0; |
| break; |
| |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| struct dc_calibration { |
| uint8_t addr; |
| uint8_t offset; |
| uint8_t pga:1; |
| uint16_t bb1; |
| uint8_t i:1; |
| }; |
| |
| static const struct dc_calibration dc_table[] = { |
| /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */ |
| {0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1}, |
| {0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0}, |
| /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */ |
| {0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1}, |
| {0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0}, |
| {0}, |
| }; |
| |
| static void dib0090_set_trim(struct dib0090_state *state) |
| { |
| u16 *val; |
| |
| if (state->dc->addr == 0x07) |
| val = &state->bb7; |
| else |
| val = &state->bb6; |
| |
| *val &= ~(0x1f << state->dc->offset); |
| *val |= state->step << state->dc->offset; |
| |
| dib0090_write_reg(state, state->dc->addr, *val); |
| } |
| |
| static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state) |
| { |
| int ret = 0; |
| |
| switch (*tune_state) { |
| |
| case CT_TUNER_START: |
| /* init */ |
| dprintk("Internal DC calibration"); |
| |
| /* the LNA is off */ |
| dib0090_write_reg(state, 0x24, 0x02ed); |
| |
| /* force vcm2 = 0.8V */ |
| state->bb6 = 0; |
| state->bb7 = 0x040d; |
| |
| state->dc = dc_table; |
| |
| *tune_state = CT_TUNER_STEP_0; |
| |
| /* fall through */ |
| |
| case CT_TUNER_STEP_0: |
| dib0090_write_reg(state, 0x01, state->dc->bb1); |
| dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7)); |
| |
| state->step = 0; |
| |
| state->min_adc_diff = 1023; |
| |
| *tune_state = CT_TUNER_STEP_1; |
| ret = 50; |
| break; |
| |
| case CT_TUNER_STEP_1: |
| dib0090_set_trim(state); |
| |
| *tune_state = CT_TUNER_STEP_2; |
| break; |
| |
| case CT_TUNER_STEP_2: |
| case CT_TUNER_STEP_3: |
| case CT_TUNER_STEP_4: |
| ret = dib0090_get_offset(state, tune_state); |
| break; |
| |
| case CT_TUNER_STEP_5: /* found an offset */ |
| dprintk("FE%d: IQC read=%d, current=%x", state->fe->id, (u32) state->adc_diff, state->step); |
| |
| /* first turn for this frequency */ |
| if (state->step == 0) { |
| if (state->dc->pga && state->adc_diff < 0) |
| state->step = 0x10; |
| if (state->dc->pga == 0 && state->adc_diff > 0) |
| state->step = 0x10; |
| } |
| |
| state->adc_diff = ABS(state->adc_diff); |
| |
| if (state->adc_diff < state->min_adc_diff && steps(state->step) < 15) { /* stop search when the delta to 0 is increasing */ |
| state->step++; |
| state->min_adc_diff = state->adc_diff; |
| *tune_state = CT_TUNER_STEP_1; |
| } else { |
| |
| /* the minimum was what we have seen in the step before */ |
| state->step--; |
| dib0090_set_trim(state); |
| |
| dprintk("FE%d: BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state->fe->id, state->dc->addr, state->adc_diff, |
| state->step); |
| |
| state->dc++; |
| if (state->dc->addr == 0) /* done */ |
| *tune_state = CT_TUNER_STEP_6; |
| else |
| *tune_state = CT_TUNER_STEP_0; |
| |
| } |
| break; |
| |
| case CT_TUNER_STEP_6: |
| dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008); |
| dib0090_write_reg(state, 0x1f, 0x7); |
| *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */ |
| state->reset &= ~0x1; |
| default: |
| break; |
| } |
| return ret; |
| } |
| |
| static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state) |
| { |
| switch (*tune_state) { |
| case CT_TUNER_START: |
| /* WBD-mode=log, Bias=2, Gain=6, Testmode=1, en=1, WBDMUX=1 */ |
| dib0090_write_reg(state, 0x10, 0xdb09 | (1 << 10)); |
| dib0090_write_reg(state, 0x24, EN_UHF & 0x0fff); |
| |
| *tune_state = CT_TUNER_STEP_0; |
| return 90; /* wait for the WBDMUX to switch and for the ADC to sample */ |
| case CT_TUNER_STEP_0: |
| state->wbd_offset = dib0090_read_reg(state, 0x1d); |
| dprintk("WBD calibration offset = %d", state->wbd_offset); |
| |
| *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */ |
| state->reset &= ~0x2; |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| static void dib0090_set_bandwidth(struct dib0090_state *state) |
| { |
| u16 tmp; |
| |
| if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000) |
| tmp = (3 << 14); |
| else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000) |
| tmp = (2 << 14); |
| else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000) |
| tmp = (1 << 14); |
| else |
| tmp = (0 << 14); |
| |
| state->bb_1_def &= 0x3fff; |
| state->bb_1_def |= tmp; |
| |
| dib0090_write_reg(state, 0x01, state->bb_1_def); /* be sure that we have the right bb-filter */ |
| } |
| |
| static const struct dib0090_pll dib0090_pll_table[] = { |
| #ifdef CONFIG_BAND_CBAND |
| {56000, 0, 9, 48, 6}, |
| {70000, 1, 9, 48, 6}, |
| {87000, 0, 8, 32, 4}, |
| {105000, 1, 8, 32, 4}, |
| {115000, 0, 7, 24, 6}, |
| {140000, 1, 7, 24, 6}, |
| {170000, 0, 6, 16, 4}, |
| #endif |
| #ifdef CONFIG_BAND_VHF |
| {200000, 1, 6, 16, 4}, |
| {230000, 0, 5, 12, 6}, |
| {280000, 1, 5, 12, 6}, |
| {340000, 0, 4, 8, 4}, |
| {380000, 1, 4, 8, 4}, |
| {450000, 0, 3, 6, 6}, |
| #endif |
| #ifdef CONFIG_BAND_UHF |
| {580000, 1, 3, 6, 6}, |
| {700000, 0, 2, 4, 4}, |
| {860000, 1, 2, 4, 4}, |
| #endif |
| #ifdef CONFIG_BAND_LBAND |
| {1800000, 1, 0, 2, 4}, |
| #endif |
| #ifdef CONFIG_BAND_SBAND |
| {2900000, 0, 14, 1, 4}, |
| #endif |
| }; |
| |
| static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = { |
| |
| #ifdef CONFIG_BAND_CBAND |
| {184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, |
| {227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, |
| {380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, |
| #endif |
| #ifdef CONFIG_BAND_UHF |
| {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| #endif |
| #ifdef CONFIG_BAND_LBAND |
| {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| #endif |
| #ifdef CONFIG_BAND_SBAND |
| {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, |
| {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, |
| #endif |
| }; |
| |
| static const struct dib0090_tuning dib0090_tuning_table[] = { |
| |
| #ifdef CONFIG_BAND_CBAND |
| {170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, |
| #endif |
| #ifdef CONFIG_BAND_VHF |
| {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, |
| {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, |
| {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, |
| #endif |
| #ifdef CONFIG_BAND_UHF |
| {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| #endif |
| #ifdef CONFIG_BAND_LBAND |
| {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| #endif |
| #ifdef CONFIG_BAND_SBAND |
| {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, |
| {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, |
| #endif |
| }; |
| |
| #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */ |
| static int dib0090_tune(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| const struct dib0090_tuning *tune = state->current_tune_table_index; |
| const struct dib0090_pll *pll = state->current_pll_table_index; |
| enum frontend_tune_state *tune_state = &state->tune_state; |
| |
| u32 rf; |
| u16 lo4 = 0xe900, lo5, lo6, Den; |
| u32 FBDiv, Rest, FREF, VCOF_kHz = 0; |
| u16 tmp, adc; |
| int8_t step_sign; |
| int ret = 10; /* 1ms is the default delay most of the time */ |
| u8 c, i; |
| |
| state->current_band = (u8) BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000); |
| rf = fe->dtv_property_cache.frequency / 1000 + (state->current_band == |
| BAND_UHF ? state->config->freq_offset_khz_uhf : state->config->freq_offset_khz_vhf); |
| /* in any case we first need to do a reset if needed */ |
| if (state->reset & 0x1) |
| return dib0090_dc_offset_calibration(state, tune_state); |
| else if (state->reset & 0x2) |
| return dib0090_wbd_calibration(state, tune_state); |
| |
| /************************* VCO ***************************/ |
| /* Default values for FG */ |
| /* from these are needed : */ |
| /* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */ |
| |
| #ifdef CONFIG_SYS_ISDBT |
| if (state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1) |
| rf += 850; |
| #endif |
| |
| if (state->current_rf != rf) { |
| state->tuner_is_tuned = 0; |
| |
| tune = dib0090_tuning_table; |
| |
| tmp = (state->revision >> 5) & 0x7; |
| if (tmp == 0x4 || tmp == 0x7) { |
| /* CBAND tuner version for VHF */ |
| if (state->current_band == BAND_FM || state->current_band == BAND_VHF) { |
| /* Force CBAND */ |
| state->current_band = BAND_CBAND; |
| tune = dib0090_tuning_table_fm_vhf_on_cband; |
| } |
| } |
| |
| pll = dib0090_pll_table; |
| /* Look for the interval */ |
| while (rf > tune->max_freq) |
| tune++; |
| while (rf > pll->max_freq) |
| pll++; |
| state->current_tune_table_index = tune; |
| state->current_pll_table_index = pll; |
| } |
| |
| if (*tune_state == CT_TUNER_START) { |
| |
| if (state->tuner_is_tuned == 0) |
| state->current_rf = 0; |
| |
| if (state->current_rf != rf) { |
| |
| dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim)); |
| |
| /* external loop filter, otherwise: |
| * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4; |
| * lo6 = 0x0e34 */ |
| if (pll->vco_band) |
| lo5 = 0x049e; |
| else if (state->config->analog_output) |
| lo5 = 0x041d; |
| else |
| lo5 = 0x041c; |
| |
| lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7); /* bit 15 is the split to the slave, we do not do it here */ |
| |
| if (!state->config->io.pll_int_loop_filt) |
| lo6 = 0xff28; |
| else |
| lo6 = (state->config->io.pll_int_loop_filt << 3); |
| |
| VCOF_kHz = (pll->hfdiv * rf) * 2; |
| |
| FREF = state->config->io.clock_khz; |
| |
| FBDiv = (VCOF_kHz / pll->topresc / FREF); |
| Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF; |
| |
| if (Rest < LPF) |
| Rest = 0; |
| else if (Rest < 2 * LPF) |
| Rest = 2 * LPF; |
| else if (Rest > (FREF - LPF)) { |
| Rest = 0; |
| FBDiv += 1; |
| } else if (Rest > (FREF - 2 * LPF)) |
| Rest = FREF - 2 * LPF; |
| Rest = (Rest * 6528) / (FREF / 10); |
| |
| Den = 1; |
| |
| dprintk(" ***** ******* Rest value = %d", Rest); |
| |
| if (Rest > 0) { |
| if (state->config->analog_output) |
| lo6 |= (1 << 2) | 2; |
| else |
| lo6 |= (1 << 2) | 1; |
| Den = 255; |
| } |
| #ifdef CONFIG_BAND_SBAND |
| if (state->current_band == BAND_SBAND) |
| lo6 &= 0xfffb; |
| #endif |
| |
| dib0090_write_reg(state, 0x15, (u16) FBDiv); |
| |
| dib0090_write_reg(state, 0x16, (Den << 8) | 1); |
| |
| dib0090_write_reg(state, 0x17, (u16) Rest); |
| |
| dib0090_write_reg(state, 0x19, lo5); |
| |
| dib0090_write_reg(state, 0x1c, lo6); |
| |
| lo6 = tune->tuner_enable; |
| if (state->config->analog_output) |
| lo6 = (lo6 & 0xff9f) | 0x2; |
| |
| dib0090_write_reg(state, 0x24, lo6 | EN_LO |
| #ifdef CONFIG_DIB0090_USE_PWM_AGC |
| | state->config->use_pwm_agc * EN_CRYSTAL |
| #endif |
| ); |
| |
| state->current_rf = rf; |
| |
| /* prepare a complete captrim */ |
| state->step = state->captrim = state->fcaptrim = 64; |
| |
| } else { /* we are already tuned to this frequency - the configuration is correct */ |
| |
| /* do a minimal captrim even if the frequency has not changed */ |
| state->step = 4; |
| state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f; |
| } |
| state->adc_diff = 3000; |
| |
| dib0090_write_reg(state, 0x10, 0x2B1); |
| |
| dib0090_write_reg(state, 0x1e, 0x0032); |
| |
| ret = 20; |
| *tune_state = CT_TUNER_STEP_1; |
| } else if (*tune_state == CT_TUNER_STEP_0) { |
| /* nothing */ |
| } else if (*tune_state == CT_TUNER_STEP_1) { |
| state->step /= 2; |
| dib0090_write_reg(state, 0x18, lo4 | state->captrim); |
| *tune_state = CT_TUNER_STEP_2; |
| } else if (*tune_state == CT_TUNER_STEP_2) { |
| |
| adc = dib0090_read_reg(state, 0x1d); |
| dprintk("FE %d CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32) fe->id, (u32) state->captrim, (u32) adc, |
| (u32) (adc) * (u32) 1800 / (u32) 1024); |
| |
| if (adc >= 400) { |
| adc -= 400; |
| step_sign = -1; |
| } else { |
| adc = 400 - adc; |
| step_sign = 1; |
| } |
| |
| if (adc < state->adc_diff) { |
| dprintk("FE %d CAPTRIM=%d is closer to target (%d/%d)", (u32) fe->id, (u32) state->captrim, (u32) adc, (u32) state->adc_diff); |
| state->adc_diff = adc; |
| state->fcaptrim = state->captrim; |
| |
| } |
| |
| state->captrim += step_sign * state->step; |
| if (state->step >= 1) |
| *tune_state = CT_TUNER_STEP_1; |
| else |
| *tune_state = CT_TUNER_STEP_3; |
| |
| ret = 15; |
| } else if (*tune_state == CT_TUNER_STEP_3) { |
| /*write the final cptrim config */ |
| dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim); |
| |
| #ifdef CONFIG_TUNER_DIB0090_CAPTRIM_MEMORY |
| state->memory[state->memory_index].cap = state->fcaptrim; |
| #endif |
| |
| *tune_state = CT_TUNER_STEP_4; |
| } else if (*tune_state == CT_TUNER_STEP_4) { |
| dib0090_write_reg(state, 0x1e, 0x07ff); |
| |
| dprintk("FE %d Final Captrim: %d", (u32) fe->id, (u32) state->fcaptrim); |
| dprintk("FE %d HFDIV code: %d", (u32) fe->id, (u32) pll->hfdiv_code); |
| dprintk("FE %d VCO = %d", (u32) fe->id, (u32) pll->vco_band); |
| dprintk("FE %d VCOF in kHz: %d ((%d*%d) << 1))", (u32) fe->id, (u32) ((pll->hfdiv * rf) * 2), (u32) pll->hfdiv, (u32) rf); |
| dprintk("FE %d REFDIV: %d, FREF: %d", (u32) fe->id, (u32) 1, (u32) state->config->io.clock_khz); |
| dprintk("FE %d FBDIV: %d, Rest: %d", (u32) fe->id, (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17)); |
| dprintk("FE %d Num: %d, Den: %d, SD: %d", (u32) fe->id, (u32) dib0090_read_reg(state, 0x17), |
| (u32) (dib0090_read_reg(state, 0x16) >> 8), (u32) dib0090_read_reg(state, 0x1c) & 0x3); |
| |
| c = 4; |
| i = 3; |
| #if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND) |
| if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND)) { |
| c = 2; |
| i = 2; |
| } |
| #endif |
| dib0090_write_reg(state, 0x10, (c << 13) | (i << 11) | (WBD |
| #ifdef CONFIG_DIB0090_USE_PWM_AGC |
| | (state->config->use_pwm_agc << 1) |
| #endif |
| )); |
| dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | (tune->lna_bias << 0)); |
| dib0090_write_reg(state, 0x0c, tune->v2i); |
| dib0090_write_reg(state, 0x0d, tune->mix); |
| dib0090_write_reg(state, 0x0e, tune->load); |
| |
| *tune_state = CT_TUNER_STEP_5; |
| } else if (*tune_state == CT_TUNER_STEP_5) { |
| |
| /* initialize the lt gain register */ |
| state->rf_lt_def = 0x7c00; |
| dib0090_write_reg(state, 0x0f, state->rf_lt_def); |
| |
| dib0090_set_bandwidth(state); |
| state->tuner_is_tuned = 1; |
| *tune_state = CT_TUNER_STOP; |
| } else |
| ret = FE_CALLBACK_TIME_NEVER; |
| return ret; |
| } |
| |
| static int dib0090_release(struct dvb_frontend *fe) |
| { |
| kfree(fe->tuner_priv); |
| fe->tuner_priv = NULL; |
| return 0; |
| } |
| |
| enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| |
| return state->tune_state; |
| } |
| EXPORT_SYMBOL(dib0090_get_tune_state); |
| |
| int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| |
| state->tune_state = tune_state; |
| return 0; |
| } |
| EXPORT_SYMBOL(dib0090_set_tune_state); |
| |
| static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| |
| *frequency = 1000 * state->current_rf; |
| return 0; |
| } |
| |
| static int dib0090_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *p) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| uint32_t ret; |
| |
| state->tune_state = CT_TUNER_START; |
| |
| do { |
| ret = dib0090_tune(fe); |
| if (ret != FE_CALLBACK_TIME_NEVER) |
| msleep(ret / 10); |
| else |
| break; |
| } while (state->tune_state != CT_TUNER_STOP); |
| |
| return 0; |
| } |
| |
| static const struct dvb_tuner_ops dib0090_ops = { |
| .info = { |
| .name = "DiBcom DiB0090", |
| .frequency_min = 45000000, |
| .frequency_max = 860000000, |
| .frequency_step = 1000, |
| }, |
| .release = dib0090_release, |
| |
| .init = dib0090_wakeup, |
| .sleep = dib0090_sleep, |
| .set_params = dib0090_set_params, |
| .get_frequency = dib0090_get_frequency, |
| }; |
| |
| struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config) |
| { |
| struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL); |
| if (st == NULL) |
| return NULL; |
| |
| st->config = config; |
| st->i2c = i2c; |
| st->fe = fe; |
| fe->tuner_priv = st; |
| |
| if (dib0090_reset(fe) != 0) |
| goto free_mem; |
| |
| printk(KERN_INFO "DiB0090: successfully identified\n"); |
| memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops)); |
| |
| return fe; |
| free_mem: |
| kfree(st); |
| fe->tuner_priv = NULL; |
| return NULL; |
| } |
| EXPORT_SYMBOL(dib0090_register); |
| |
| MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); |
| MODULE_AUTHOR("Olivier Grenie <olivier.grenie@dibcom.fr>"); |
| MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner"); |
| MODULE_LICENSE("GPL"); |