| /* |
| * arch/s390/kernel/smp.c |
| * |
| * Copyright (C) IBM Corp. 1999,2006 |
| * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), |
| * Martin Schwidefsky (schwidefsky@de.ibm.com) |
| * Heiko Carstens (heiko.carstens@de.ibm.com) |
| * |
| * based on other smp stuff by |
| * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net> |
| * (c) 1998 Ingo Molnar |
| * |
| * We work with logical cpu numbering everywhere we can. The only |
| * functions using the real cpu address (got from STAP) are the sigp |
| * functions. For all other functions we use the identity mapping. |
| * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is |
| * used e.g. to find the idle task belonging to a logical cpu. Every array |
| * in the kernel is sorted by the logical cpu number and not by the physical |
| * one which is causing all the confusion with __cpu_logical_map and |
| * cpu_number_map in other architectures. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| |
| #include <linux/mm.h> |
| #include <linux/spinlock.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/smp_lock.h> |
| |
| #include <linux/delay.h> |
| #include <linux/cache.h> |
| #include <linux/interrupt.h> |
| #include <linux/cpu.h> |
| |
| #include <asm/sigp.h> |
| #include <asm/pgalloc.h> |
| #include <asm/irq.h> |
| #include <asm/s390_ext.h> |
| #include <asm/cpcmd.h> |
| #include <asm/tlbflush.h> |
| |
| extern volatile int __cpu_logical_map[]; |
| |
| /* |
| * An array with a pointer the lowcore of every CPU. |
| */ |
| |
| struct _lowcore *lowcore_ptr[NR_CPUS]; |
| |
| cpumask_t cpu_online_map = CPU_MASK_NONE; |
| cpumask_t cpu_possible_map = CPU_MASK_NONE; |
| |
| static struct task_struct *current_set[NR_CPUS]; |
| |
| /* |
| * Reboot, halt and power_off routines for SMP. |
| */ |
| extern char vmhalt_cmd[]; |
| extern char vmpoff_cmd[]; |
| |
| extern void reipl(unsigned long devno); |
| extern void reipl_diag(void); |
| |
| static void smp_ext_bitcall(int, ec_bit_sig); |
| static void smp_ext_bitcall_others(ec_bit_sig); |
| |
| /* |
| * Structure and data for smp_call_function(). This is designed to minimise |
| * static memory requirements. It also looks cleaner. |
| */ |
| static DEFINE_SPINLOCK(call_lock); |
| |
| struct call_data_struct { |
| void (*func) (void *info); |
| void *info; |
| atomic_t started; |
| atomic_t finished; |
| int wait; |
| }; |
| |
| static struct call_data_struct * call_data; |
| |
| /* |
| * 'Call function' interrupt callback |
| */ |
| static void do_call_function(void) |
| { |
| void (*func) (void *info) = call_data->func; |
| void *info = call_data->info; |
| int wait = call_data->wait; |
| |
| atomic_inc(&call_data->started); |
| (*func)(info); |
| if (wait) |
| atomic_inc(&call_data->finished); |
| } |
| |
| /* |
| * this function sends a 'generic call function' IPI to all other CPUs |
| * in the system. |
| */ |
| |
| int smp_call_function (void (*func) (void *info), void *info, int nonatomic, |
| int wait) |
| /* |
| * [SUMMARY] Run a function on all other CPUs. |
| * <func> The function to run. This must be fast and non-blocking. |
| * <info> An arbitrary pointer to pass to the function. |
| * <nonatomic> currently unused. |
| * <wait> If true, wait (atomically) until function has completed on other CPUs. |
| * [RETURNS] 0 on success, else a negative status code. Does not return until |
| * remote CPUs are nearly ready to execute <<func>> or are or have executed. |
| * |
| * You must not call this function with disabled interrupts or from a |
| * hardware interrupt handler or from a bottom half handler. |
| */ |
| { |
| struct call_data_struct data; |
| int cpus = num_online_cpus()-1; |
| |
| if (cpus <= 0) |
| return 0; |
| |
| /* Can deadlock when called with interrupts disabled */ |
| WARN_ON(irqs_disabled()); |
| |
| data.func = func; |
| data.info = info; |
| atomic_set(&data.started, 0); |
| data.wait = wait; |
| if (wait) |
| atomic_set(&data.finished, 0); |
| |
| spin_lock(&call_lock); |
| call_data = &data; |
| /* Send a message to all other CPUs and wait for them to respond */ |
| smp_ext_bitcall_others(ec_call_function); |
| |
| /* Wait for response */ |
| while (atomic_read(&data.started) != cpus) |
| cpu_relax(); |
| |
| if (wait) |
| while (atomic_read(&data.finished) != cpus) |
| cpu_relax(); |
| spin_unlock(&call_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * Call a function on one CPU |
| * cpu : the CPU the function should be executed on |
| * |
| * You must not call this function with disabled interrupts or from a |
| * hardware interrupt handler. You may call it from a bottom half. |
| * |
| * It is guaranteed that the called function runs on the specified CPU, |
| * preemption is disabled. |
| */ |
| int smp_call_function_on(void (*func) (void *info), void *info, |
| int nonatomic, int wait, int cpu) |
| { |
| struct call_data_struct data; |
| int curr_cpu; |
| |
| if (!cpu_online(cpu)) |
| return -EINVAL; |
| |
| /* disable preemption for local function call */ |
| curr_cpu = get_cpu(); |
| |
| if (curr_cpu == cpu) { |
| /* direct call to function */ |
| func(info); |
| put_cpu(); |
| return 0; |
| } |
| |
| data.func = func; |
| data.info = info; |
| atomic_set(&data.started, 0); |
| data.wait = wait; |
| if (wait) |
| atomic_set(&data.finished, 0); |
| |
| spin_lock_bh(&call_lock); |
| call_data = &data; |
| smp_ext_bitcall(cpu, ec_call_function); |
| |
| /* Wait for response */ |
| while (atomic_read(&data.started) != 1) |
| cpu_relax(); |
| |
| if (wait) |
| while (atomic_read(&data.finished) != 1) |
| cpu_relax(); |
| |
| spin_unlock_bh(&call_lock); |
| put_cpu(); |
| return 0; |
| } |
| EXPORT_SYMBOL(smp_call_function_on); |
| |
| static inline void do_send_stop(void) |
| { |
| int cpu, rc; |
| |
| /* stop all processors */ |
| for_each_online_cpu(cpu) { |
| if (cpu == smp_processor_id()) |
| continue; |
| do { |
| rc = signal_processor(cpu, sigp_stop); |
| } while (rc == sigp_busy); |
| } |
| } |
| |
| static inline void do_store_status(void) |
| { |
| int cpu, rc; |
| |
| /* store status of all processors in their lowcores (real 0) */ |
| for_each_online_cpu(cpu) { |
| if (cpu == smp_processor_id()) |
| continue; |
| do { |
| rc = signal_processor_p( |
| (__u32)(unsigned long) lowcore_ptr[cpu], cpu, |
| sigp_store_status_at_address); |
| } while(rc == sigp_busy); |
| } |
| } |
| |
| /* |
| * this function sends a 'stop' sigp to all other CPUs in the system. |
| * it goes straight through. |
| */ |
| void smp_send_stop(void) |
| { |
| /* write magic number to zero page (absolute 0) */ |
| lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC; |
| |
| /* stop other processors. */ |
| do_send_stop(); |
| |
| /* store status of other processors. */ |
| do_store_status(); |
| } |
| |
| /* |
| * Reboot, halt and power_off routines for SMP. |
| */ |
| |
| static void do_machine_restart(void * __unused) |
| { |
| int cpu; |
| static atomic_t cpuid = ATOMIC_INIT(-1); |
| |
| if (atomic_cmpxchg(&cpuid, -1, smp_processor_id()) != -1) |
| signal_processor(smp_processor_id(), sigp_stop); |
| |
| /* Wait for all other cpus to enter stopped state */ |
| for_each_online_cpu(cpu) { |
| if (cpu == smp_processor_id()) |
| continue; |
| while(!smp_cpu_not_running(cpu)) |
| cpu_relax(); |
| } |
| |
| /* Store status of other cpus. */ |
| do_store_status(); |
| |
| /* |
| * Finally call reipl. Because we waited for all other |
| * cpus to enter this function we know that they do |
| * not hold any s390irq-locks (the cpus have been |
| * interrupted by an external interrupt and s390irq |
| * locks are always held disabled). |
| */ |
| reipl_diag(); |
| |
| if (MACHINE_IS_VM) |
| cpcmd ("IPL", NULL, 0, NULL); |
| else |
| reipl (0x10000 | S390_lowcore.ipl_device); |
| } |
| |
| void machine_restart_smp(char * __unused) |
| { |
| on_each_cpu(do_machine_restart, NULL, 0, 0); |
| } |
| |
| static void do_wait_for_stop(void) |
| { |
| unsigned long cr[16]; |
| |
| __ctl_store(cr, 0, 15); |
| cr[0] &= ~0xffff; |
| cr[6] = 0; |
| __ctl_load(cr, 0, 15); |
| for (;;) |
| enabled_wait(); |
| } |
| |
| static void do_machine_halt(void * __unused) |
| { |
| static atomic_t cpuid = ATOMIC_INIT(-1); |
| |
| if (atomic_cmpxchg(&cpuid, -1, smp_processor_id()) == -1) { |
| smp_send_stop(); |
| if (MACHINE_IS_VM && strlen(vmhalt_cmd) > 0) |
| cpcmd(vmhalt_cmd, NULL, 0, NULL); |
| signal_processor(smp_processor_id(), |
| sigp_stop_and_store_status); |
| } |
| do_wait_for_stop(); |
| } |
| |
| void machine_halt_smp(void) |
| { |
| on_each_cpu(do_machine_halt, NULL, 0, 0); |
| } |
| |
| static void do_machine_power_off(void * __unused) |
| { |
| static atomic_t cpuid = ATOMIC_INIT(-1); |
| |
| if (atomic_cmpxchg(&cpuid, -1, smp_processor_id()) == -1) { |
| smp_send_stop(); |
| if (MACHINE_IS_VM && strlen(vmpoff_cmd) > 0) |
| cpcmd(vmpoff_cmd, NULL, 0, NULL); |
| signal_processor(smp_processor_id(), |
| sigp_stop_and_store_status); |
| } |
| do_wait_for_stop(); |
| } |
| |
| void machine_power_off_smp(void) |
| { |
| on_each_cpu(do_machine_power_off, NULL, 0, 0); |
| } |
| |
| /* |
| * This is the main routine where commands issued by other |
| * cpus are handled. |
| */ |
| |
| void do_ext_call_interrupt(struct pt_regs *regs, __u16 code) |
| { |
| unsigned long bits; |
| |
| /* |
| * handle bit signal external calls |
| * |
| * For the ec_schedule signal we have to do nothing. All the work |
| * is done automatically when we return from the interrupt. |
| */ |
| bits = xchg(&S390_lowcore.ext_call_fast, 0); |
| |
| if (test_bit(ec_call_function, &bits)) |
| do_call_function(); |
| } |
| |
| /* |
| * Send an external call sigp to another cpu and return without waiting |
| * for its completion. |
| */ |
| static void smp_ext_bitcall(int cpu, ec_bit_sig sig) |
| { |
| /* |
| * Set signaling bit in lowcore of target cpu and kick it |
| */ |
| set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast); |
| while(signal_processor(cpu, sigp_emergency_signal) == sigp_busy) |
| udelay(10); |
| } |
| |
| /* |
| * Send an external call sigp to every other cpu in the system and |
| * return without waiting for its completion. |
| */ |
| static void smp_ext_bitcall_others(ec_bit_sig sig) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) { |
| if (cpu == smp_processor_id()) |
| continue; |
| /* |
| * Set signaling bit in lowcore of target cpu and kick it |
| */ |
| set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast); |
| while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy) |
| udelay(10); |
| } |
| } |
| |
| #ifndef CONFIG_64BIT |
| /* |
| * this function sends a 'purge tlb' signal to another CPU. |
| */ |
| void smp_ptlb_callback(void *info) |
| { |
| local_flush_tlb(); |
| } |
| |
| void smp_ptlb_all(void) |
| { |
| on_each_cpu(smp_ptlb_callback, NULL, 0, 1); |
| } |
| EXPORT_SYMBOL(smp_ptlb_all); |
| #endif /* ! CONFIG_64BIT */ |
| |
| /* |
| * this function sends a 'reschedule' IPI to another CPU. |
| * it goes straight through and wastes no time serializing |
| * anything. Worst case is that we lose a reschedule ... |
| */ |
| void smp_send_reschedule(int cpu) |
| { |
| smp_ext_bitcall(cpu, ec_schedule); |
| } |
| |
| /* |
| * parameter area for the set/clear control bit callbacks |
| */ |
| typedef struct |
| { |
| __u16 start_ctl; |
| __u16 end_ctl; |
| unsigned long orvals[16]; |
| unsigned long andvals[16]; |
| } ec_creg_mask_parms; |
| |
| /* |
| * callback for setting/clearing control bits |
| */ |
| void smp_ctl_bit_callback(void *info) { |
| ec_creg_mask_parms *pp; |
| unsigned long cregs[16]; |
| int i; |
| |
| pp = (ec_creg_mask_parms *) info; |
| __ctl_store(cregs[pp->start_ctl], pp->start_ctl, pp->end_ctl); |
| for (i = pp->start_ctl; i <= pp->end_ctl; i++) |
| cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i]; |
| __ctl_load(cregs[pp->start_ctl], pp->start_ctl, pp->end_ctl); |
| } |
| |
| /* |
| * Set a bit in a control register of all cpus |
| */ |
| void smp_ctl_set_bit(int cr, int bit) { |
| ec_creg_mask_parms parms; |
| |
| parms.start_ctl = cr; |
| parms.end_ctl = cr; |
| parms.orvals[cr] = 1 << bit; |
| parms.andvals[cr] = -1L; |
| preempt_disable(); |
| smp_call_function(smp_ctl_bit_callback, &parms, 0, 1); |
| __ctl_set_bit(cr, bit); |
| preempt_enable(); |
| } |
| |
| /* |
| * Clear a bit in a control register of all cpus |
| */ |
| void smp_ctl_clear_bit(int cr, int bit) { |
| ec_creg_mask_parms parms; |
| |
| parms.start_ctl = cr; |
| parms.end_ctl = cr; |
| parms.orvals[cr] = 0; |
| parms.andvals[cr] = ~(1L << bit); |
| preempt_disable(); |
| smp_call_function(smp_ctl_bit_callback, &parms, 0, 1); |
| __ctl_clear_bit(cr, bit); |
| preempt_enable(); |
| } |
| |
| /* |
| * Lets check how many CPUs we have. |
| */ |
| |
| static unsigned int |
| __init smp_count_cpus(void) |
| { |
| unsigned int cpu, num_cpus; |
| __u16 boot_cpu_addr; |
| |
| /* |
| * cpu 0 is the boot cpu. See smp_prepare_boot_cpu. |
| */ |
| |
| boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr; |
| current_thread_info()->cpu = 0; |
| num_cpus = 1; |
| for (cpu = 0; cpu <= 65535; cpu++) { |
| if ((__u16) cpu == boot_cpu_addr) |
| continue; |
| __cpu_logical_map[1] = (__u16) cpu; |
| if (signal_processor(1, sigp_sense) == |
| sigp_not_operational) |
| continue; |
| num_cpus++; |
| } |
| |
| printk("Detected %d CPU's\n",(int) num_cpus); |
| printk("Boot cpu address %2X\n", boot_cpu_addr); |
| |
| return num_cpus; |
| } |
| |
| /* |
| * Activate a secondary processor. |
| */ |
| extern void init_cpu_timer(void); |
| extern void init_cpu_vtimer(void); |
| extern int pfault_init(void); |
| extern void pfault_fini(void); |
| |
| int __devinit start_secondary(void *cpuvoid) |
| { |
| /* Setup the cpu */ |
| cpu_init(); |
| preempt_disable(); |
| /* init per CPU timer */ |
| init_cpu_timer(); |
| #ifdef CONFIG_VIRT_TIMER |
| init_cpu_vtimer(); |
| #endif |
| #ifdef CONFIG_PFAULT |
| /* Enable pfault pseudo page faults on this cpu. */ |
| if (MACHINE_IS_VM) |
| pfault_init(); |
| #endif |
| /* Mark this cpu as online */ |
| cpu_set(smp_processor_id(), cpu_online_map); |
| /* Switch on interrupts */ |
| local_irq_enable(); |
| /* Print info about this processor */ |
| print_cpu_info(&S390_lowcore.cpu_data); |
| /* cpu_idle will call schedule for us */ |
| cpu_idle(); |
| return 0; |
| } |
| |
| static void __init smp_create_idle(unsigned int cpu) |
| { |
| struct task_struct *p; |
| |
| /* |
| * don't care about the psw and regs settings since we'll never |
| * reschedule the forked task. |
| */ |
| p = fork_idle(cpu); |
| if (IS_ERR(p)) |
| panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p)); |
| current_set[cpu] = p; |
| } |
| |
| /* Reserving and releasing of CPUs */ |
| |
| static DEFINE_SPINLOCK(smp_reserve_lock); |
| static int smp_cpu_reserved[NR_CPUS]; |
| |
| int |
| smp_get_cpu(cpumask_t cpu_mask) |
| { |
| unsigned long flags; |
| int cpu; |
| |
| spin_lock_irqsave(&smp_reserve_lock, flags); |
| /* Try to find an already reserved cpu. */ |
| for_each_cpu_mask(cpu, cpu_mask) { |
| if (smp_cpu_reserved[cpu] != 0) { |
| smp_cpu_reserved[cpu]++; |
| /* Found one. */ |
| goto out; |
| } |
| } |
| /* Reserve a new cpu from cpu_mask. */ |
| for_each_cpu_mask(cpu, cpu_mask) { |
| if (cpu_online(cpu)) { |
| smp_cpu_reserved[cpu]++; |
| goto out; |
| } |
| } |
| cpu = -ENODEV; |
| out: |
| spin_unlock_irqrestore(&smp_reserve_lock, flags); |
| return cpu; |
| } |
| |
| void |
| smp_put_cpu(int cpu) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&smp_reserve_lock, flags); |
| smp_cpu_reserved[cpu]--; |
| spin_unlock_irqrestore(&smp_reserve_lock, flags); |
| } |
| |
| static inline int |
| cpu_stopped(int cpu) |
| { |
| __u32 status; |
| |
| /* Check for stopped state */ |
| if (signal_processor_ps(&status, 0, cpu, sigp_sense) == sigp_status_stored) { |
| if (status & 0x40) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Upping and downing of CPUs */ |
| |
| int |
| __cpu_up(unsigned int cpu) |
| { |
| struct task_struct *idle; |
| struct _lowcore *cpu_lowcore; |
| struct stack_frame *sf; |
| sigp_ccode ccode; |
| int curr_cpu; |
| |
| for (curr_cpu = 0; curr_cpu <= 65535; curr_cpu++) { |
| __cpu_logical_map[cpu] = (__u16) curr_cpu; |
| if (cpu_stopped(cpu)) |
| break; |
| } |
| |
| if (!cpu_stopped(cpu)) |
| return -ENODEV; |
| |
| ccode = signal_processor_p((__u32)(unsigned long)(lowcore_ptr[cpu]), |
| cpu, sigp_set_prefix); |
| if (ccode){ |
| printk("sigp_set_prefix failed for cpu %d " |
| "with condition code %d\n", |
| (int) cpu, (int) ccode); |
| return -EIO; |
| } |
| |
| idle = current_set[cpu]; |
| cpu_lowcore = lowcore_ptr[cpu]; |
| cpu_lowcore->kernel_stack = (unsigned long) |
| task_stack_page(idle) + (THREAD_SIZE); |
| sf = (struct stack_frame *) (cpu_lowcore->kernel_stack |
| - sizeof(struct pt_regs) |
| - sizeof(struct stack_frame)); |
| memset(sf, 0, sizeof(struct stack_frame)); |
| sf->gprs[9] = (unsigned long) sf; |
| cpu_lowcore->save_area[15] = (unsigned long) sf; |
| __ctl_store(cpu_lowcore->cregs_save_area[0], 0, 15); |
| __asm__ __volatile__("stam 0,15,0(%0)" |
| : : "a" (&cpu_lowcore->access_regs_save_area) |
| : "memory"); |
| cpu_lowcore->percpu_offset = __per_cpu_offset[cpu]; |
| cpu_lowcore->current_task = (unsigned long) idle; |
| cpu_lowcore->cpu_data.cpu_nr = cpu; |
| eieio(); |
| |
| while (signal_processor(cpu,sigp_restart) == sigp_busy) |
| udelay(10); |
| |
| while (!cpu_online(cpu)) |
| cpu_relax(); |
| return 0; |
| } |
| |
| static unsigned int __initdata additional_cpus; |
| static unsigned int __initdata possible_cpus; |
| |
| void __init smp_setup_cpu_possible_map(void) |
| { |
| unsigned int phy_cpus, pos_cpus, cpu; |
| |
| phy_cpus = smp_count_cpus(); |
| pos_cpus = min(phy_cpus + additional_cpus, (unsigned int) NR_CPUS); |
| |
| if (possible_cpus) |
| pos_cpus = min(possible_cpus, (unsigned int) NR_CPUS); |
| |
| for (cpu = 0; cpu < pos_cpus; cpu++) |
| cpu_set(cpu, cpu_possible_map); |
| |
| phy_cpus = min(phy_cpus, pos_cpus); |
| |
| for (cpu = 0; cpu < phy_cpus; cpu++) |
| cpu_set(cpu, cpu_present_map); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| static int __init setup_additional_cpus(char *s) |
| { |
| additional_cpus = simple_strtoul(s, NULL, 0); |
| return 0; |
| } |
| early_param("additional_cpus", setup_additional_cpus); |
| |
| static int __init setup_possible_cpus(char *s) |
| { |
| possible_cpus = simple_strtoul(s, NULL, 0); |
| return 0; |
| } |
| early_param("possible_cpus", setup_possible_cpus); |
| |
| int |
| __cpu_disable(void) |
| { |
| unsigned long flags; |
| ec_creg_mask_parms cr_parms; |
| int cpu = smp_processor_id(); |
| |
| spin_lock_irqsave(&smp_reserve_lock, flags); |
| if (smp_cpu_reserved[cpu] != 0) { |
| spin_unlock_irqrestore(&smp_reserve_lock, flags); |
| return -EBUSY; |
| } |
| cpu_clear(cpu, cpu_online_map); |
| |
| #ifdef CONFIG_PFAULT |
| /* Disable pfault pseudo page faults on this cpu. */ |
| if (MACHINE_IS_VM) |
| pfault_fini(); |
| #endif |
| |
| /* disable all external interrupts */ |
| |
| cr_parms.start_ctl = 0; |
| cr_parms.end_ctl = 0; |
| cr_parms.orvals[0] = 0; |
| cr_parms.andvals[0] = ~(1<<15 | 1<<14 | 1<<13 | 1<<12 | |
| 1<<11 | 1<<10 | 1<< 6 | 1<< 4); |
| smp_ctl_bit_callback(&cr_parms); |
| |
| /* disable all I/O interrupts */ |
| |
| cr_parms.start_ctl = 6; |
| cr_parms.end_ctl = 6; |
| cr_parms.orvals[6] = 0; |
| cr_parms.andvals[6] = ~(1<<31 | 1<<30 | 1<<29 | 1<<28 | |
| 1<<27 | 1<<26 | 1<<25 | 1<<24); |
| smp_ctl_bit_callback(&cr_parms); |
| |
| /* disable most machine checks */ |
| |
| cr_parms.start_ctl = 14; |
| cr_parms.end_ctl = 14; |
| cr_parms.orvals[14] = 0; |
| cr_parms.andvals[14] = ~(1<<28 | 1<<27 | 1<<26 | 1<<25 | 1<<24); |
| smp_ctl_bit_callback(&cr_parms); |
| |
| spin_unlock_irqrestore(&smp_reserve_lock, flags); |
| return 0; |
| } |
| |
| void |
| __cpu_die(unsigned int cpu) |
| { |
| /* Wait until target cpu is down */ |
| while (!smp_cpu_not_running(cpu)) |
| cpu_relax(); |
| printk("Processor %d spun down\n", cpu); |
| } |
| |
| void |
| cpu_die(void) |
| { |
| idle_task_exit(); |
| signal_processor(smp_processor_id(), sigp_stop); |
| BUG(); |
| for(;;); |
| } |
| |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| /* |
| * Cycle through the processors and setup structures. |
| */ |
| |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| unsigned long stack; |
| unsigned int cpu; |
| int i; |
| |
| /* request the 0x1201 emergency signal external interrupt */ |
| if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0) |
| panic("Couldn't request external interrupt 0x1201"); |
| memset(lowcore_ptr,0,sizeof(lowcore_ptr)); |
| /* |
| * Initialize prefix pages and stacks for all possible cpus |
| */ |
| print_cpu_info(&S390_lowcore.cpu_data); |
| |
| for_each_possible_cpu(i) { |
| lowcore_ptr[i] = (struct _lowcore *) |
| __get_free_pages(GFP_KERNEL|GFP_DMA, |
| sizeof(void*) == 8 ? 1 : 0); |
| stack = __get_free_pages(GFP_KERNEL,ASYNC_ORDER); |
| if (lowcore_ptr[i] == NULL || stack == 0ULL) |
| panic("smp_boot_cpus failed to allocate memory\n"); |
| |
| *(lowcore_ptr[i]) = S390_lowcore; |
| lowcore_ptr[i]->async_stack = stack + (ASYNC_SIZE); |
| stack = __get_free_pages(GFP_KERNEL,0); |
| if (stack == 0ULL) |
| panic("smp_boot_cpus failed to allocate memory\n"); |
| lowcore_ptr[i]->panic_stack = stack + (PAGE_SIZE); |
| #ifndef CONFIG_64BIT |
| if (MACHINE_HAS_IEEE) { |
| lowcore_ptr[i]->extended_save_area_addr = |
| (__u32) __get_free_pages(GFP_KERNEL,0); |
| if (lowcore_ptr[i]->extended_save_area_addr == 0) |
| panic("smp_boot_cpus failed to " |
| "allocate memory\n"); |
| } |
| #endif |
| } |
| #ifndef CONFIG_64BIT |
| if (MACHINE_HAS_IEEE) |
| ctl_set_bit(14, 29); /* enable extended save area */ |
| #endif |
| set_prefix((u32)(unsigned long) lowcore_ptr[smp_processor_id()]); |
| |
| for_each_possible_cpu(cpu) |
| if (cpu != smp_processor_id()) |
| smp_create_idle(cpu); |
| } |
| |
| void __devinit smp_prepare_boot_cpu(void) |
| { |
| BUG_ON(smp_processor_id() != 0); |
| |
| cpu_set(0, cpu_online_map); |
| S390_lowcore.percpu_offset = __per_cpu_offset[0]; |
| current_set[0] = current; |
| } |
| |
| void smp_cpus_done(unsigned int max_cpus) |
| { |
| cpu_present_map = cpu_possible_map; |
| } |
| |
| /* |
| * the frequency of the profiling timer can be changed |
| * by writing a multiplier value into /proc/profile. |
| * |
| * usually you want to run this on all CPUs ;) |
| */ |
| int setup_profiling_timer(unsigned int multiplier) |
| { |
| return 0; |
| } |
| |
| static DEFINE_PER_CPU(struct cpu, cpu_devices); |
| |
| static int __init topology_init(void) |
| { |
| int cpu; |
| int ret; |
| |
| for_each_possible_cpu(cpu) { |
| ret = register_cpu(&per_cpu(cpu_devices, cpu), cpu, NULL); |
| if (ret) |
| printk(KERN_WARNING "topology_init: register_cpu %d " |
| "failed (%d)\n", cpu, ret); |
| } |
| return 0; |
| } |
| |
| subsys_initcall(topology_init); |
| |
| EXPORT_SYMBOL(cpu_online_map); |
| EXPORT_SYMBOL(cpu_possible_map); |
| EXPORT_SYMBOL(lowcore_ptr); |
| EXPORT_SYMBOL(smp_ctl_set_bit); |
| EXPORT_SYMBOL(smp_ctl_clear_bit); |
| EXPORT_SYMBOL(smp_call_function); |
| EXPORT_SYMBOL(smp_get_cpu); |
| EXPORT_SYMBOL(smp_put_cpu); |
| |