| /******************************************************************************* |
| |
| Intel PRO/1000 Linux driver |
| Copyright(c) 1999 - 2008 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| Linux NICS <linux.nics@intel.com> |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| /* |
| * 82571EB Gigabit Ethernet Controller |
| * 82571EB Gigabit Ethernet Controller (Fiber) |
| * 82571EB Dual Port Gigabit Mezzanine Adapter |
| * 82571EB Quad Port Gigabit Mezzanine Adapter |
| * 82571PT Gigabit PT Quad Port Server ExpressModule |
| * 82572EI Gigabit Ethernet Controller (Copper) |
| * 82572EI Gigabit Ethernet Controller (Fiber) |
| * 82572EI Gigabit Ethernet Controller |
| * 82573V Gigabit Ethernet Controller (Copper) |
| * 82573E Gigabit Ethernet Controller (Copper) |
| * 82573L Gigabit Ethernet Controller |
| */ |
| |
| #include <linux/netdevice.h> |
| #include <linux/delay.h> |
| #include <linux/pci.h> |
| |
| #include "e1000.h" |
| |
| #define ID_LED_RESERVED_F746 0xF746 |
| #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \ |
| (ID_LED_OFF1_ON2 << 8) | \ |
| (ID_LED_DEF1_DEF2 << 4) | \ |
| (ID_LED_DEF1_DEF2)) |
| |
| #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 |
| |
| static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); |
| static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); |
| static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); |
| static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, |
| u16 words, u16 *data); |
| static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); |
| static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); |
| static s32 e1000_setup_link_82571(struct e1000_hw *hw); |
| static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); |
| |
| /** |
| * e1000_init_phy_params_82571 - Init PHY func ptrs. |
| * @hw: pointer to the HW structure |
| * |
| * This is a function pointer entry point called by the api module. |
| **/ |
| static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| |
| if (hw->phy.media_type != e1000_media_type_copper) { |
| phy->type = e1000_phy_none; |
| return 0; |
| } |
| |
| phy->addr = 1; |
| phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| phy->reset_delay_us = 100; |
| |
| switch (hw->mac.type) { |
| case e1000_82571: |
| case e1000_82572: |
| phy->type = e1000_phy_igp_2; |
| break; |
| case e1000_82573: |
| phy->type = e1000_phy_m88; |
| break; |
| default: |
| return -E1000_ERR_PHY; |
| break; |
| } |
| |
| /* This can only be done after all function pointers are setup. */ |
| ret_val = e1000_get_phy_id_82571(hw); |
| |
| /* Verify phy id */ |
| switch (hw->mac.type) { |
| case e1000_82571: |
| case e1000_82572: |
| if (phy->id != IGP01E1000_I_PHY_ID) |
| return -E1000_ERR_PHY; |
| break; |
| case e1000_82573: |
| if (phy->id != M88E1111_I_PHY_ID) |
| return -E1000_ERR_PHY; |
| break; |
| default: |
| return -E1000_ERR_PHY; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_init_nvm_params_82571 - Init NVM func ptrs. |
| * @hw: pointer to the HW structure |
| * |
| * This is a function pointer entry point called by the api module. |
| **/ |
| static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 eecd = er32(EECD); |
| u16 size; |
| |
| nvm->opcode_bits = 8; |
| nvm->delay_usec = 1; |
| switch (nvm->override) { |
| case e1000_nvm_override_spi_large: |
| nvm->page_size = 32; |
| nvm->address_bits = 16; |
| break; |
| case e1000_nvm_override_spi_small: |
| nvm->page_size = 8; |
| nvm->address_bits = 8; |
| break; |
| default: |
| nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; |
| nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; |
| break; |
| } |
| |
| switch (hw->mac.type) { |
| case e1000_82573: |
| if (((eecd >> 15) & 0x3) == 0x3) { |
| nvm->type = e1000_nvm_flash_hw; |
| nvm->word_size = 2048; |
| /* |
| * Autonomous Flash update bit must be cleared due |
| * to Flash update issue. |
| */ |
| eecd &= ~E1000_EECD_AUPDEN; |
| ew32(EECD, eecd); |
| break; |
| } |
| /* Fall Through */ |
| default: |
| nvm->type = e1000_nvm_eeprom_spi; |
| size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
| E1000_EECD_SIZE_EX_SHIFT); |
| /* |
| * Added to a constant, "size" becomes the left-shift value |
| * for setting word_size. |
| */ |
| size += NVM_WORD_SIZE_BASE_SHIFT; |
| |
| /* EEPROM access above 16k is unsupported */ |
| if (size > 14) |
| size = 14; |
| nvm->word_size = 1 << size; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_init_mac_params_82571 - Init MAC func ptrs. |
| * @hw: pointer to the HW structure |
| * |
| * This is a function pointer entry point called by the api module. |
| **/ |
| static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_mac_info *mac = &hw->mac; |
| struct e1000_mac_operations *func = &mac->ops; |
| |
| /* Set media type */ |
| switch (adapter->pdev->device) { |
| case E1000_DEV_ID_82571EB_FIBER: |
| case E1000_DEV_ID_82572EI_FIBER: |
| case E1000_DEV_ID_82571EB_QUAD_FIBER: |
| hw->phy.media_type = e1000_media_type_fiber; |
| break; |
| case E1000_DEV_ID_82571EB_SERDES: |
| case E1000_DEV_ID_82572EI_SERDES: |
| case E1000_DEV_ID_82571EB_SERDES_DUAL: |
| case E1000_DEV_ID_82571EB_SERDES_QUAD: |
| hw->phy.media_type = e1000_media_type_internal_serdes; |
| break; |
| default: |
| hw->phy.media_type = e1000_media_type_copper; |
| break; |
| } |
| |
| /* Set mta register count */ |
| mac->mta_reg_count = 128; |
| /* Set rar entry count */ |
| mac->rar_entry_count = E1000_RAR_ENTRIES; |
| /* Set if manageability features are enabled. */ |
| mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0; |
| |
| /* check for link */ |
| switch (hw->phy.media_type) { |
| case e1000_media_type_copper: |
| func->setup_physical_interface = e1000_setup_copper_link_82571; |
| func->check_for_link = e1000e_check_for_copper_link; |
| func->get_link_up_info = e1000e_get_speed_and_duplex_copper; |
| break; |
| case e1000_media_type_fiber: |
| func->setup_physical_interface = |
| e1000_setup_fiber_serdes_link_82571; |
| func->check_for_link = e1000e_check_for_fiber_link; |
| func->get_link_up_info = |
| e1000e_get_speed_and_duplex_fiber_serdes; |
| break; |
| case e1000_media_type_internal_serdes: |
| func->setup_physical_interface = |
| e1000_setup_fiber_serdes_link_82571; |
| func->check_for_link = e1000e_check_for_serdes_link; |
| func->get_link_up_info = |
| e1000e_get_speed_and_duplex_fiber_serdes; |
| break; |
| default: |
| return -E1000_ERR_CONFIG; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static s32 e1000_get_variants_82571(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| static int global_quad_port_a; /* global port a indication */ |
| struct pci_dev *pdev = adapter->pdev; |
| u16 eeprom_data = 0; |
| int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1; |
| s32 rc; |
| |
| rc = e1000_init_mac_params_82571(adapter); |
| if (rc) |
| return rc; |
| |
| rc = e1000_init_nvm_params_82571(hw); |
| if (rc) |
| return rc; |
| |
| rc = e1000_init_phy_params_82571(hw); |
| if (rc) |
| return rc; |
| |
| /* tag quad port adapters first, it's used below */ |
| switch (pdev->device) { |
| case E1000_DEV_ID_82571EB_QUAD_COPPER: |
| case E1000_DEV_ID_82571EB_QUAD_FIBER: |
| case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: |
| case E1000_DEV_ID_82571PT_QUAD_COPPER: |
| adapter->flags |= FLAG_IS_QUAD_PORT; |
| /* mark the first port */ |
| if (global_quad_port_a == 0) |
| adapter->flags |= FLAG_IS_QUAD_PORT_A; |
| /* Reset for multiple quad port adapters */ |
| global_quad_port_a++; |
| if (global_quad_port_a == 4) |
| global_quad_port_a = 0; |
| break; |
| default: |
| break; |
| } |
| |
| switch (adapter->hw.mac.type) { |
| case e1000_82571: |
| /* these dual ports don't have WoL on port B at all */ |
| if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) || |
| (pdev->device == E1000_DEV_ID_82571EB_SERDES) || |
| (pdev->device == E1000_DEV_ID_82571EB_COPPER)) && |
| (is_port_b)) |
| adapter->flags &= ~FLAG_HAS_WOL; |
| /* quad ports only support WoL on port A */ |
| if (adapter->flags & FLAG_IS_QUAD_PORT && |
| (!(adapter->flags & FLAG_IS_QUAD_PORT_A))) |
| adapter->flags &= ~FLAG_HAS_WOL; |
| /* Does not support WoL on any port */ |
| if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) |
| adapter->flags &= ~FLAG_HAS_WOL; |
| break; |
| |
| case e1000_82573: |
| if (pdev->device == E1000_DEV_ID_82573L) { |
| e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1, |
| &eeprom_data); |
| if (eeprom_data & NVM_WORD1A_ASPM_MASK) |
| adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision |
| * @hw: pointer to the HW structure |
| * |
| * Reads the PHY registers and stores the PHY ID and possibly the PHY |
| * revision in the hardware structure. |
| **/ |
| static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| |
| switch (hw->mac.type) { |
| case e1000_82571: |
| case e1000_82572: |
| /* |
| * The 82571 firmware may still be configuring the PHY. |
| * In this case, we cannot access the PHY until the |
| * configuration is done. So we explicitly set the |
| * PHY ID. |
| */ |
| phy->id = IGP01E1000_I_PHY_ID; |
| break; |
| case e1000_82573: |
| return e1000e_get_phy_id(hw); |
| break; |
| default: |
| return -E1000_ERR_PHY; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore |
| * @hw: pointer to the HW structure |
| * |
| * Acquire the HW semaphore to access the PHY or NVM |
| **/ |
| static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) |
| { |
| u32 swsm; |
| s32 timeout = hw->nvm.word_size + 1; |
| s32 i = 0; |
| |
| /* Get the FW semaphore. */ |
| for (i = 0; i < timeout; i++) { |
| swsm = er32(SWSM); |
| ew32(SWSM, swsm | E1000_SWSM_SWESMBI); |
| |
| /* Semaphore acquired if bit latched */ |
| if (er32(SWSM) & E1000_SWSM_SWESMBI) |
| break; |
| |
| udelay(50); |
| } |
| |
| if (i == timeout) { |
| /* Release semaphores */ |
| e1000e_put_hw_semaphore(hw); |
| hw_dbg(hw, "Driver can't access the NVM\n"); |
| return -E1000_ERR_NVM; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_put_hw_semaphore_82571 - Release hardware semaphore |
| * @hw: pointer to the HW structure |
| * |
| * Release hardware semaphore used to access the PHY or NVM |
| **/ |
| static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) |
| { |
| u32 swsm; |
| |
| swsm = er32(SWSM); |
| |
| swsm &= ~E1000_SWSM_SWESMBI; |
| |
| ew32(SWSM, swsm); |
| } |
| |
| /** |
| * e1000_acquire_nvm_82571 - Request for access to the EEPROM |
| * @hw: pointer to the HW structure |
| * |
| * To gain access to the EEPROM, first we must obtain a hardware semaphore. |
| * Then for non-82573 hardware, set the EEPROM access request bit and wait |
| * for EEPROM access grant bit. If the access grant bit is not set, release |
| * hardware semaphore. |
| **/ |
| static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| |
| ret_val = e1000_get_hw_semaphore_82571(hw); |
| if (ret_val) |
| return ret_val; |
| |
| if (hw->mac.type != e1000_82573) |
| ret_val = e1000e_acquire_nvm(hw); |
| |
| if (ret_val) |
| e1000_put_hw_semaphore_82571(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_release_nvm_82571 - Release exclusive access to EEPROM |
| * @hw: pointer to the HW structure |
| * |
| * Stop any current commands to the EEPROM and clear the EEPROM request bit. |
| **/ |
| static void e1000_release_nvm_82571(struct e1000_hw *hw) |
| { |
| e1000e_release_nvm(hw); |
| e1000_put_hw_semaphore_82571(hw); |
| } |
| |
| /** |
| * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface |
| * @hw: pointer to the HW structure |
| * @offset: offset within the EEPROM to be written to |
| * @words: number of words to write |
| * @data: 16 bit word(s) to be written to the EEPROM |
| * |
| * For non-82573 silicon, write data to EEPROM at offset using SPI interface. |
| * |
| * If e1000e_update_nvm_checksum is not called after this function, the |
| * EEPROM will most likely contain an invalid checksum. |
| **/ |
| static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| s32 ret_val; |
| |
| switch (hw->mac.type) { |
| case e1000_82573: |
| ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); |
| break; |
| case e1000_82571: |
| case e1000_82572: |
| ret_val = e1000e_write_nvm_spi(hw, offset, words, data); |
| break; |
| default: |
| ret_val = -E1000_ERR_NVM; |
| break; |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_update_nvm_checksum_82571 - Update EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
| * up to the checksum. Then calculates the EEPROM checksum and writes the |
| * value to the EEPROM. |
| **/ |
| static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) |
| { |
| u32 eecd; |
| s32 ret_val; |
| u16 i; |
| |
| ret_val = e1000e_update_nvm_checksum_generic(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* |
| * If our nvm is an EEPROM, then we're done |
| * otherwise, commit the checksum to the flash NVM. |
| */ |
| if (hw->nvm.type != e1000_nvm_flash_hw) |
| return ret_val; |
| |
| /* Check for pending operations. */ |
| for (i = 0; i < E1000_FLASH_UPDATES; i++) { |
| msleep(1); |
| if ((er32(EECD) & E1000_EECD_FLUPD) == 0) |
| break; |
| } |
| |
| if (i == E1000_FLASH_UPDATES) |
| return -E1000_ERR_NVM; |
| |
| /* Reset the firmware if using STM opcode. */ |
| if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) { |
| /* |
| * The enabling of and the actual reset must be done |
| * in two write cycles. |
| */ |
| ew32(HICR, E1000_HICR_FW_RESET_ENABLE); |
| e1e_flush(); |
| ew32(HICR, E1000_HICR_FW_RESET); |
| } |
| |
| /* Commit the write to flash */ |
| eecd = er32(EECD) | E1000_EECD_FLUPD; |
| ew32(EECD, eecd); |
| |
| for (i = 0; i < E1000_FLASH_UPDATES; i++) { |
| msleep(1); |
| if ((er32(EECD) & E1000_EECD_FLUPD) == 0) |
| break; |
| } |
| |
| if (i == E1000_FLASH_UPDATES) |
| return -E1000_ERR_NVM; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
| * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
| **/ |
| static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) |
| { |
| if (hw->nvm.type == e1000_nvm_flash_hw) |
| e1000_fix_nvm_checksum_82571(hw); |
| |
| return e1000e_validate_nvm_checksum_generic(hw); |
| } |
| |
| /** |
| * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon |
| * @hw: pointer to the HW structure |
| * @offset: offset within the EEPROM to be written to |
| * @words: number of words to write |
| * @data: 16 bit word(s) to be written to the EEPROM |
| * |
| * After checking for invalid values, poll the EEPROM to ensure the previous |
| * command has completed before trying to write the next word. After write |
| * poll for completion. |
| * |
| * If e1000e_update_nvm_checksum is not called after this function, the |
| * EEPROM will most likely contain an invalid checksum. |
| **/ |
| static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, |
| u16 words, u16 *data) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 i; |
| u32 eewr = 0; |
| s32 ret_val = 0; |
| |
| /* |
| * A check for invalid values: offset too large, too many words, |
| * and not enough words. |
| */ |
| if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| (words == 0)) { |
| hw_dbg(hw, "nvm parameter(s) out of bounds\n"); |
| return -E1000_ERR_NVM; |
| } |
| |
| for (i = 0; i < words; i++) { |
| eewr = (data[i] << E1000_NVM_RW_REG_DATA) | |
| ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | |
| E1000_NVM_RW_REG_START; |
| |
| ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); |
| if (ret_val) |
| break; |
| |
| ew32(EEWR, eewr); |
| |
| ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); |
| if (ret_val) |
| break; |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_get_cfg_done_82571 - Poll for configuration done |
| * @hw: pointer to the HW structure |
| * |
| * Reads the management control register for the config done bit to be set. |
| **/ |
| static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) |
| { |
| s32 timeout = PHY_CFG_TIMEOUT; |
| |
| while (timeout) { |
| if (er32(EEMNGCTL) & |
| E1000_NVM_CFG_DONE_PORT_0) |
| break; |
| msleep(1); |
| timeout--; |
| } |
| if (!timeout) { |
| hw_dbg(hw, "MNG configuration cycle has not completed.\n"); |
| return -E1000_ERR_RESET; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state |
| * @hw: pointer to the HW structure |
| * @active: TRUE to enable LPLU, FALSE to disable |
| * |
| * Sets the LPLU D0 state according to the active flag. When activating LPLU |
| * this function also disables smart speed and vice versa. LPLU will not be |
| * activated unless the device autonegotiation advertisement meets standards |
| * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function |
| * pointer entry point only called by PHY setup routines. |
| **/ |
| static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data; |
| |
| ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); |
| if (ret_val) |
| return ret_val; |
| |
| if (active) { |
| data |= IGP02E1000_PM_D0_LPLU; |
| ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); |
| if (ret_val) |
| return ret_val; |
| |
| /* When LPLU is enabled, we should disable SmartSpeed */ |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
| if (ret_val) |
| return ret_val; |
| } else { |
| data &= ~IGP02E1000_PM_D0_LPLU; |
| ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); |
| /* |
| * LPLU and SmartSpeed are mutually exclusive. LPLU is used |
| * during Dx states where the power conservation is most |
| * important. During driver activity we should enable |
| * SmartSpeed, so performance is maintained. |
| */ |
| if (phy->smart_speed == e1000_smart_speed_on) { |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data |= IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| return ret_val; |
| } else if (phy->smart_speed == e1000_smart_speed_off) { |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| return ret_val; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_reset_hw_82571 - Reset hardware |
| * @hw: pointer to the HW structure |
| * |
| * This resets the hardware into a known state. This is a |
| * function pointer entry point called by the api module. |
| **/ |
| static s32 e1000_reset_hw_82571(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| u32 extcnf_ctrl; |
| u32 ctrl_ext; |
| u32 icr; |
| s32 ret_val; |
| u16 i = 0; |
| |
| /* |
| * Prevent the PCI-E bus from sticking if there is no TLP connection |
| * on the last TLP read/write transaction when MAC is reset. |
| */ |
| ret_val = e1000e_disable_pcie_master(hw); |
| if (ret_val) |
| hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); |
| |
| hw_dbg(hw, "Masking off all interrupts\n"); |
| ew32(IMC, 0xffffffff); |
| |
| ew32(RCTL, 0); |
| ew32(TCTL, E1000_TCTL_PSP); |
| e1e_flush(); |
| |
| msleep(10); |
| |
| /* |
| * Must acquire the MDIO ownership before MAC reset. |
| * Ownership defaults to firmware after a reset. |
| */ |
| if (hw->mac.type == e1000_82573) { |
| extcnf_ctrl = er32(EXTCNF_CTRL); |
| extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; |
| |
| do { |
| ew32(EXTCNF_CTRL, extcnf_ctrl); |
| extcnf_ctrl = er32(EXTCNF_CTRL); |
| |
| if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) |
| break; |
| |
| extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; |
| |
| msleep(2); |
| i++; |
| } while (i < MDIO_OWNERSHIP_TIMEOUT); |
| } |
| |
| ctrl = er32(CTRL); |
| |
| hw_dbg(hw, "Issuing a global reset to MAC\n"); |
| ew32(CTRL, ctrl | E1000_CTRL_RST); |
| |
| if (hw->nvm.type == e1000_nvm_flash_hw) { |
| udelay(10); |
| ctrl_ext = er32(CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
| ew32(CTRL_EXT, ctrl_ext); |
| e1e_flush(); |
| } |
| |
| ret_val = e1000e_get_auto_rd_done(hw); |
| if (ret_val) |
| /* We don't want to continue accessing MAC registers. */ |
| return ret_val; |
| |
| /* |
| * Phy configuration from NVM just starts after EECD_AUTO_RD is set. |
| * Need to wait for Phy configuration completion before accessing |
| * NVM and Phy. |
| */ |
| if (hw->mac.type == e1000_82573) |
| msleep(25); |
| |
| /* Clear any pending interrupt events. */ |
| ew32(IMC, 0xffffffff); |
| icr = er32(ICR); |
| |
| if (hw->mac.type == e1000_82571 && |
| hw->dev_spec.e82571.alt_mac_addr_is_present) |
| e1000e_set_laa_state_82571(hw, true); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_init_hw_82571 - Initialize hardware |
| * @hw: pointer to the HW structure |
| * |
| * This inits the hardware readying it for operation. |
| **/ |
| static s32 e1000_init_hw_82571(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 reg_data; |
| s32 ret_val; |
| u16 i; |
| u16 rar_count = mac->rar_entry_count; |
| |
| e1000_initialize_hw_bits_82571(hw); |
| |
| /* Initialize identification LED */ |
| ret_val = e1000e_id_led_init(hw); |
| if (ret_val) { |
| hw_dbg(hw, "Error initializing identification LED\n"); |
| return ret_val; |
| } |
| |
| /* Disabling VLAN filtering */ |
| hw_dbg(hw, "Initializing the IEEE VLAN\n"); |
| e1000e_clear_vfta(hw); |
| |
| /* Setup the receive address. */ |
| /* |
| * If, however, a locally administered address was assigned to the |
| * 82571, we must reserve a RAR for it to work around an issue where |
| * resetting one port will reload the MAC on the other port. |
| */ |
| if (e1000e_get_laa_state_82571(hw)) |
| rar_count--; |
| e1000e_init_rx_addrs(hw, rar_count); |
| |
| /* Zero out the Multicast HASH table */ |
| hw_dbg(hw, "Zeroing the MTA\n"); |
| for (i = 0; i < mac->mta_reg_count; i++) |
| E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
| |
| /* Setup link and flow control */ |
| ret_val = e1000_setup_link_82571(hw); |
| |
| /* Set the transmit descriptor write-back policy */ |
| reg_data = er32(TXDCTL(0)); |
| reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
| E1000_TXDCTL_FULL_TX_DESC_WB | |
| E1000_TXDCTL_COUNT_DESC; |
| ew32(TXDCTL(0), reg_data); |
| |
| /* ...for both queues. */ |
| if (mac->type != e1000_82573) { |
| reg_data = er32(TXDCTL(1)); |
| reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
| E1000_TXDCTL_FULL_TX_DESC_WB | |
| E1000_TXDCTL_COUNT_DESC; |
| ew32(TXDCTL(1), reg_data); |
| } else { |
| e1000e_enable_tx_pkt_filtering(hw); |
| reg_data = er32(GCR); |
| reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; |
| ew32(GCR, reg_data); |
| } |
| |
| /* |
| * Clear all of the statistics registers (clear on read). It is |
| * important that we do this after we have tried to establish link |
| * because the symbol error count will increment wildly if there |
| * is no link. |
| */ |
| e1000_clear_hw_cntrs_82571(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits |
| * @hw: pointer to the HW structure |
| * |
| * Initializes required hardware-dependent bits needed for normal operation. |
| **/ |
| static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) |
| { |
| u32 reg; |
| |
| /* Transmit Descriptor Control 0 */ |
| reg = er32(TXDCTL(0)); |
| reg |= (1 << 22); |
| ew32(TXDCTL(0), reg); |
| |
| /* Transmit Descriptor Control 1 */ |
| reg = er32(TXDCTL(1)); |
| reg |= (1 << 22); |
| ew32(TXDCTL(1), reg); |
| |
| /* Transmit Arbitration Control 0 */ |
| reg = er32(TARC(0)); |
| reg &= ~(0xF << 27); /* 30:27 */ |
| switch (hw->mac.type) { |
| case e1000_82571: |
| case e1000_82572: |
| reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); |
| break; |
| default: |
| break; |
| } |
| ew32(TARC(0), reg); |
| |
| /* Transmit Arbitration Control 1 */ |
| reg = er32(TARC(1)); |
| switch (hw->mac.type) { |
| case e1000_82571: |
| case e1000_82572: |
| reg &= ~((1 << 29) | (1 << 30)); |
| reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); |
| if (er32(TCTL) & E1000_TCTL_MULR) |
| reg &= ~(1 << 28); |
| else |
| reg |= (1 << 28); |
| ew32(TARC(1), reg); |
| break; |
| default: |
| break; |
| } |
| |
| /* Device Control */ |
| if (hw->mac.type == e1000_82573) { |
| reg = er32(CTRL); |
| reg &= ~(1 << 29); |
| ew32(CTRL, reg); |
| } |
| |
| /* Extended Device Control */ |
| if (hw->mac.type == e1000_82573) { |
| reg = er32(CTRL_EXT); |
| reg &= ~(1 << 23); |
| reg |= (1 << 22); |
| ew32(CTRL_EXT, reg); |
| } |
| } |
| |
| /** |
| * e1000e_clear_vfta - Clear VLAN filter table |
| * @hw: pointer to the HW structure |
| * |
| * Clears the register array which contains the VLAN filter table by |
| * setting all the values to 0. |
| **/ |
| void e1000e_clear_vfta(struct e1000_hw *hw) |
| { |
| u32 offset; |
| u32 vfta_value = 0; |
| u32 vfta_offset = 0; |
| u32 vfta_bit_in_reg = 0; |
| |
| if (hw->mac.type == e1000_82573) { |
| if (hw->mng_cookie.vlan_id != 0) { |
| /* |
| * The VFTA is a 4096b bit-field, each identifying |
| * a single VLAN ID. The following operations |
| * determine which 32b entry (i.e. offset) into the |
| * array we want to set the VLAN ID (i.e. bit) of |
| * the manageability unit. |
| */ |
| vfta_offset = (hw->mng_cookie.vlan_id >> |
| E1000_VFTA_ENTRY_SHIFT) & |
| E1000_VFTA_ENTRY_MASK; |
| vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & |
| E1000_VFTA_ENTRY_BIT_SHIFT_MASK); |
| } |
| } |
| for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
| /* |
| * If the offset we want to clear is the same offset of the |
| * manageability VLAN ID, then clear all bits except that of |
| * the manageability unit. |
| */ |
| vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; |
| E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); |
| e1e_flush(); |
| } |
| } |
| |
| /** |
| * e1000_update_mc_addr_list_82571 - Update Multicast addresses |
| * @hw: pointer to the HW structure |
| * @mc_addr_list: array of multicast addresses to program |
| * @mc_addr_count: number of multicast addresses to program |
| * @rar_used_count: the first RAR register free to program |
| * @rar_count: total number of supported Receive Address Registers |
| * |
| * Updates the Receive Address Registers and Multicast Table Array. |
| * The caller must have a packed mc_addr_list of multicast addresses. |
| * The parameter rar_count will usually be hw->mac.rar_entry_count |
| * unless there are workarounds that change this. |
| **/ |
| static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw, |
| u8 *mc_addr_list, |
| u32 mc_addr_count, |
| u32 rar_used_count, |
| u32 rar_count) |
| { |
| if (e1000e_get_laa_state_82571(hw)) |
| rar_count--; |
| |
| e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count, |
| rar_used_count, rar_count); |
| } |
| |
| /** |
| * e1000_setup_link_82571 - Setup flow control and link settings |
| * @hw: pointer to the HW structure |
| * |
| * Determines which flow control settings to use, then configures flow |
| * control. Calls the appropriate media-specific link configuration |
| * function. Assuming the adapter has a valid link partner, a valid link |
| * should be established. Assumes the hardware has previously been reset |
| * and the transmitter and receiver are not enabled. |
| **/ |
| static s32 e1000_setup_link_82571(struct e1000_hw *hw) |
| { |
| /* |
| * 82573 does not have a word in the NVM to determine |
| * the default flow control setting, so we explicitly |
| * set it to full. |
| */ |
| if (hw->mac.type == e1000_82573) |
| hw->fc.type = e1000_fc_full; |
| |
| return e1000e_setup_link(hw); |
| } |
| |
| /** |
| * e1000_setup_copper_link_82571 - Configure copper link settings |
| * @hw: pointer to the HW structure |
| * |
| * Configures the link for auto-neg or forced speed and duplex. Then we check |
| * for link, once link is established calls to configure collision distance |
| * and flow control are called. |
| **/ |
| static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| u32 led_ctrl; |
| s32 ret_val; |
| |
| ctrl = er32(CTRL); |
| ctrl |= E1000_CTRL_SLU; |
| ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| ew32(CTRL, ctrl); |
| |
| switch (hw->phy.type) { |
| case e1000_phy_m88: |
| ret_val = e1000e_copper_link_setup_m88(hw); |
| break; |
| case e1000_phy_igp_2: |
| ret_val = e1000e_copper_link_setup_igp(hw); |
| /* Setup activity LED */ |
| led_ctrl = er32(LEDCTL); |
| led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| ew32(LEDCTL, led_ctrl); |
| break; |
| default: |
| return -E1000_ERR_PHY; |
| break; |
| } |
| |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000e_setup_copper_link(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes |
| * @hw: pointer to the HW structure |
| * |
| * Configures collision distance and flow control for fiber and serdes links. |
| * Upon successful setup, poll for link. |
| **/ |
| static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) |
| { |
| switch (hw->mac.type) { |
| case e1000_82571: |
| case e1000_82572: |
| /* |
| * If SerDes loopback mode is entered, there is no form |
| * of reset to take the adapter out of that mode. So we |
| * have to explicitly take the adapter out of loopback |
| * mode. This prevents drivers from twiddling their thumbs |
| * if another tool failed to take it out of loopback mode. |
| */ |
| ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); |
| break; |
| default: |
| break; |
| } |
| |
| return e1000e_setup_fiber_serdes_link(hw); |
| } |
| |
| /** |
| * e1000_valid_led_default_82571 - Verify a valid default LED config |
| * @hw: pointer to the HW structure |
| * @data: pointer to the NVM (EEPROM) |
| * |
| * Read the EEPROM for the current default LED configuration. If the |
| * LED configuration is not valid, set to a valid LED configuration. |
| **/ |
| static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) |
| { |
| s32 ret_val; |
| |
| ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error\n"); |
| return ret_val; |
| } |
| |
| if (hw->mac.type == e1000_82573 && |
| *data == ID_LED_RESERVED_F746) |
| *data = ID_LED_DEFAULT_82573; |
| else if (*data == ID_LED_RESERVED_0000 || |
| *data == ID_LED_RESERVED_FFFF) |
| *data = ID_LED_DEFAULT; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_get_laa_state_82571 - Get locally administered address state |
| * @hw: pointer to the HW structure |
| * |
| * Retrieve and return the current locally administered address state. |
| **/ |
| bool e1000e_get_laa_state_82571(struct e1000_hw *hw) |
| { |
| if (hw->mac.type != e1000_82571) |
| return 0; |
| |
| return hw->dev_spec.e82571.laa_is_present; |
| } |
| |
| /** |
| * e1000e_set_laa_state_82571 - Set locally administered address state |
| * @hw: pointer to the HW structure |
| * @state: enable/disable locally administered address |
| * |
| * Enable/Disable the current locally administers address state. |
| **/ |
| void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state) |
| { |
| if (hw->mac.type != e1000_82571) |
| return; |
| |
| hw->dev_spec.e82571.laa_is_present = state; |
| |
| /* If workaround is activated... */ |
| if (state) |
| /* |
| * Hold a copy of the LAA in RAR[14] This is done so that |
| * between the time RAR[0] gets clobbered and the time it |
| * gets fixed, the actual LAA is in one of the RARs and no |
| * incoming packets directed to this port are dropped. |
| * Eventually the LAA will be in RAR[0] and RAR[14]. |
| */ |
| e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1); |
| } |
| |
| /** |
| * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Verifies that the EEPROM has completed the update. After updating the |
| * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If |
| * the checksum fix is not implemented, we need to set the bit and update |
| * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, |
| * we need to return bad checksum. |
| **/ |
| static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| s32 ret_val; |
| u16 data; |
| |
| if (nvm->type != e1000_nvm_flash_hw) |
| return 0; |
| |
| /* |
| * Check bit 4 of word 10h. If it is 0, firmware is done updating |
| * 10h-12h. Checksum may need to be fixed. |
| */ |
| ret_val = e1000_read_nvm(hw, 0x10, 1, &data); |
| if (ret_val) |
| return ret_val; |
| |
| if (!(data & 0x10)) { |
| /* |
| * Read 0x23 and check bit 15. This bit is a 1 |
| * when the checksum has already been fixed. If |
| * the checksum is still wrong and this bit is a |
| * 1, we need to return bad checksum. Otherwise, |
| * we need to set this bit to a 1 and update the |
| * checksum. |
| */ |
| ret_val = e1000_read_nvm(hw, 0x23, 1, &data); |
| if (ret_val) |
| return ret_val; |
| |
| if (!(data & 0x8000)) { |
| data |= 0x8000; |
| ret_val = e1000_write_nvm(hw, 0x23, 1, &data); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000e_update_nvm_checksum(hw); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters |
| * @hw: pointer to the HW structure |
| * |
| * Clears the hardware counters by reading the counter registers. |
| **/ |
| static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) |
| { |
| u32 temp; |
| |
| e1000e_clear_hw_cntrs_base(hw); |
| |
| temp = er32(PRC64); |
| temp = er32(PRC127); |
| temp = er32(PRC255); |
| temp = er32(PRC511); |
| temp = er32(PRC1023); |
| temp = er32(PRC1522); |
| temp = er32(PTC64); |
| temp = er32(PTC127); |
| temp = er32(PTC255); |
| temp = er32(PTC511); |
| temp = er32(PTC1023); |
| temp = er32(PTC1522); |
| |
| temp = er32(ALGNERRC); |
| temp = er32(RXERRC); |
| temp = er32(TNCRS); |
| temp = er32(CEXTERR); |
| temp = er32(TSCTC); |
| temp = er32(TSCTFC); |
| |
| temp = er32(MGTPRC); |
| temp = er32(MGTPDC); |
| temp = er32(MGTPTC); |
| |
| temp = er32(IAC); |
| temp = er32(ICRXOC); |
| |
| temp = er32(ICRXPTC); |
| temp = er32(ICRXATC); |
| temp = er32(ICTXPTC); |
| temp = er32(ICTXATC); |
| temp = er32(ICTXQEC); |
| temp = er32(ICTXQMTC); |
| temp = er32(ICRXDMTC); |
| } |
| |
| static struct e1000_mac_operations e82571_mac_ops = { |
| .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT, |
| /* .check_for_link: media type dependent */ |
| .cleanup_led = e1000e_cleanup_led_generic, |
| .clear_hw_cntrs = e1000_clear_hw_cntrs_82571, |
| .get_bus_info = e1000e_get_bus_info_pcie, |
| /* .get_link_up_info: media type dependent */ |
| .led_on = e1000e_led_on_generic, |
| .led_off = e1000e_led_off_generic, |
| .update_mc_addr_list = e1000_update_mc_addr_list_82571, |
| .reset_hw = e1000_reset_hw_82571, |
| .init_hw = e1000_init_hw_82571, |
| .setup_link = e1000_setup_link_82571, |
| /* .setup_physical_interface: media type dependent */ |
| }; |
| |
| static struct e1000_phy_operations e82_phy_ops_igp = { |
| .acquire_phy = e1000_get_hw_semaphore_82571, |
| .check_reset_block = e1000e_check_reset_block_generic, |
| .commit_phy = NULL, |
| .force_speed_duplex = e1000e_phy_force_speed_duplex_igp, |
| .get_cfg_done = e1000_get_cfg_done_82571, |
| .get_cable_length = e1000e_get_cable_length_igp_2, |
| .get_phy_info = e1000e_get_phy_info_igp, |
| .read_phy_reg = e1000e_read_phy_reg_igp, |
| .release_phy = e1000_put_hw_semaphore_82571, |
| .reset_phy = e1000e_phy_hw_reset_generic, |
| .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, |
| .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
| .write_phy_reg = e1000e_write_phy_reg_igp, |
| }; |
| |
| static struct e1000_phy_operations e82_phy_ops_m88 = { |
| .acquire_phy = e1000_get_hw_semaphore_82571, |
| .check_reset_block = e1000e_check_reset_block_generic, |
| .commit_phy = e1000e_phy_sw_reset, |
| .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, |
| .get_cfg_done = e1000e_get_cfg_done, |
| .get_cable_length = e1000e_get_cable_length_m88, |
| .get_phy_info = e1000e_get_phy_info_m88, |
| .read_phy_reg = e1000e_read_phy_reg_m88, |
| .release_phy = e1000_put_hw_semaphore_82571, |
| .reset_phy = e1000e_phy_hw_reset_generic, |
| .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, |
| .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
| .write_phy_reg = e1000e_write_phy_reg_m88, |
| }; |
| |
| static struct e1000_nvm_operations e82571_nvm_ops = { |
| .acquire_nvm = e1000_acquire_nvm_82571, |
| .read_nvm = e1000e_read_nvm_eerd, |
| .release_nvm = e1000_release_nvm_82571, |
| .update_nvm = e1000_update_nvm_checksum_82571, |
| .valid_led_default = e1000_valid_led_default_82571, |
| .validate_nvm = e1000_validate_nvm_checksum_82571, |
| .write_nvm = e1000_write_nvm_82571, |
| }; |
| |
| struct e1000_info e1000_82571_info = { |
| .mac = e1000_82571, |
| .flags = FLAG_HAS_HW_VLAN_FILTER |
| | FLAG_HAS_JUMBO_FRAMES |
| | FLAG_HAS_STATS_PTC_PRC |
| | FLAG_HAS_WOL |
| | FLAG_APME_IN_CTRL3 |
| | FLAG_RX_CSUM_ENABLED |
| | FLAG_HAS_CTRLEXT_ON_LOAD |
| | FLAG_HAS_STATS_ICR_ICT |
| | FLAG_HAS_SMART_POWER_DOWN |
| | FLAG_RESET_OVERWRITES_LAA /* errata */ |
| | FLAG_TARC_SPEED_MODE_BIT /* errata */ |
| | FLAG_APME_CHECK_PORT_B, |
| .pba = 38, |
| .get_variants = e1000_get_variants_82571, |
| .mac_ops = &e82571_mac_ops, |
| .phy_ops = &e82_phy_ops_igp, |
| .nvm_ops = &e82571_nvm_ops, |
| }; |
| |
| struct e1000_info e1000_82572_info = { |
| .mac = e1000_82572, |
| .flags = FLAG_HAS_HW_VLAN_FILTER |
| | FLAG_HAS_JUMBO_FRAMES |
| | FLAG_HAS_STATS_PTC_PRC |
| | FLAG_HAS_WOL |
| | FLAG_APME_IN_CTRL3 |
| | FLAG_RX_CSUM_ENABLED |
| | FLAG_HAS_CTRLEXT_ON_LOAD |
| | FLAG_HAS_STATS_ICR_ICT |
| | FLAG_TARC_SPEED_MODE_BIT, /* errata */ |
| .pba = 38, |
| .get_variants = e1000_get_variants_82571, |
| .mac_ops = &e82571_mac_ops, |
| .phy_ops = &e82_phy_ops_igp, |
| .nvm_ops = &e82571_nvm_ops, |
| }; |
| |
| struct e1000_info e1000_82573_info = { |
| .mac = e1000_82573, |
| .flags = FLAG_HAS_HW_VLAN_FILTER |
| | FLAG_HAS_JUMBO_FRAMES |
| | FLAG_HAS_STATS_PTC_PRC |
| | FLAG_HAS_WOL |
| | FLAG_APME_IN_CTRL3 |
| | FLAG_RX_CSUM_ENABLED |
| | FLAG_HAS_STATS_ICR_ICT |
| | FLAG_HAS_SMART_POWER_DOWN |
| | FLAG_HAS_AMT |
| | FLAG_HAS_ERT |
| | FLAG_HAS_SWSM_ON_LOAD, |
| .pba = 20, |
| .get_variants = e1000_get_variants_82571, |
| .mac_ops = &e82571_mac_ops, |
| .phy_ops = &e82_phy_ops_m88, |
| .nvm_ops = &e82571_nvm_ops, |
| }; |
| |