| /* |
| * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> |
| * |
| * Uses a block device as cache for other block devices; optimized for SSDs. |
| * All allocation is done in buckets, which should match the erase block size |
| * of the device. |
| * |
| * Buckets containing cached data are kept on a heap sorted by priority; |
| * bucket priority is increased on cache hit, and periodically all the buckets |
| * on the heap have their priority scaled down. This currently is just used as |
| * an LRU but in the future should allow for more intelligent heuristics. |
| * |
| * Buckets have an 8 bit counter; freeing is accomplished by incrementing the |
| * counter. Garbage collection is used to remove stale pointers. |
| * |
| * Indexing is done via a btree; nodes are not necessarily fully sorted, rather |
| * as keys are inserted we only sort the pages that have not yet been written. |
| * When garbage collection is run, we resort the entire node. |
| * |
| * All configuration is done via sysfs; see Documentation/bcache.txt. |
| */ |
| |
| #include "bcache.h" |
| #include "btree.h" |
| #include "debug.h" |
| #include "request.h" |
| #include "writeback.h" |
| |
| #include <linux/slab.h> |
| #include <linux/bitops.h> |
| #include <linux/hash.h> |
| #include <linux/prefetch.h> |
| #include <linux/random.h> |
| #include <linux/rcupdate.h> |
| #include <trace/events/bcache.h> |
| |
| /* |
| * Todo: |
| * register_bcache: Return errors out to userspace correctly |
| * |
| * Writeback: don't undirty key until after a cache flush |
| * |
| * Create an iterator for key pointers |
| * |
| * On btree write error, mark bucket such that it won't be freed from the cache |
| * |
| * Journalling: |
| * Check for bad keys in replay |
| * Propagate barriers |
| * Refcount journal entries in journal_replay |
| * |
| * Garbage collection: |
| * Finish incremental gc |
| * Gc should free old UUIDs, data for invalid UUIDs |
| * |
| * Provide a way to list backing device UUIDs we have data cached for, and |
| * probably how long it's been since we've seen them, and a way to invalidate |
| * dirty data for devices that will never be attached again |
| * |
| * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so |
| * that based on that and how much dirty data we have we can keep writeback |
| * from being starved |
| * |
| * Add a tracepoint or somesuch to watch for writeback starvation |
| * |
| * When btree depth > 1 and splitting an interior node, we have to make sure |
| * alloc_bucket() cannot fail. This should be true but is not completely |
| * obvious. |
| * |
| * Make sure all allocations get charged to the root cgroup |
| * |
| * Plugging? |
| * |
| * If data write is less than hard sector size of ssd, round up offset in open |
| * bucket to the next whole sector |
| * |
| * Also lookup by cgroup in get_open_bucket() |
| * |
| * Superblock needs to be fleshed out for multiple cache devices |
| * |
| * Add a sysfs tunable for the number of writeback IOs in flight |
| * |
| * Add a sysfs tunable for the number of open data buckets |
| * |
| * IO tracking: Can we track when one process is doing io on behalf of another? |
| * IO tracking: Don't use just an average, weigh more recent stuff higher |
| * |
| * Test module load/unload |
| */ |
| |
| static const char * const op_types[] = { |
| "insert", "replace" |
| }; |
| |
| static const char *op_type(struct btree_op *op) |
| { |
| return op_types[op->type]; |
| } |
| |
| #define MAX_NEED_GC 64 |
| #define MAX_SAVE_PRIO 72 |
| |
| #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) |
| |
| #define PTR_HASH(c, k) \ |
| (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) |
| |
| struct workqueue_struct *bch_gc_wq; |
| static struct workqueue_struct *btree_io_wq; |
| |
| void bch_btree_op_init_stack(struct btree_op *op) |
| { |
| memset(op, 0, sizeof(struct btree_op)); |
| closure_init_stack(&op->cl); |
| op->lock = -1; |
| bch_keylist_init(&op->keys); |
| } |
| |
| /* Btree key manipulation */ |
| |
| static void bkey_put(struct cache_set *c, struct bkey *k, int level) |
| { |
| if ((level && KEY_OFFSET(k)) || !level) |
| __bkey_put(c, k); |
| } |
| |
| /* Btree IO */ |
| |
| static uint64_t btree_csum_set(struct btree *b, struct bset *i) |
| { |
| uint64_t crc = b->key.ptr[0]; |
| void *data = (void *) i + 8, *end = end(i); |
| |
| crc = bch_crc64_update(crc, data, end - data); |
| return crc ^ 0xffffffffffffffffULL; |
| } |
| |
| static void bch_btree_node_read_done(struct btree *b) |
| { |
| const char *err = "bad btree header"; |
| struct bset *i = b->sets[0].data; |
| struct btree_iter *iter; |
| |
| iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT); |
| iter->size = b->c->sb.bucket_size / b->c->sb.block_size; |
| iter->used = 0; |
| |
| if (!i->seq) |
| goto err; |
| |
| for (; |
| b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq; |
| i = write_block(b)) { |
| err = "unsupported bset version"; |
| if (i->version > BCACHE_BSET_VERSION) |
| goto err; |
| |
| err = "bad btree header"; |
| if (b->written + set_blocks(i, b->c) > btree_blocks(b)) |
| goto err; |
| |
| err = "bad magic"; |
| if (i->magic != bset_magic(b->c)) |
| goto err; |
| |
| err = "bad checksum"; |
| switch (i->version) { |
| case 0: |
| if (i->csum != csum_set(i)) |
| goto err; |
| break; |
| case BCACHE_BSET_VERSION: |
| if (i->csum != btree_csum_set(b, i)) |
| goto err; |
| break; |
| } |
| |
| err = "empty set"; |
| if (i != b->sets[0].data && !i->keys) |
| goto err; |
| |
| bch_btree_iter_push(iter, i->start, end(i)); |
| |
| b->written += set_blocks(i, b->c); |
| } |
| |
| err = "corrupted btree"; |
| for (i = write_block(b); |
| index(i, b) < btree_blocks(b); |
| i = ((void *) i) + block_bytes(b->c)) |
| if (i->seq == b->sets[0].data->seq) |
| goto err; |
| |
| bch_btree_sort_and_fix_extents(b, iter); |
| |
| i = b->sets[0].data; |
| err = "short btree key"; |
| if (b->sets[0].size && |
| bkey_cmp(&b->key, &b->sets[0].end) < 0) |
| goto err; |
| |
| if (b->written < btree_blocks(b)) |
| bch_bset_init_next(b); |
| out: |
| mempool_free(iter, b->c->fill_iter); |
| return; |
| err: |
| set_btree_node_io_error(b); |
| bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys", |
| err, PTR_BUCKET_NR(b->c, &b->key, 0), |
| index(i, b), i->keys); |
| goto out; |
| } |
| |
| static void btree_node_read_endio(struct bio *bio, int error) |
| { |
| struct closure *cl = bio->bi_private; |
| closure_put(cl); |
| } |
| |
| void bch_btree_node_read(struct btree *b) |
| { |
| uint64_t start_time = local_clock(); |
| struct closure cl; |
| struct bio *bio; |
| |
| trace_bcache_btree_read(b); |
| |
| closure_init_stack(&cl); |
| |
| bio = bch_bbio_alloc(b->c); |
| bio->bi_rw = REQ_META|READ_SYNC; |
| bio->bi_size = KEY_SIZE(&b->key) << 9; |
| bio->bi_end_io = btree_node_read_endio; |
| bio->bi_private = &cl; |
| |
| bch_bio_map(bio, b->sets[0].data); |
| |
| bch_submit_bbio(bio, b->c, &b->key, 0); |
| closure_sync(&cl); |
| |
| if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) |
| set_btree_node_io_error(b); |
| |
| bch_bbio_free(bio, b->c); |
| |
| if (btree_node_io_error(b)) |
| goto err; |
| |
| bch_btree_node_read_done(b); |
| |
| spin_lock(&b->c->btree_read_time_lock); |
| bch_time_stats_update(&b->c->btree_read_time, start_time); |
| spin_unlock(&b->c->btree_read_time_lock); |
| |
| return; |
| err: |
| bch_cache_set_error(b->c, "io error reading bucket %zu", |
| PTR_BUCKET_NR(b->c, &b->key, 0)); |
| } |
| |
| static void btree_complete_write(struct btree *b, struct btree_write *w) |
| { |
| if (w->prio_blocked && |
| !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) |
| wake_up_allocators(b->c); |
| |
| if (w->journal) { |
| atomic_dec_bug(w->journal); |
| __closure_wake_up(&b->c->journal.wait); |
| } |
| |
| w->prio_blocked = 0; |
| w->journal = NULL; |
| } |
| |
| static void __btree_node_write_done(struct closure *cl) |
| { |
| struct btree *b = container_of(cl, struct btree, io.cl); |
| struct btree_write *w = btree_prev_write(b); |
| |
| bch_bbio_free(b->bio, b->c); |
| b->bio = NULL; |
| btree_complete_write(b, w); |
| |
| if (btree_node_dirty(b)) |
| queue_delayed_work(btree_io_wq, &b->work, |
| msecs_to_jiffies(30000)); |
| |
| closure_return(cl); |
| } |
| |
| static void btree_node_write_done(struct closure *cl) |
| { |
| struct btree *b = container_of(cl, struct btree, io.cl); |
| struct bio_vec *bv; |
| int n; |
| |
| __bio_for_each_segment(bv, b->bio, n, 0) |
| __free_page(bv->bv_page); |
| |
| __btree_node_write_done(cl); |
| } |
| |
| static void btree_node_write_endio(struct bio *bio, int error) |
| { |
| struct closure *cl = bio->bi_private; |
| struct btree *b = container_of(cl, struct btree, io.cl); |
| |
| if (error) |
| set_btree_node_io_error(b); |
| |
| bch_bbio_count_io_errors(b->c, bio, error, "writing btree"); |
| closure_put(cl); |
| } |
| |
| static void do_btree_node_write(struct btree *b) |
| { |
| struct closure *cl = &b->io.cl; |
| struct bset *i = b->sets[b->nsets].data; |
| BKEY_PADDED(key) k; |
| |
| i->version = BCACHE_BSET_VERSION; |
| i->csum = btree_csum_set(b, i); |
| |
| BUG_ON(b->bio); |
| b->bio = bch_bbio_alloc(b->c); |
| |
| b->bio->bi_end_io = btree_node_write_endio; |
| b->bio->bi_private = &b->io.cl; |
| b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA; |
| b->bio->bi_size = set_blocks(i, b->c) * block_bytes(b->c); |
| bch_bio_map(b->bio, i); |
| |
| /* |
| * If we're appending to a leaf node, we don't technically need FUA - |
| * this write just needs to be persisted before the next journal write, |
| * which will be marked FLUSH|FUA. |
| * |
| * Similarly if we're writing a new btree root - the pointer is going to |
| * be in the next journal entry. |
| * |
| * But if we're writing a new btree node (that isn't a root) or |
| * appending to a non leaf btree node, we need either FUA or a flush |
| * when we write the parent with the new pointer. FUA is cheaper than a |
| * flush, and writes appending to leaf nodes aren't blocking anything so |
| * just make all btree node writes FUA to keep things sane. |
| */ |
| |
| bkey_copy(&k.key, &b->key); |
| SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i)); |
| |
| if (!bio_alloc_pages(b->bio, GFP_NOIO)) { |
| int j; |
| struct bio_vec *bv; |
| void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); |
| |
| bio_for_each_segment(bv, b->bio, j) |
| memcpy(page_address(bv->bv_page), |
| base + j * PAGE_SIZE, PAGE_SIZE); |
| |
| bch_submit_bbio(b->bio, b->c, &k.key, 0); |
| |
| continue_at(cl, btree_node_write_done, NULL); |
| } else { |
| b->bio->bi_vcnt = 0; |
| bch_bio_map(b->bio, i); |
| |
| bch_submit_bbio(b->bio, b->c, &k.key, 0); |
| |
| closure_sync(cl); |
| __btree_node_write_done(cl); |
| } |
| } |
| |
| void bch_btree_node_write(struct btree *b, struct closure *parent) |
| { |
| struct bset *i = b->sets[b->nsets].data; |
| |
| trace_bcache_btree_write(b); |
| |
| BUG_ON(current->bio_list); |
| BUG_ON(b->written >= btree_blocks(b)); |
| BUG_ON(b->written && !i->keys); |
| BUG_ON(b->sets->data->seq != i->seq); |
| bch_check_key_order(b, i); |
| |
| cancel_delayed_work(&b->work); |
| |
| /* If caller isn't waiting for write, parent refcount is cache set */ |
| closure_lock(&b->io, parent ?: &b->c->cl); |
| |
| clear_bit(BTREE_NODE_dirty, &b->flags); |
| change_bit(BTREE_NODE_write_idx, &b->flags); |
| |
| do_btree_node_write(b); |
| |
| b->written += set_blocks(i, b->c); |
| atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size, |
| &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); |
| |
| bch_btree_sort_lazy(b); |
| |
| if (b->written < btree_blocks(b)) |
| bch_bset_init_next(b); |
| } |
| |
| static void btree_node_write_work(struct work_struct *w) |
| { |
| struct btree *b = container_of(to_delayed_work(w), struct btree, work); |
| |
| rw_lock(true, b, b->level); |
| |
| if (btree_node_dirty(b)) |
| bch_btree_node_write(b, NULL); |
| rw_unlock(true, b); |
| } |
| |
| static void bch_btree_leaf_dirty(struct btree *b, struct btree_op *op) |
| { |
| struct bset *i = b->sets[b->nsets].data; |
| struct btree_write *w = btree_current_write(b); |
| |
| BUG_ON(!b->written); |
| BUG_ON(!i->keys); |
| |
| if (!btree_node_dirty(b)) |
| queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); |
| |
| set_btree_node_dirty(b); |
| |
| if (op && op->journal) { |
| if (w->journal && |
| journal_pin_cmp(b->c, w, op)) { |
| atomic_dec_bug(w->journal); |
| w->journal = NULL; |
| } |
| |
| if (!w->journal) { |
| w->journal = op->journal; |
| atomic_inc(w->journal); |
| } |
| } |
| |
| /* Force write if set is too big */ |
| if (set_bytes(i) > PAGE_SIZE - 48 && |
| !current->bio_list) |
| bch_btree_node_write(b, NULL); |
| } |
| |
| /* |
| * Btree in memory cache - allocation/freeing |
| * mca -> memory cache |
| */ |
| |
| static void mca_reinit(struct btree *b) |
| { |
| unsigned i; |
| |
| b->flags = 0; |
| b->written = 0; |
| b->nsets = 0; |
| |
| for (i = 0; i < MAX_BSETS; i++) |
| b->sets[i].size = 0; |
| /* |
| * Second loop starts at 1 because b->sets[0]->data is the memory we |
| * allocated |
| */ |
| for (i = 1; i < MAX_BSETS; i++) |
| b->sets[i].data = NULL; |
| } |
| |
| #define mca_reserve(c) (((c->root && c->root->level) \ |
| ? c->root->level : 1) * 8 + 16) |
| #define mca_can_free(c) \ |
| max_t(int, 0, c->bucket_cache_used - mca_reserve(c)) |
| |
| static void mca_data_free(struct btree *b) |
| { |
| struct bset_tree *t = b->sets; |
| BUG_ON(!closure_is_unlocked(&b->io.cl)); |
| |
| if (bset_prev_bytes(b) < PAGE_SIZE) |
| kfree(t->prev); |
| else |
| free_pages((unsigned long) t->prev, |
| get_order(bset_prev_bytes(b))); |
| |
| if (bset_tree_bytes(b) < PAGE_SIZE) |
| kfree(t->tree); |
| else |
| free_pages((unsigned long) t->tree, |
| get_order(bset_tree_bytes(b))); |
| |
| free_pages((unsigned long) t->data, b->page_order); |
| |
| t->prev = NULL; |
| t->tree = NULL; |
| t->data = NULL; |
| list_move(&b->list, &b->c->btree_cache_freed); |
| b->c->bucket_cache_used--; |
| } |
| |
| static void mca_bucket_free(struct btree *b) |
| { |
| BUG_ON(btree_node_dirty(b)); |
| |
| b->key.ptr[0] = 0; |
| hlist_del_init_rcu(&b->hash); |
| list_move(&b->list, &b->c->btree_cache_freeable); |
| } |
| |
| static unsigned btree_order(struct bkey *k) |
| { |
| return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); |
| } |
| |
| static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) |
| { |
| struct bset_tree *t = b->sets; |
| BUG_ON(t->data); |
| |
| b->page_order = max_t(unsigned, |
| ilog2(b->c->btree_pages), |
| btree_order(k)); |
| |
| t->data = (void *) __get_free_pages(gfp, b->page_order); |
| if (!t->data) |
| goto err; |
| |
| t->tree = bset_tree_bytes(b) < PAGE_SIZE |
| ? kmalloc(bset_tree_bytes(b), gfp) |
| : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b))); |
| if (!t->tree) |
| goto err; |
| |
| t->prev = bset_prev_bytes(b) < PAGE_SIZE |
| ? kmalloc(bset_prev_bytes(b), gfp) |
| : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b))); |
| if (!t->prev) |
| goto err; |
| |
| list_move(&b->list, &b->c->btree_cache); |
| b->c->bucket_cache_used++; |
| return; |
| err: |
| mca_data_free(b); |
| } |
| |
| static struct btree *mca_bucket_alloc(struct cache_set *c, |
| struct bkey *k, gfp_t gfp) |
| { |
| struct btree *b = kzalloc(sizeof(struct btree), gfp); |
| if (!b) |
| return NULL; |
| |
| init_rwsem(&b->lock); |
| lockdep_set_novalidate_class(&b->lock); |
| INIT_LIST_HEAD(&b->list); |
| INIT_DELAYED_WORK(&b->work, btree_node_write_work); |
| b->c = c; |
| closure_init_unlocked(&b->io); |
| |
| mca_data_alloc(b, k, gfp); |
| return b; |
| } |
| |
| static int mca_reap(struct btree *b, struct closure *cl, unsigned min_order) |
| { |
| lockdep_assert_held(&b->c->bucket_lock); |
| |
| if (!down_write_trylock(&b->lock)) |
| return -ENOMEM; |
| |
| if (b->page_order < min_order) { |
| rw_unlock(true, b); |
| return -ENOMEM; |
| } |
| |
| BUG_ON(btree_node_dirty(b) && !b->sets[0].data); |
| |
| if (cl && btree_node_dirty(b)) |
| bch_btree_node_write(b, NULL); |
| |
| if (cl) |
| closure_wait_event_async(&b->io.wait, cl, |
| atomic_read(&b->io.cl.remaining) == -1); |
| |
| if (btree_node_dirty(b) || |
| !closure_is_unlocked(&b->io.cl) || |
| work_pending(&b->work.work)) { |
| rw_unlock(true, b); |
| return -EAGAIN; |
| } |
| |
| return 0; |
| } |
| |
| static unsigned long bch_mca_scan(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| struct cache_set *c = container_of(shrink, struct cache_set, shrink); |
| struct btree *b, *t; |
| unsigned long i, nr = sc->nr_to_scan; |
| unsigned long freed = 0; |
| |
| if (c->shrinker_disabled) |
| return SHRINK_STOP; |
| |
| if (c->try_harder) |
| return SHRINK_STOP; |
| |
| /* Return -1 if we can't do anything right now */ |
| if (sc->gfp_mask & __GFP_IO) |
| mutex_lock(&c->bucket_lock); |
| else if (!mutex_trylock(&c->bucket_lock)) |
| return -1; |
| |
| /* |
| * It's _really_ critical that we don't free too many btree nodes - we |
| * have to always leave ourselves a reserve. The reserve is how we |
| * guarantee that allocating memory for a new btree node can always |
| * succeed, so that inserting keys into the btree can always succeed and |
| * IO can always make forward progress: |
| */ |
| nr /= c->btree_pages; |
| nr = min_t(unsigned long, nr, mca_can_free(c)); |
| |
| i = 0; |
| list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { |
| if (freed >= nr) |
| break; |
| |
| if (++i > 3 && |
| !mca_reap(b, NULL, 0)) { |
| mca_data_free(b); |
| rw_unlock(true, b); |
| freed++; |
| } |
| } |
| |
| /* |
| * Can happen right when we first start up, before we've read in any |
| * btree nodes |
| */ |
| if (list_empty(&c->btree_cache)) |
| goto out; |
| |
| for (i = 0; (nr--) && i < c->bucket_cache_used; i++) { |
| b = list_first_entry(&c->btree_cache, struct btree, list); |
| list_rotate_left(&c->btree_cache); |
| |
| if (!b->accessed && |
| !mca_reap(b, NULL, 0)) { |
| mca_bucket_free(b); |
| mca_data_free(b); |
| rw_unlock(true, b); |
| freed++; |
| } else |
| b->accessed = 0; |
| } |
| out: |
| mutex_unlock(&c->bucket_lock); |
| return freed; |
| } |
| |
| static unsigned long bch_mca_count(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| struct cache_set *c = container_of(shrink, struct cache_set, shrink); |
| |
| if (c->shrinker_disabled) |
| return 0; |
| |
| if (c->try_harder) |
| return 0; |
| |
| return mca_can_free(c) * c->btree_pages; |
| } |
| |
| void bch_btree_cache_free(struct cache_set *c) |
| { |
| struct btree *b; |
| struct closure cl; |
| closure_init_stack(&cl); |
| |
| if (c->shrink.list.next) |
| unregister_shrinker(&c->shrink); |
| |
| mutex_lock(&c->bucket_lock); |
| |
| #ifdef CONFIG_BCACHE_DEBUG |
| if (c->verify_data) |
| list_move(&c->verify_data->list, &c->btree_cache); |
| #endif |
| |
| list_splice(&c->btree_cache_freeable, |
| &c->btree_cache); |
| |
| while (!list_empty(&c->btree_cache)) { |
| b = list_first_entry(&c->btree_cache, struct btree, list); |
| |
| if (btree_node_dirty(b)) |
| btree_complete_write(b, btree_current_write(b)); |
| clear_bit(BTREE_NODE_dirty, &b->flags); |
| |
| mca_data_free(b); |
| } |
| |
| while (!list_empty(&c->btree_cache_freed)) { |
| b = list_first_entry(&c->btree_cache_freed, |
| struct btree, list); |
| list_del(&b->list); |
| cancel_delayed_work_sync(&b->work); |
| kfree(b); |
| } |
| |
| mutex_unlock(&c->bucket_lock); |
| } |
| |
| int bch_btree_cache_alloc(struct cache_set *c) |
| { |
| unsigned i; |
| |
| /* XXX: doesn't check for errors */ |
| |
| closure_init_unlocked(&c->gc); |
| |
| for (i = 0; i < mca_reserve(c); i++) |
| mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); |
| |
| list_splice_init(&c->btree_cache, |
| &c->btree_cache_freeable); |
| |
| #ifdef CONFIG_BCACHE_DEBUG |
| mutex_init(&c->verify_lock); |
| |
| c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); |
| |
| if (c->verify_data && |
| c->verify_data->sets[0].data) |
| list_del_init(&c->verify_data->list); |
| else |
| c->verify_data = NULL; |
| #endif |
| |
| c->shrink.count_objects = bch_mca_count; |
| c->shrink.scan_objects = bch_mca_scan; |
| c->shrink.seeks = 4; |
| c->shrink.batch = c->btree_pages * 2; |
| register_shrinker(&c->shrink); |
| |
| return 0; |
| } |
| |
| /* Btree in memory cache - hash table */ |
| |
| static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) |
| { |
| return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; |
| } |
| |
| static struct btree *mca_find(struct cache_set *c, struct bkey *k) |
| { |
| struct btree *b; |
| |
| rcu_read_lock(); |
| hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) |
| if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) |
| goto out; |
| b = NULL; |
| out: |
| rcu_read_unlock(); |
| return b; |
| } |
| |
| static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k, |
| int level, struct closure *cl) |
| { |
| int ret = -ENOMEM; |
| struct btree *i; |
| |
| trace_bcache_btree_cache_cannibalize(c); |
| |
| if (!cl) |
| return ERR_PTR(-ENOMEM); |
| |
| /* |
| * Trying to free up some memory - i.e. reuse some btree nodes - may |
| * require initiating IO to flush the dirty part of the node. If we're |
| * running under generic_make_request(), that IO will never finish and |
| * we would deadlock. Returning -EAGAIN causes the cache lookup code to |
| * punt to workqueue and retry. |
| */ |
| if (current->bio_list) |
| return ERR_PTR(-EAGAIN); |
| |
| if (c->try_harder && c->try_harder != cl) { |
| closure_wait_event_async(&c->try_wait, cl, !c->try_harder); |
| return ERR_PTR(-EAGAIN); |
| } |
| |
| c->try_harder = cl; |
| c->try_harder_start = local_clock(); |
| retry: |
| list_for_each_entry_reverse(i, &c->btree_cache, list) { |
| int r = mca_reap(i, cl, btree_order(k)); |
| if (!r) |
| return i; |
| if (r != -ENOMEM) |
| ret = r; |
| } |
| |
| if (ret == -EAGAIN && |
| closure_blocking(cl)) { |
| mutex_unlock(&c->bucket_lock); |
| closure_sync(cl); |
| mutex_lock(&c->bucket_lock); |
| goto retry; |
| } |
| |
| return ERR_PTR(ret); |
| } |
| |
| /* |
| * We can only have one thread cannibalizing other cached btree nodes at a time, |
| * or we'll deadlock. We use an open coded mutex to ensure that, which a |
| * cannibalize_bucket() will take. This means every time we unlock the root of |
| * the btree, we need to release this lock if we have it held. |
| */ |
| void bch_cannibalize_unlock(struct cache_set *c, struct closure *cl) |
| { |
| if (c->try_harder == cl) { |
| bch_time_stats_update(&c->try_harder_time, c->try_harder_start); |
| c->try_harder = NULL; |
| __closure_wake_up(&c->try_wait); |
| } |
| } |
| |
| static struct btree *mca_alloc(struct cache_set *c, struct bkey *k, |
| int level, struct closure *cl) |
| { |
| struct btree *b; |
| |
| lockdep_assert_held(&c->bucket_lock); |
| |
| if (mca_find(c, k)) |
| return NULL; |
| |
| /* btree_free() doesn't free memory; it sticks the node on the end of |
| * the list. Check if there's any freed nodes there: |
| */ |
| list_for_each_entry(b, &c->btree_cache_freeable, list) |
| if (!mca_reap(b, NULL, btree_order(k))) |
| goto out; |
| |
| /* We never free struct btree itself, just the memory that holds the on |
| * disk node. Check the freed list before allocating a new one: |
| */ |
| list_for_each_entry(b, &c->btree_cache_freed, list) |
| if (!mca_reap(b, NULL, 0)) { |
| mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); |
| if (!b->sets[0].data) |
| goto err; |
| else |
| goto out; |
| } |
| |
| b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); |
| if (!b) |
| goto err; |
| |
| BUG_ON(!down_write_trylock(&b->lock)); |
| if (!b->sets->data) |
| goto err; |
| out: |
| BUG_ON(!closure_is_unlocked(&b->io.cl)); |
| |
| bkey_copy(&b->key, k); |
| list_move(&b->list, &c->btree_cache); |
| hlist_del_init_rcu(&b->hash); |
| hlist_add_head_rcu(&b->hash, mca_hash(c, k)); |
| |
| lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); |
| b->level = level; |
| |
| mca_reinit(b); |
| |
| return b; |
| err: |
| if (b) |
| rw_unlock(true, b); |
| |
| b = mca_cannibalize(c, k, level, cl); |
| if (!IS_ERR(b)) |
| goto out; |
| |
| return b; |
| } |
| |
| /** |
| * bch_btree_node_get - find a btree node in the cache and lock it, reading it |
| * in from disk if necessary. |
| * |
| * If IO is necessary, it uses the closure embedded in struct btree_op to wait; |
| * if that closure is in non blocking mode, will return -EAGAIN. |
| * |
| * The btree node will have either a read or a write lock held, depending on |
| * level and op->lock. |
| */ |
| struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k, |
| int level, struct btree_op *op) |
| { |
| int i = 0; |
| bool write = level <= op->lock; |
| struct btree *b; |
| |
| BUG_ON(level < 0); |
| retry: |
| b = mca_find(c, k); |
| |
| if (!b) { |
| if (current->bio_list) |
| return ERR_PTR(-EAGAIN); |
| |
| mutex_lock(&c->bucket_lock); |
| b = mca_alloc(c, k, level, &op->cl); |
| mutex_unlock(&c->bucket_lock); |
| |
| if (!b) |
| goto retry; |
| if (IS_ERR(b)) |
| return b; |
| |
| bch_btree_node_read(b); |
| |
| if (!write) |
| downgrade_write(&b->lock); |
| } else { |
| rw_lock(write, b, level); |
| if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { |
| rw_unlock(write, b); |
| goto retry; |
| } |
| BUG_ON(b->level != level); |
| } |
| |
| b->accessed = 1; |
| |
| for (; i <= b->nsets && b->sets[i].size; i++) { |
| prefetch(b->sets[i].tree); |
| prefetch(b->sets[i].data); |
| } |
| |
| for (; i <= b->nsets; i++) |
| prefetch(b->sets[i].data); |
| |
| if (btree_node_io_error(b)) { |
| rw_unlock(write, b); |
| return ERR_PTR(-EIO); |
| } |
| |
| BUG_ON(!b->written); |
| |
| return b; |
| } |
| |
| static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level) |
| { |
| struct btree *b; |
| |
| mutex_lock(&c->bucket_lock); |
| b = mca_alloc(c, k, level, NULL); |
| mutex_unlock(&c->bucket_lock); |
| |
| if (!IS_ERR_OR_NULL(b)) { |
| bch_btree_node_read(b); |
| rw_unlock(true, b); |
| } |
| } |
| |
| /* Btree alloc */ |
| |
| static void btree_node_free(struct btree *b, struct btree_op *op) |
| { |
| unsigned i; |
| |
| trace_bcache_btree_node_free(b); |
| |
| /* |
| * The BUG_ON() in btree_node_get() implies that we must have a write |
| * lock on parent to free or even invalidate a node |
| */ |
| BUG_ON(op->lock <= b->level); |
| BUG_ON(b == b->c->root); |
| |
| if (btree_node_dirty(b)) |
| btree_complete_write(b, btree_current_write(b)); |
| clear_bit(BTREE_NODE_dirty, &b->flags); |
| |
| cancel_delayed_work(&b->work); |
| |
| mutex_lock(&b->c->bucket_lock); |
| |
| for (i = 0; i < KEY_PTRS(&b->key); i++) { |
| BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin)); |
| |
| bch_inc_gen(PTR_CACHE(b->c, &b->key, i), |
| PTR_BUCKET(b->c, &b->key, i)); |
| } |
| |
| bch_bucket_free(b->c, &b->key); |
| mca_bucket_free(b); |
| mutex_unlock(&b->c->bucket_lock); |
| } |
| |
| struct btree *bch_btree_node_alloc(struct cache_set *c, int level, |
| struct closure *cl) |
| { |
| BKEY_PADDED(key) k; |
| struct btree *b = ERR_PTR(-EAGAIN); |
| |
| mutex_lock(&c->bucket_lock); |
| retry: |
| if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, cl)) |
| goto err; |
| |
| SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); |
| |
| b = mca_alloc(c, &k.key, level, cl); |
| if (IS_ERR(b)) |
| goto err_free; |
| |
| if (!b) { |
| cache_bug(c, |
| "Tried to allocate bucket that was in btree cache"); |
| __bkey_put(c, &k.key); |
| goto retry; |
| } |
| |
| b->accessed = 1; |
| bch_bset_init_next(b); |
| |
| mutex_unlock(&c->bucket_lock); |
| |
| trace_bcache_btree_node_alloc(b); |
| return b; |
| err_free: |
| bch_bucket_free(c, &k.key); |
| __bkey_put(c, &k.key); |
| err: |
| mutex_unlock(&c->bucket_lock); |
| |
| trace_bcache_btree_node_alloc_fail(b); |
| return b; |
| } |
| |
| static struct btree *btree_node_alloc_replacement(struct btree *b, |
| struct closure *cl) |
| { |
| struct btree *n = bch_btree_node_alloc(b->c, b->level, cl); |
| if (!IS_ERR_OR_NULL(n)) |
| bch_btree_sort_into(b, n); |
| |
| return n; |
| } |
| |
| /* Garbage collection */ |
| |
| uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k) |
| { |
| uint8_t stale = 0; |
| unsigned i; |
| struct bucket *g; |
| |
| /* |
| * ptr_invalid() can't return true for the keys that mark btree nodes as |
| * freed, but since ptr_bad() returns true we'll never actually use them |
| * for anything and thus we don't want mark their pointers here |
| */ |
| if (!bkey_cmp(k, &ZERO_KEY)) |
| return stale; |
| |
| for (i = 0; i < KEY_PTRS(k); i++) { |
| if (!ptr_available(c, k, i)) |
| continue; |
| |
| g = PTR_BUCKET(c, k, i); |
| |
| if (gen_after(g->gc_gen, PTR_GEN(k, i))) |
| g->gc_gen = PTR_GEN(k, i); |
| |
| if (ptr_stale(c, k, i)) { |
| stale = max(stale, ptr_stale(c, k, i)); |
| continue; |
| } |
| |
| cache_bug_on(GC_MARK(g) && |
| (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), |
| c, "inconsistent ptrs: mark = %llu, level = %i", |
| GC_MARK(g), level); |
| |
| if (level) |
| SET_GC_MARK(g, GC_MARK_METADATA); |
| else if (KEY_DIRTY(k)) |
| SET_GC_MARK(g, GC_MARK_DIRTY); |
| |
| /* guard against overflow */ |
| SET_GC_SECTORS_USED(g, min_t(unsigned, |
| GC_SECTORS_USED(g) + KEY_SIZE(k), |
| (1 << 14) - 1)); |
| |
| BUG_ON(!GC_SECTORS_USED(g)); |
| } |
| |
| return stale; |
| } |
| |
| #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) |
| |
| static int btree_gc_mark_node(struct btree *b, unsigned *keys, |
| struct gc_stat *gc) |
| { |
| uint8_t stale = 0; |
| unsigned last_dev = -1; |
| struct bcache_device *d = NULL; |
| struct bkey *k; |
| struct btree_iter iter; |
| struct bset_tree *t; |
| |
| gc->nodes++; |
| |
| for_each_key_filter(b, k, &iter, bch_ptr_invalid) { |
| if (last_dev != KEY_INODE(k)) { |
| last_dev = KEY_INODE(k); |
| |
| d = KEY_INODE(k) < b->c->nr_uuids |
| ? b->c->devices[last_dev] |
| : NULL; |
| } |
| |
| stale = max(stale, btree_mark_key(b, k)); |
| |
| if (bch_ptr_bad(b, k)) |
| continue; |
| |
| *keys += bkey_u64s(k); |
| |
| gc->key_bytes += bkey_u64s(k); |
| gc->nkeys++; |
| |
| gc->data += KEY_SIZE(k); |
| if (KEY_DIRTY(k)) |
| gc->dirty += KEY_SIZE(k); |
| } |
| |
| for (t = b->sets; t <= &b->sets[b->nsets]; t++) |
| btree_bug_on(t->size && |
| bset_written(b, t) && |
| bkey_cmp(&b->key, &t->end) < 0, |
| b, "found short btree key in gc"); |
| |
| return stale; |
| } |
| |
| static struct btree *btree_gc_alloc(struct btree *b, struct bkey *k, |
| struct btree_op *op) |
| { |
| /* |
| * We block priorities from being written for the duration of garbage |
| * collection, so we can't sleep in btree_alloc() -> |
| * bch_bucket_alloc_set(), or we'd risk deadlock - so we don't pass it |
| * our closure. |
| */ |
| struct btree *n = btree_node_alloc_replacement(b, NULL); |
| |
| if (!IS_ERR_OR_NULL(n)) { |
| swap(b, n); |
| __bkey_put(b->c, &b->key); |
| |
| memcpy(k->ptr, b->key.ptr, |
| sizeof(uint64_t) * KEY_PTRS(&b->key)); |
| |
| btree_node_free(n, op); |
| up_write(&n->lock); |
| } |
| |
| return b; |
| } |
| |
| /* |
| * Leaving this at 2 until we've got incremental garbage collection done; it |
| * could be higher (and has been tested with 4) except that garbage collection |
| * could take much longer, adversely affecting latency. |
| */ |
| #define GC_MERGE_NODES 2U |
| |
| struct gc_merge_info { |
| struct btree *b; |
| struct bkey *k; |
| unsigned keys; |
| }; |
| |
| static void btree_gc_coalesce(struct btree *b, struct btree_op *op, |
| struct gc_stat *gc, struct gc_merge_info *r) |
| { |
| unsigned nodes = 0, keys = 0, blocks; |
| int i; |
| |
| while (nodes < GC_MERGE_NODES && r[nodes].b) |
| keys += r[nodes++].keys; |
| |
| blocks = btree_default_blocks(b->c) * 2 / 3; |
| |
| if (nodes < 2 || |
| __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1)) |
| return; |
| |
| for (i = nodes - 1; i >= 0; --i) { |
| if (r[i].b->written) |
| r[i].b = btree_gc_alloc(r[i].b, r[i].k, op); |
| |
| if (r[i].b->written) |
| return; |
| } |
| |
| for (i = nodes - 1; i > 0; --i) { |
| struct bset *n1 = r[i].b->sets->data; |
| struct bset *n2 = r[i - 1].b->sets->data; |
| struct bkey *k, *last = NULL; |
| |
| keys = 0; |
| |
| if (i == 1) { |
| /* |
| * Last node we're not getting rid of - we're getting |
| * rid of the node at r[0]. Have to try and fit all of |
| * the remaining keys into this node; we can't ensure |
| * they will always fit due to rounding and variable |
| * length keys (shouldn't be possible in practice, |
| * though) |
| */ |
| if (__set_blocks(n1, n1->keys + r->keys, |
| b->c) > btree_blocks(r[i].b)) |
| return; |
| |
| keys = n2->keys; |
| last = &r->b->key; |
| } else |
| for (k = n2->start; |
| k < end(n2); |
| k = bkey_next(k)) { |
| if (__set_blocks(n1, n1->keys + keys + |
| bkey_u64s(k), b->c) > blocks) |
| break; |
| |
| last = k; |
| keys += bkey_u64s(k); |
| } |
| |
| BUG_ON(__set_blocks(n1, n1->keys + keys, |
| b->c) > btree_blocks(r[i].b)); |
| |
| if (last) { |
| bkey_copy_key(&r[i].b->key, last); |
| bkey_copy_key(r[i].k, last); |
| } |
| |
| memcpy(end(n1), |
| n2->start, |
| (void *) node(n2, keys) - (void *) n2->start); |
| |
| n1->keys += keys; |
| |
| memmove(n2->start, |
| node(n2, keys), |
| (void *) end(n2) - (void *) node(n2, keys)); |
| |
| n2->keys -= keys; |
| |
| r[i].keys = n1->keys; |
| r[i - 1].keys = n2->keys; |
| } |
| |
| btree_node_free(r->b, op); |
| up_write(&r->b->lock); |
| |
| trace_bcache_btree_gc_coalesce(nodes); |
| |
| gc->nodes--; |
| nodes--; |
| |
| memmove(&r[0], &r[1], sizeof(struct gc_merge_info) * nodes); |
| memset(&r[nodes], 0, sizeof(struct gc_merge_info)); |
| } |
| |
| static int btree_gc_recurse(struct btree *b, struct btree_op *op, |
| struct closure *writes, struct gc_stat *gc) |
| { |
| void write(struct btree *r) |
| { |
| if (!r->written) |
| bch_btree_node_write(r, &op->cl); |
| else if (btree_node_dirty(r)) |
| bch_btree_node_write(r, writes); |
| |
| up_write(&r->lock); |
| } |
| |
| int ret = 0, stale; |
| unsigned i; |
| struct gc_merge_info r[GC_MERGE_NODES]; |
| |
| memset(r, 0, sizeof(r)); |
| |
| while ((r->k = bch_next_recurse_key(b, &b->c->gc_done))) { |
| r->b = bch_btree_node_get(b->c, r->k, b->level - 1, op); |
| |
| if (IS_ERR(r->b)) { |
| ret = PTR_ERR(r->b); |
| break; |
| } |
| |
| r->keys = 0; |
| stale = btree_gc_mark_node(r->b, &r->keys, gc); |
| |
| if (!b->written && |
| (r->b->level || stale > 10 || |
| b->c->gc_always_rewrite)) |
| r->b = btree_gc_alloc(r->b, r->k, op); |
| |
| if (r->b->level) |
| ret = btree_gc_recurse(r->b, op, writes, gc); |
| |
| if (ret) { |
| write(r->b); |
| break; |
| } |
| |
| bkey_copy_key(&b->c->gc_done, r->k); |
| |
| if (!b->written) |
| btree_gc_coalesce(b, op, gc, r); |
| |
| if (r[GC_MERGE_NODES - 1].b) |
| write(r[GC_MERGE_NODES - 1].b); |
| |
| memmove(&r[1], &r[0], |
| sizeof(struct gc_merge_info) * (GC_MERGE_NODES - 1)); |
| |
| /* When we've got incremental GC working, we'll want to do |
| * if (should_resched()) |
| * return -EAGAIN; |
| */ |
| cond_resched(); |
| #if 0 |
| if (need_resched()) { |
| ret = -EAGAIN; |
| break; |
| } |
| #endif |
| } |
| |
| for (i = 1; i < GC_MERGE_NODES && r[i].b; i++) |
| write(r[i].b); |
| |
| /* Might have freed some children, must remove their keys */ |
| if (!b->written) |
| bch_btree_sort(b); |
| |
| return ret; |
| } |
| |
| static int bch_btree_gc_root(struct btree *b, struct btree_op *op, |
| struct closure *writes, struct gc_stat *gc) |
| { |
| struct btree *n = NULL; |
| unsigned keys = 0; |
| int ret = 0, stale = btree_gc_mark_node(b, &keys, gc); |
| |
| if (b->level || stale > 10) |
| n = btree_node_alloc_replacement(b, NULL); |
| |
| if (!IS_ERR_OR_NULL(n)) |
| swap(b, n); |
| |
| if (b->level) |
| ret = btree_gc_recurse(b, op, writes, gc); |
| |
| if (!b->written || btree_node_dirty(b)) { |
| bch_btree_node_write(b, n ? &op->cl : NULL); |
| } |
| |
| if (!IS_ERR_OR_NULL(n)) { |
| closure_sync(&op->cl); |
| bch_btree_set_root(b); |
| btree_node_free(n, op); |
| rw_unlock(true, b); |
| } |
| |
| return ret; |
| } |
| |
| static void btree_gc_start(struct cache_set *c) |
| { |
| struct cache *ca; |
| struct bucket *b; |
| unsigned i; |
| |
| if (!c->gc_mark_valid) |
| return; |
| |
| mutex_lock(&c->bucket_lock); |
| |
| c->gc_mark_valid = 0; |
| c->gc_done = ZERO_KEY; |
| |
| for_each_cache(ca, c, i) |
| for_each_bucket(b, ca) { |
| b->gc_gen = b->gen; |
| if (!atomic_read(&b->pin)) { |
| SET_GC_MARK(b, GC_MARK_RECLAIMABLE); |
| SET_GC_SECTORS_USED(b, 0); |
| } |
| } |
| |
| mutex_unlock(&c->bucket_lock); |
| } |
| |
| size_t bch_btree_gc_finish(struct cache_set *c) |
| { |
| size_t available = 0; |
| struct bucket *b; |
| struct cache *ca; |
| unsigned i; |
| |
| mutex_lock(&c->bucket_lock); |
| |
| set_gc_sectors(c); |
| c->gc_mark_valid = 1; |
| c->need_gc = 0; |
| |
| if (c->root) |
| for (i = 0; i < KEY_PTRS(&c->root->key); i++) |
| SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i), |
| GC_MARK_METADATA); |
| |
| for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) |
| SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), |
| GC_MARK_METADATA); |
| |
| for_each_cache(ca, c, i) { |
| uint64_t *i; |
| |
| ca->invalidate_needs_gc = 0; |
| |
| for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) |
| SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); |
| |
| for (i = ca->prio_buckets; |
| i < ca->prio_buckets + prio_buckets(ca) * 2; i++) |
| SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); |
| |
| for_each_bucket(b, ca) { |
| b->last_gc = b->gc_gen; |
| c->need_gc = max(c->need_gc, bucket_gc_gen(b)); |
| |
| if (!atomic_read(&b->pin) && |
| GC_MARK(b) == GC_MARK_RECLAIMABLE) { |
| available++; |
| if (!GC_SECTORS_USED(b)) |
| bch_bucket_add_unused(ca, b); |
| } |
| } |
| } |
| |
| mutex_unlock(&c->bucket_lock); |
| return available; |
| } |
| |
| static void bch_btree_gc(struct closure *cl) |
| { |
| struct cache_set *c = container_of(cl, struct cache_set, gc.cl); |
| int ret; |
| unsigned long available; |
| struct gc_stat stats; |
| struct closure writes; |
| struct btree_op op; |
| uint64_t start_time = local_clock(); |
| |
| trace_bcache_gc_start(c); |
| |
| memset(&stats, 0, sizeof(struct gc_stat)); |
| closure_init_stack(&writes); |
| bch_btree_op_init_stack(&op); |
| op.lock = SHRT_MAX; |
| |
| btree_gc_start(c); |
| |
| atomic_inc(&c->prio_blocked); |
| |
| ret = btree_root(gc_root, c, &op, &writes, &stats); |
| closure_sync(&op.cl); |
| closure_sync(&writes); |
| |
| if (ret) { |
| pr_warn("gc failed!"); |
| continue_at(cl, bch_btree_gc, bch_gc_wq); |
| } |
| |
| /* Possibly wait for new UUIDs or whatever to hit disk */ |
| bch_journal_meta(c, &op.cl); |
| closure_sync(&op.cl); |
| |
| available = bch_btree_gc_finish(c); |
| |
| atomic_dec(&c->prio_blocked); |
| wake_up_allocators(c); |
| |
| bch_time_stats_update(&c->btree_gc_time, start_time); |
| |
| stats.key_bytes *= sizeof(uint64_t); |
| stats.dirty <<= 9; |
| stats.data <<= 9; |
| stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets; |
| memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); |
| |
| trace_bcache_gc_end(c); |
| |
| continue_at(cl, bch_moving_gc, bch_gc_wq); |
| } |
| |
| void bch_queue_gc(struct cache_set *c) |
| { |
| closure_trylock_call(&c->gc.cl, bch_btree_gc, bch_gc_wq, &c->cl); |
| } |
| |
| /* Initial partial gc */ |
| |
| static int bch_btree_check_recurse(struct btree *b, struct btree_op *op, |
| unsigned long **seen) |
| { |
| int ret; |
| unsigned i; |
| struct bkey *k; |
| struct bucket *g; |
| struct btree_iter iter; |
| |
| for_each_key_filter(b, k, &iter, bch_ptr_invalid) { |
| for (i = 0; i < KEY_PTRS(k); i++) { |
| if (!ptr_available(b->c, k, i)) |
| continue; |
| |
| g = PTR_BUCKET(b->c, k, i); |
| |
| if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i), |
| seen[PTR_DEV(k, i)]) || |
| !ptr_stale(b->c, k, i)) { |
| g->gen = PTR_GEN(k, i); |
| |
| if (b->level) |
| g->prio = BTREE_PRIO; |
| else if (g->prio == BTREE_PRIO) |
| g->prio = INITIAL_PRIO; |
| } |
| } |
| |
| btree_mark_key(b, k); |
| } |
| |
| if (b->level) { |
| k = bch_next_recurse_key(b, &ZERO_KEY); |
| |
| while (k) { |
| struct bkey *p = bch_next_recurse_key(b, k); |
| if (p) |
| btree_node_prefetch(b->c, p, b->level - 1); |
| |
| ret = btree(check_recurse, k, b, op, seen); |
| if (ret) |
| return ret; |
| |
| k = p; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int bch_btree_check(struct cache_set *c, struct btree_op *op) |
| { |
| int ret = -ENOMEM; |
| unsigned i; |
| unsigned long *seen[MAX_CACHES_PER_SET]; |
| |
| memset(seen, 0, sizeof(seen)); |
| |
| for (i = 0; c->cache[i]; i++) { |
| size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8); |
| seen[i] = kmalloc(n, GFP_KERNEL); |
| if (!seen[i]) |
| goto err; |
| |
| /* Disables the seen array until prio_read() uses it too */ |
| memset(seen[i], 0xFF, n); |
| } |
| |
| ret = btree_root(check_recurse, c, op, seen); |
| err: |
| for (i = 0; i < MAX_CACHES_PER_SET; i++) |
| kfree(seen[i]); |
| return ret; |
| } |
| |
| /* Btree insertion */ |
| |
| static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert) |
| { |
| struct bset *i = b->sets[b->nsets].data; |
| |
| memmove((uint64_t *) where + bkey_u64s(insert), |
| where, |
| (void *) end(i) - (void *) where); |
| |
| i->keys += bkey_u64s(insert); |
| bkey_copy(where, insert); |
| bch_bset_fix_lookup_table(b, where); |
| } |
| |
| static bool fix_overlapping_extents(struct btree *b, |
| struct bkey *insert, |
| struct btree_iter *iter, |
| struct btree_op *op) |
| { |
| void subtract_dirty(struct bkey *k, uint64_t offset, int sectors) |
| { |
| if (KEY_DIRTY(k)) |
| bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k), |
| offset, -sectors); |
| } |
| |
| uint64_t old_offset; |
| unsigned old_size, sectors_found = 0; |
| |
| while (1) { |
| struct bkey *k = bch_btree_iter_next(iter); |
| if (!k || |
| bkey_cmp(&START_KEY(k), insert) >= 0) |
| break; |
| |
| if (bkey_cmp(k, &START_KEY(insert)) <= 0) |
| continue; |
| |
| old_offset = KEY_START(k); |
| old_size = KEY_SIZE(k); |
| |
| /* |
| * We might overlap with 0 size extents; we can't skip these |
| * because if they're in the set we're inserting to we have to |
| * adjust them so they don't overlap with the key we're |
| * inserting. But we don't want to check them for BTREE_REPLACE |
| * operations. |
| */ |
| |
| if (op->type == BTREE_REPLACE && |
| KEY_SIZE(k)) { |
| /* |
| * k might have been split since we inserted/found the |
| * key we're replacing |
| */ |
| unsigned i; |
| uint64_t offset = KEY_START(k) - |
| KEY_START(&op->replace); |
| |
| /* But it must be a subset of the replace key */ |
| if (KEY_START(k) < KEY_START(&op->replace) || |
| KEY_OFFSET(k) > KEY_OFFSET(&op->replace)) |
| goto check_failed; |
| |
| /* We didn't find a key that we were supposed to */ |
| if (KEY_START(k) > KEY_START(insert) + sectors_found) |
| goto check_failed; |
| |
| if (KEY_PTRS(&op->replace) != KEY_PTRS(k)) |
| goto check_failed; |
| |
| /* skip past gen */ |
| offset <<= 8; |
| |
| BUG_ON(!KEY_PTRS(&op->replace)); |
| |
| for (i = 0; i < KEY_PTRS(&op->replace); i++) |
| if (k->ptr[i] != op->replace.ptr[i] + offset) |
| goto check_failed; |
| |
| sectors_found = KEY_OFFSET(k) - KEY_START(insert); |
| } |
| |
| if (bkey_cmp(insert, k) < 0 && |
| bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) { |
| /* |
| * We overlapped in the middle of an existing key: that |
| * means we have to split the old key. But we have to do |
| * slightly different things depending on whether the |
| * old key has been written out yet. |
| */ |
| |
| struct bkey *top; |
| |
| subtract_dirty(k, KEY_START(insert), KEY_SIZE(insert)); |
| |
| if (bkey_written(b, k)) { |
| /* |
| * We insert a new key to cover the top of the |
| * old key, and the old key is modified in place |
| * to represent the bottom split. |
| * |
| * It's completely arbitrary whether the new key |
| * is the top or the bottom, but it has to match |
| * up with what btree_sort_fixup() does - it |
| * doesn't check for this kind of overlap, it |
| * depends on us inserting a new key for the top |
| * here. |
| */ |
| top = bch_bset_search(b, &b->sets[b->nsets], |
| insert); |
| shift_keys(b, top, k); |
| } else { |
| BKEY_PADDED(key) temp; |
| bkey_copy(&temp.key, k); |
| shift_keys(b, k, &temp.key); |
| top = bkey_next(k); |
| } |
| |
| bch_cut_front(insert, top); |
| bch_cut_back(&START_KEY(insert), k); |
| bch_bset_fix_invalidated_key(b, k); |
| return false; |
| } |
| |
| if (bkey_cmp(insert, k) < 0) { |
| bch_cut_front(insert, k); |
| } else { |
| if (bkey_written(b, k) && |
| bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) { |
| /* |
| * Completely overwrote, so we don't have to |
| * invalidate the binary search tree |
| */ |
| bch_cut_front(k, k); |
| } else { |
| __bch_cut_back(&START_KEY(insert), k); |
| bch_bset_fix_invalidated_key(b, k); |
| } |
| } |
| |
| subtract_dirty(k, old_offset, old_size - KEY_SIZE(k)); |
| } |
| |
| check_failed: |
| if (op->type == BTREE_REPLACE) { |
| if (!sectors_found) { |
| op->insert_collision = true; |
| return true; |
| } else if (sectors_found < KEY_SIZE(insert)) { |
| SET_KEY_OFFSET(insert, KEY_OFFSET(insert) - |
| (KEY_SIZE(insert) - sectors_found)); |
| SET_KEY_SIZE(insert, sectors_found); |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool btree_insert_key(struct btree *b, struct btree_op *op, |
| struct bkey *k) |
| { |
| struct bset *i = b->sets[b->nsets].data; |
| struct bkey *m, *prev; |
| unsigned status = BTREE_INSERT_STATUS_INSERT; |
| |
| BUG_ON(bkey_cmp(k, &b->key) > 0); |
| BUG_ON(b->level && !KEY_PTRS(k)); |
| BUG_ON(!b->level && !KEY_OFFSET(k)); |
| |
| if (!b->level) { |
| struct btree_iter iter; |
| struct bkey search = KEY(KEY_INODE(k), KEY_START(k), 0); |
| |
| /* |
| * bset_search() returns the first key that is strictly greater |
| * than the search key - but for back merging, we want to find |
| * the first key that is greater than or equal to KEY_START(k) - |
| * unless KEY_START(k) is 0. |
| */ |
| if (KEY_OFFSET(&search)) |
| SET_KEY_OFFSET(&search, KEY_OFFSET(&search) - 1); |
| |
| prev = NULL; |
| m = bch_btree_iter_init(b, &iter, &search); |
| |
| if (fix_overlapping_extents(b, k, &iter, op)) |
| return false; |
| |
| while (m != end(i) && |
| bkey_cmp(k, &START_KEY(m)) > 0) |
| prev = m, m = bkey_next(m); |
| |
| if (key_merging_disabled(b->c)) |
| goto insert; |
| |
| /* prev is in the tree, if we merge we're done */ |
| status = BTREE_INSERT_STATUS_BACK_MERGE; |
| if (prev && |
| bch_bkey_try_merge(b, prev, k)) |
| goto merged; |
| |
| status = BTREE_INSERT_STATUS_OVERWROTE; |
| if (m != end(i) && |
| KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m)) |
| goto copy; |
| |
| status = BTREE_INSERT_STATUS_FRONT_MERGE; |
| if (m != end(i) && |
| bch_bkey_try_merge(b, k, m)) |
| goto copy; |
| } else |
| m = bch_bset_search(b, &b->sets[b->nsets], k); |
| |
| insert: shift_keys(b, m, k); |
| copy: bkey_copy(m, k); |
| merged: |
| if (KEY_DIRTY(k)) |
| bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k), |
| KEY_START(k), KEY_SIZE(k)); |
| |
| bch_check_keys(b, "%u for %s", status, op_type(op)); |
| |
| if (b->level && !KEY_OFFSET(k)) |
| btree_current_write(b)->prio_blocked++; |
| |
| trace_bcache_btree_insert_key(b, k, op->type, status); |
| |
| return true; |
| } |
| |
| static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op) |
| { |
| bool ret = false; |
| struct bkey *k; |
| unsigned oldsize = bch_count_data(b); |
| |
| while ((k = bch_keylist_pop(&op->keys))) { |
| bkey_put(b->c, k, b->level); |
| ret |= btree_insert_key(b, op, k); |
| } |
| |
| BUG_ON(bch_count_data(b) < oldsize); |
| return ret; |
| } |
| |
| bool bch_btree_insert_check_key(struct btree *b, struct btree_op *op, |
| struct bio *bio) |
| { |
| bool ret = false; |
| uint64_t btree_ptr = b->key.ptr[0]; |
| unsigned long seq = b->seq; |
| BKEY_PADDED(k) tmp; |
| |
| rw_unlock(false, b); |
| rw_lock(true, b, b->level); |
| |
| if (b->key.ptr[0] != btree_ptr || |
| b->seq != seq + 1 || |
| should_split(b)) |
| goto out; |
| |
| op->replace = KEY(op->inode, bio_end_sector(bio), bio_sectors(bio)); |
| |
| SET_KEY_PTRS(&op->replace, 1); |
| get_random_bytes(&op->replace.ptr[0], sizeof(uint64_t)); |
| |
| SET_PTR_DEV(&op->replace, 0, PTR_CHECK_DEV); |
| |
| bkey_copy(&tmp.k, &op->replace); |
| |
| BUG_ON(op->type != BTREE_INSERT); |
| BUG_ON(!btree_insert_key(b, op, &tmp.k)); |
| ret = true; |
| out: |
| downgrade_write(&b->lock); |
| return ret; |
| } |
| |
| static int btree_split(struct btree *b, struct btree_op *op) |
| { |
| bool split, root = b == b->c->root; |
| struct btree *n1, *n2 = NULL, *n3 = NULL; |
| uint64_t start_time = local_clock(); |
| |
| if (b->level) |
| set_closure_blocking(&op->cl); |
| |
| n1 = btree_node_alloc_replacement(b, &op->cl); |
| if (IS_ERR(n1)) |
| goto err; |
| |
| split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5; |
| |
| if (split) { |
| unsigned keys = 0; |
| |
| trace_bcache_btree_node_split(b, n1->sets[0].data->keys); |
| |
| n2 = bch_btree_node_alloc(b->c, b->level, &op->cl); |
| if (IS_ERR(n2)) |
| goto err_free1; |
| |
| if (root) { |
| n3 = bch_btree_node_alloc(b->c, b->level + 1, &op->cl); |
| if (IS_ERR(n3)) |
| goto err_free2; |
| } |
| |
| bch_btree_insert_keys(n1, op); |
| |
| /* Has to be a linear search because we don't have an auxiliary |
| * search tree yet |
| */ |
| |
| while (keys < (n1->sets[0].data->keys * 3) / 5) |
| keys += bkey_u64s(node(n1->sets[0].data, keys)); |
| |
| bkey_copy_key(&n1->key, node(n1->sets[0].data, keys)); |
| keys += bkey_u64s(node(n1->sets[0].data, keys)); |
| |
| n2->sets[0].data->keys = n1->sets[0].data->keys - keys; |
| n1->sets[0].data->keys = keys; |
| |
| memcpy(n2->sets[0].data->start, |
| end(n1->sets[0].data), |
| n2->sets[0].data->keys * sizeof(uint64_t)); |
| |
| bkey_copy_key(&n2->key, &b->key); |
| |
| bch_keylist_add(&op->keys, &n2->key); |
| bch_btree_node_write(n2, &op->cl); |
| rw_unlock(true, n2); |
| } else { |
| trace_bcache_btree_node_compact(b, n1->sets[0].data->keys); |
| |
| bch_btree_insert_keys(n1, op); |
| } |
| |
| bch_keylist_add(&op->keys, &n1->key); |
| bch_btree_node_write(n1, &op->cl); |
| |
| if (n3) { |
| bkey_copy_key(&n3->key, &MAX_KEY); |
| bch_btree_insert_keys(n3, op); |
| bch_btree_node_write(n3, &op->cl); |
| |
| closure_sync(&op->cl); |
| bch_btree_set_root(n3); |
| rw_unlock(true, n3); |
| } else if (root) { |
| op->keys.top = op->keys.bottom; |
| closure_sync(&op->cl); |
| bch_btree_set_root(n1); |
| } else { |
| unsigned i; |
| |
| bkey_copy(op->keys.top, &b->key); |
| bkey_copy_key(op->keys.top, &ZERO_KEY); |
| |
| for (i = 0; i < KEY_PTRS(&b->key); i++) { |
| uint8_t g = PTR_BUCKET(b->c, &b->key, i)->gen + 1; |
| |
| SET_PTR_GEN(op->keys.top, i, g); |
| } |
| |
| bch_keylist_push(&op->keys); |
| closure_sync(&op->cl); |
| atomic_inc(&b->c->prio_blocked); |
| } |
| |
| rw_unlock(true, n1); |
| btree_node_free(b, op); |
| |
| bch_time_stats_update(&b->c->btree_split_time, start_time); |
| |
| return 0; |
| err_free2: |
| __bkey_put(n2->c, &n2->key); |
| btree_node_free(n2, op); |
| rw_unlock(true, n2); |
| err_free1: |
| __bkey_put(n1->c, &n1->key); |
| btree_node_free(n1, op); |
| rw_unlock(true, n1); |
| err: |
| if (n3 == ERR_PTR(-EAGAIN) || |
| n2 == ERR_PTR(-EAGAIN) || |
| n1 == ERR_PTR(-EAGAIN)) |
| return -EAGAIN; |
| |
| pr_warn("couldn't split"); |
| return -ENOMEM; |
| } |
| |
| static int bch_btree_insert_recurse(struct btree *b, struct btree_op *op, |
| struct keylist *stack_keys) |
| { |
| if (b->level) { |
| int ret; |
| struct bkey *insert = op->keys.bottom; |
| struct bkey *k = bch_next_recurse_key(b, &START_KEY(insert)); |
| |
| if (!k) { |
| btree_bug(b, "no key to recurse on at level %i/%i", |
| b->level, b->c->root->level); |
| |
| op->keys.top = op->keys.bottom; |
| return -EIO; |
| } |
| |
| if (bkey_cmp(insert, k) > 0) { |
| unsigned i; |
| |
| if (op->type == BTREE_REPLACE) { |
| __bkey_put(b->c, insert); |
| op->keys.top = op->keys.bottom; |
| op->insert_collision = true; |
| return 0; |
| } |
| |
| for (i = 0; i < KEY_PTRS(insert); i++) |
| atomic_inc(&PTR_BUCKET(b->c, insert, i)->pin); |
| |
| bkey_copy(stack_keys->top, insert); |
| |
| bch_cut_back(k, insert); |
| bch_cut_front(k, stack_keys->top); |
| |
| bch_keylist_push(stack_keys); |
| } |
| |
| ret = btree(insert_recurse, k, b, op, stack_keys); |
| if (ret) |
| return ret; |
| } |
| |
| if (!bch_keylist_empty(&op->keys)) { |
| if (should_split(b)) { |
| if (op->lock <= b->c->root->level) { |
| BUG_ON(b->level); |
| op->lock = b->c->root->level + 1; |
| return -EINTR; |
| } |
| return btree_split(b, op); |
| } |
| |
| BUG_ON(write_block(b) != b->sets[b->nsets].data); |
| |
| if (bch_btree_insert_keys(b, op)) { |
| if (!b->level) |
| bch_btree_leaf_dirty(b, op); |
| else |
| bch_btree_node_write(b, &op->cl); |
| } |
| } |
| |
| return 0; |
| } |
| |
| int bch_btree_insert(struct btree_op *op, struct cache_set *c) |
| { |
| int ret = 0; |
| struct keylist stack_keys; |
| |
| /* |
| * Don't want to block with the btree locked unless we have to, |
| * otherwise we get deadlocks with try_harder and between split/gc |
| */ |
| clear_closure_blocking(&op->cl); |
| |
| BUG_ON(bch_keylist_empty(&op->keys)); |
| bch_keylist_copy(&stack_keys, &op->keys); |
| bch_keylist_init(&op->keys); |
| |
| while (!bch_keylist_empty(&stack_keys) || |
| !bch_keylist_empty(&op->keys)) { |
| if (bch_keylist_empty(&op->keys)) { |
| bch_keylist_add(&op->keys, |
| bch_keylist_pop(&stack_keys)); |
| op->lock = 0; |
| } |
| |
| ret = btree_root(insert_recurse, c, op, &stack_keys); |
| |
| if (ret == -EAGAIN) { |
| ret = 0; |
| closure_sync(&op->cl); |
| } else if (ret) { |
| struct bkey *k; |
| |
| pr_err("error %i trying to insert key for %s", |
| ret, op_type(op)); |
| |
| while ((k = bch_keylist_pop(&stack_keys) ?: |
| bch_keylist_pop(&op->keys))) |
| bkey_put(c, k, 0); |
| } |
| } |
| |
| bch_keylist_free(&stack_keys); |
| |
| if (op->journal) |
| atomic_dec_bug(op->journal); |
| op->journal = NULL; |
| return ret; |
| } |
| |
| void bch_btree_set_root(struct btree *b) |
| { |
| unsigned i; |
| struct closure cl; |
| |
| closure_init_stack(&cl); |
| |
| trace_bcache_btree_set_root(b); |
| |
| BUG_ON(!b->written); |
| |
| for (i = 0; i < KEY_PTRS(&b->key); i++) |
| BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); |
| |
| mutex_lock(&b->c->bucket_lock); |
| list_del_init(&b->list); |
| mutex_unlock(&b->c->bucket_lock); |
| |
| b->c->root = b; |
| __bkey_put(b->c, &b->key); |
| |
| bch_journal_meta(b->c, &cl); |
| closure_sync(&cl); |
| } |
| |
| /* Cache lookup */ |
| |
| static int submit_partial_cache_miss(struct btree *b, struct btree_op *op, |
| struct bkey *k) |
| { |
| struct search *s = container_of(op, struct search, op); |
| struct bio *bio = &s->bio.bio; |
| int ret = 0; |
| |
| while (!ret && |
| !op->lookup_done) { |
| unsigned sectors = INT_MAX; |
| |
| if (KEY_INODE(k) == op->inode) { |
| if (KEY_START(k) <= bio->bi_sector) |
| break; |
| |
| sectors = min_t(uint64_t, sectors, |
| KEY_START(k) - bio->bi_sector); |
| } |
| |
| ret = s->d->cache_miss(b, s, bio, sectors); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Read from a single key, handling the initial cache miss if the key starts in |
| * the middle of the bio |
| */ |
| static int submit_partial_cache_hit(struct btree *b, struct btree_op *op, |
| struct bkey *k) |
| { |
| struct search *s = container_of(op, struct search, op); |
| struct bio *bio = &s->bio.bio; |
| unsigned ptr; |
| struct bio *n; |
| |
| int ret = submit_partial_cache_miss(b, op, k); |
| if (ret || op->lookup_done) |
| return ret; |
| |
| /* XXX: figure out best pointer - for multiple cache devices */ |
| ptr = 0; |
| |
| PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; |
| |
| while (!op->lookup_done && |
| KEY_INODE(k) == op->inode && |
| bio->bi_sector < KEY_OFFSET(k)) { |
| struct bkey *bio_key; |
| sector_t sector = PTR_OFFSET(k, ptr) + |
| (bio->bi_sector - KEY_START(k)); |
| unsigned sectors = min_t(uint64_t, INT_MAX, |
| KEY_OFFSET(k) - bio->bi_sector); |
| |
| n = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split); |
| if (n == bio) |
| op->lookup_done = true; |
| |
| bio_key = &container_of(n, struct bbio, bio)->key; |
| |
| /* |
| * The bucket we're reading from might be reused while our bio |
| * is in flight, and we could then end up reading the wrong |
| * data. |
| * |
| * We guard against this by checking (in cache_read_endio()) if |
| * the pointer is stale again; if so, we treat it as an error |
| * and reread from the backing device (but we don't pass that |
| * error up anywhere). |
| */ |
| |
| bch_bkey_copy_single_ptr(bio_key, k, ptr); |
| SET_PTR_OFFSET(bio_key, 0, sector); |
| |
| n->bi_end_io = bch_cache_read_endio; |
| n->bi_private = &s->cl; |
| |
| __bch_submit_bbio(n, b->c); |
| } |
| |
| return 0; |
| } |
| |
| int bch_btree_search_recurse(struct btree *b, struct btree_op *op) |
| { |
| struct search *s = container_of(op, struct search, op); |
| struct bio *bio = &s->bio.bio; |
| |
| int ret = 0; |
| struct bkey *k; |
| struct btree_iter iter; |
| bch_btree_iter_init(b, &iter, &KEY(op->inode, bio->bi_sector, 0)); |
| |
| do { |
| k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad); |
| if (!k) { |
| /* |
| * b->key would be exactly what we want, except that |
| * pointers to btree nodes have nonzero size - we |
| * wouldn't go far enough |
| */ |
| |
| ret = submit_partial_cache_miss(b, op, |
| &KEY(KEY_INODE(&b->key), |
| KEY_OFFSET(&b->key), 0)); |
| break; |
| } |
| |
| ret = b->level |
| ? btree(search_recurse, k, b, op) |
| : submit_partial_cache_hit(b, op, k); |
| } while (!ret && |
| !op->lookup_done); |
| |
| return ret; |
| } |
| |
| /* Keybuf code */ |
| |
| static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) |
| { |
| /* Overlapping keys compare equal */ |
| if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) |
| return -1; |
| if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) |
| return 1; |
| return 0; |
| } |
| |
| static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, |
| struct keybuf_key *r) |
| { |
| return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); |
| } |
| |
| static int bch_btree_refill_keybuf(struct btree *b, struct btree_op *op, |
| struct keybuf *buf, struct bkey *end, |
| keybuf_pred_fn *pred) |
| { |
| struct btree_iter iter; |
| bch_btree_iter_init(b, &iter, &buf->last_scanned); |
| |
| while (!array_freelist_empty(&buf->freelist)) { |
| struct bkey *k = bch_btree_iter_next_filter(&iter, b, |
| bch_ptr_bad); |
| |
| if (!b->level) { |
| if (!k) { |
| buf->last_scanned = b->key; |
| break; |
| } |
| |
| buf->last_scanned = *k; |
| if (bkey_cmp(&buf->last_scanned, end) >= 0) |
| break; |
| |
| if (pred(buf, k)) { |
| struct keybuf_key *w; |
| |
| spin_lock(&buf->lock); |
| |
| w = array_alloc(&buf->freelist); |
| |
| w->private = NULL; |
| bkey_copy(&w->key, k); |
| |
| if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) |
| array_free(&buf->freelist, w); |
| |
| spin_unlock(&buf->lock); |
| } |
| } else { |
| if (!k) |
| break; |
| |
| btree(refill_keybuf, k, b, op, buf, end, pred); |
| /* |
| * Might get an error here, but can't really do anything |
| * and it'll get logged elsewhere. Just read what we |
| * can. |
| */ |
| |
| if (bkey_cmp(&buf->last_scanned, end) >= 0) |
| break; |
| |
| cond_resched(); |
| } |
| } |
| |
| return 0; |
| } |
| |
| void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, |
| struct bkey *end, keybuf_pred_fn *pred) |
| { |
| struct bkey start = buf->last_scanned; |
| struct btree_op op; |
| bch_btree_op_init_stack(&op); |
| |
| cond_resched(); |
| |
| btree_root(refill_keybuf, c, &op, buf, end, pred); |
| closure_sync(&op.cl); |
| |
| pr_debug("found %s keys from %llu:%llu to %llu:%llu", |
| RB_EMPTY_ROOT(&buf->keys) ? "no" : |
| array_freelist_empty(&buf->freelist) ? "some" : "a few", |
| KEY_INODE(&start), KEY_OFFSET(&start), |
| KEY_INODE(&buf->last_scanned), KEY_OFFSET(&buf->last_scanned)); |
| |
| spin_lock(&buf->lock); |
| |
| if (!RB_EMPTY_ROOT(&buf->keys)) { |
| struct keybuf_key *w; |
| w = RB_FIRST(&buf->keys, struct keybuf_key, node); |
| buf->start = START_KEY(&w->key); |
| |
| w = RB_LAST(&buf->keys, struct keybuf_key, node); |
| buf->end = w->key; |
| } else { |
| buf->start = MAX_KEY; |
| buf->end = MAX_KEY; |
| } |
| |
| spin_unlock(&buf->lock); |
| } |
| |
| static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) |
| { |
| rb_erase(&w->node, &buf->keys); |
| array_free(&buf->freelist, w); |
| } |
| |
| void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) |
| { |
| spin_lock(&buf->lock); |
| __bch_keybuf_del(buf, w); |
| spin_unlock(&buf->lock); |
| } |
| |
| bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, |
| struct bkey *end) |
| { |
| bool ret = false; |
| struct keybuf_key *p, *w, s; |
| s.key = *start; |
| |
| if (bkey_cmp(end, &buf->start) <= 0 || |
| bkey_cmp(start, &buf->end) >= 0) |
| return false; |
| |
| spin_lock(&buf->lock); |
| w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); |
| |
| while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { |
| p = w; |
| w = RB_NEXT(w, node); |
| |
| if (p->private) |
| ret = true; |
| else |
| __bch_keybuf_del(buf, p); |
| } |
| |
| spin_unlock(&buf->lock); |
| return ret; |
| } |
| |
| struct keybuf_key *bch_keybuf_next(struct keybuf *buf) |
| { |
| struct keybuf_key *w; |
| spin_lock(&buf->lock); |
| |
| w = RB_FIRST(&buf->keys, struct keybuf_key, node); |
| |
| while (w && w->private) |
| w = RB_NEXT(w, node); |
| |
| if (w) |
| w->private = ERR_PTR(-EINTR); |
| |
| spin_unlock(&buf->lock); |
| return w; |
| } |
| |
| struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, |
| struct keybuf *buf, |
| struct bkey *end, |
| keybuf_pred_fn *pred) |
| { |
| struct keybuf_key *ret; |
| |
| while (1) { |
| ret = bch_keybuf_next(buf); |
| if (ret) |
| break; |
| |
| if (bkey_cmp(&buf->last_scanned, end) >= 0) { |
| pr_debug("scan finished"); |
| break; |
| } |
| |
| bch_refill_keybuf(c, buf, end, pred); |
| } |
| |
| return ret; |
| } |
| |
| void bch_keybuf_init(struct keybuf *buf) |
| { |
| buf->last_scanned = MAX_KEY; |
| buf->keys = RB_ROOT; |
| |
| spin_lock_init(&buf->lock); |
| array_allocator_init(&buf->freelist); |
| } |
| |
| void bch_btree_exit(void) |
| { |
| if (btree_io_wq) |
| destroy_workqueue(btree_io_wq); |
| if (bch_gc_wq) |
| destroy_workqueue(bch_gc_wq); |
| } |
| |
| int __init bch_btree_init(void) |
| { |
| if (!(bch_gc_wq = create_singlethread_workqueue("bch_btree_gc")) || |
| !(btree_io_wq = create_singlethread_workqueue("bch_btree_io"))) |
| return -ENOMEM; |
| |
| return 0; |
| } |