| /* |
| * Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved. |
| * |
| * Authors: Shlomi Gridish <gridish@freescale.com> |
| * Li Yang <leoli@freescale.com> |
| * Based on cpm2_common.c from Dan Malek (dmalek@jlc.net) |
| * |
| * Description: |
| * General Purpose functions for the global management of the |
| * QUICC Engine (QE). |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| */ |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/bootmem.h> |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/ioport.h> |
| #include <linux/crc32.h> |
| #include <asm/irq.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/immap_qe.h> |
| #include <asm/qe.h> |
| #include <asm/prom.h> |
| #include <asm/rheap.h> |
| |
| static void qe_snums_init(void); |
| static int qe_sdma_init(void); |
| |
| static DEFINE_SPINLOCK(qe_lock); |
| |
| /* QE snum state */ |
| enum qe_snum_state { |
| QE_SNUM_STATE_USED, |
| QE_SNUM_STATE_FREE |
| }; |
| |
| /* QE snum */ |
| struct qe_snum { |
| u8 num; |
| enum qe_snum_state state; |
| }; |
| |
| /* We allocate this here because it is used almost exclusively for |
| * the communication processor devices. |
| */ |
| struct qe_immap __iomem *qe_immr; |
| EXPORT_SYMBOL(qe_immr); |
| |
| static struct qe_snum snums[QE_NUM_OF_SNUM]; /* Dynamically allocated SNUMs */ |
| |
| static phys_addr_t qebase = -1; |
| |
| phys_addr_t get_qe_base(void) |
| { |
| struct device_node *qe; |
| unsigned int size; |
| const u32 *prop; |
| |
| if (qebase != -1) |
| return qebase; |
| |
| qe = of_find_compatible_node(NULL, NULL, "fsl,qe"); |
| if (!qe) { |
| qe = of_find_node_by_type(NULL, "qe"); |
| if (!qe) |
| return qebase; |
| } |
| |
| prop = of_get_property(qe, "reg", &size); |
| if (prop && size >= sizeof(*prop)) |
| qebase = of_translate_address(qe, prop); |
| of_node_put(qe); |
| |
| return qebase; |
| } |
| |
| EXPORT_SYMBOL(get_qe_base); |
| |
| void __init qe_reset(void) |
| { |
| if (qe_immr == NULL) |
| qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE); |
| |
| qe_snums_init(); |
| |
| qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID, |
| QE_CR_PROTOCOL_UNSPECIFIED, 0); |
| |
| /* Reclaim the MURAM memory for our use. */ |
| qe_muram_init(); |
| |
| if (qe_sdma_init()) |
| panic("sdma init failed!"); |
| } |
| |
| int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input) |
| { |
| unsigned long flags; |
| u8 mcn_shift = 0, dev_shift = 0; |
| |
| spin_lock_irqsave(&qe_lock, flags); |
| if (cmd == QE_RESET) { |
| out_be32(&qe_immr->cp.cecr, (u32) (cmd | QE_CR_FLG)); |
| } else { |
| if (cmd == QE_ASSIGN_PAGE) { |
| /* Here device is the SNUM, not sub-block */ |
| dev_shift = QE_CR_SNUM_SHIFT; |
| } else if (cmd == QE_ASSIGN_RISC) { |
| /* Here device is the SNUM, and mcnProtocol is |
| * e_QeCmdRiscAssignment value */ |
| dev_shift = QE_CR_SNUM_SHIFT; |
| mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT; |
| } else { |
| if (device == QE_CR_SUBBLOCK_USB) |
| mcn_shift = QE_CR_MCN_USB_SHIFT; |
| else |
| mcn_shift = QE_CR_MCN_NORMAL_SHIFT; |
| } |
| |
| out_be32(&qe_immr->cp.cecdr, cmd_input); |
| out_be32(&qe_immr->cp.cecr, |
| (cmd | QE_CR_FLG | ((u32) device << dev_shift) | (u32) |
| mcn_protocol << mcn_shift)); |
| } |
| |
| /* wait for the QE_CR_FLG to clear */ |
| while(in_be32(&qe_immr->cp.cecr) & QE_CR_FLG) |
| cpu_relax(); |
| spin_unlock_irqrestore(&qe_lock, flags); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(qe_issue_cmd); |
| |
| /* Set a baud rate generator. This needs lots of work. There are |
| * 16 BRGs, which can be connected to the QE channels or output |
| * as clocks. The BRGs are in two different block of internal |
| * memory mapped space. |
| * The BRG clock is the QE clock divided by 2. |
| * It was set up long ago during the initial boot phase and is |
| * is given to us. |
| * Baud rate clocks are zero-based in the driver code (as that maps |
| * to port numbers). Documentation uses 1-based numbering. |
| */ |
| static unsigned int brg_clk = 0; |
| |
| unsigned int qe_get_brg_clk(void) |
| { |
| struct device_node *qe; |
| unsigned int size; |
| const u32 *prop; |
| |
| if (brg_clk) |
| return brg_clk; |
| |
| qe = of_find_compatible_node(NULL, NULL, "fsl,qe"); |
| if (!qe) { |
| qe = of_find_node_by_type(NULL, "qe"); |
| if (!qe) |
| return brg_clk; |
| } |
| |
| prop = of_get_property(qe, "brg-frequency", &size); |
| if (prop && size == sizeof(*prop)) |
| brg_clk = *prop; |
| |
| of_node_put(qe); |
| |
| return brg_clk; |
| } |
| EXPORT_SYMBOL(qe_get_brg_clk); |
| |
| /* Program the BRG to the given sampling rate and multiplier |
| * |
| * @brg: the BRG, QE_BRG1 - QE_BRG16 |
| * @rate: the desired sampling rate |
| * @multiplier: corresponds to the value programmed in GUMR_L[RDCR] or |
| * GUMR_L[TDCR]. E.g., if this BRG is the RX clock, and GUMR_L[RDCR]=01, |
| * then 'multiplier' should be 8. |
| */ |
| int qe_setbrg(enum qe_clock brg, unsigned int rate, unsigned int multiplier) |
| { |
| u32 divisor, tempval; |
| u32 div16 = 0; |
| |
| if ((brg < QE_BRG1) || (brg > QE_BRG16)) |
| return -EINVAL; |
| |
| divisor = qe_get_brg_clk() / (rate * multiplier); |
| |
| if (divisor > QE_BRGC_DIVISOR_MAX + 1) { |
| div16 = QE_BRGC_DIV16; |
| divisor /= 16; |
| } |
| |
| /* Errata QE_General4, which affects some MPC832x and MPC836x SOCs, says |
| that the BRG divisor must be even if you're not using divide-by-16 |
| mode. */ |
| if (!div16 && (divisor & 1)) |
| divisor++; |
| |
| tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) | |
| QE_BRGC_ENABLE | div16; |
| |
| out_be32(&qe_immr->brg.brgc[brg - QE_BRG1], tempval); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(qe_setbrg); |
| |
| /* Convert a string to a QE clock source enum |
| * |
| * This function takes a string, typically from a property in the device |
| * tree, and returns the corresponding "enum qe_clock" value. |
| */ |
| enum qe_clock qe_clock_source(const char *source) |
| { |
| unsigned int i; |
| |
| if (strcasecmp(source, "none") == 0) |
| return QE_CLK_NONE; |
| |
| if (strncasecmp(source, "brg", 3) == 0) { |
| i = simple_strtoul(source + 3, NULL, 10); |
| if ((i >= 1) && (i <= 16)) |
| return (QE_BRG1 - 1) + i; |
| else |
| return QE_CLK_DUMMY; |
| } |
| |
| if (strncasecmp(source, "clk", 3) == 0) { |
| i = simple_strtoul(source + 3, NULL, 10); |
| if ((i >= 1) && (i <= 24)) |
| return (QE_CLK1 - 1) + i; |
| else |
| return QE_CLK_DUMMY; |
| } |
| |
| return QE_CLK_DUMMY; |
| } |
| EXPORT_SYMBOL(qe_clock_source); |
| |
| /* Initialize SNUMs (thread serial numbers) according to |
| * QE Module Control chapter, SNUM table |
| */ |
| static void qe_snums_init(void) |
| { |
| int i; |
| static const u8 snum_init[] = { |
| 0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D, |
| 0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89, |
| 0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9, |
| 0xD8, 0xD9, 0xE8, 0xE9, |
| }; |
| |
| for (i = 0; i < QE_NUM_OF_SNUM; i++) { |
| snums[i].num = snum_init[i]; |
| snums[i].state = QE_SNUM_STATE_FREE; |
| } |
| } |
| |
| int qe_get_snum(void) |
| { |
| unsigned long flags; |
| int snum = -EBUSY; |
| int i; |
| |
| spin_lock_irqsave(&qe_lock, flags); |
| for (i = 0; i < QE_NUM_OF_SNUM; i++) { |
| if (snums[i].state == QE_SNUM_STATE_FREE) { |
| snums[i].state = QE_SNUM_STATE_USED; |
| snum = snums[i].num; |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&qe_lock, flags); |
| |
| return snum; |
| } |
| EXPORT_SYMBOL(qe_get_snum); |
| |
| void qe_put_snum(u8 snum) |
| { |
| int i; |
| |
| for (i = 0; i < QE_NUM_OF_SNUM; i++) { |
| if (snums[i].num == snum) { |
| snums[i].state = QE_SNUM_STATE_FREE; |
| break; |
| } |
| } |
| } |
| EXPORT_SYMBOL(qe_put_snum); |
| |
| static int qe_sdma_init(void) |
| { |
| struct sdma *sdma = &qe_immr->sdma; |
| unsigned long sdma_buf_offset; |
| |
| if (!sdma) |
| return -ENODEV; |
| |
| /* allocate 2 internal temporary buffers (512 bytes size each) for |
| * the SDMA */ |
| sdma_buf_offset = qe_muram_alloc(512 * 2, 4096); |
| if (IS_ERR_VALUE(sdma_buf_offset)) |
| return -ENOMEM; |
| |
| out_be32(&sdma->sdebcr, (u32) sdma_buf_offset & QE_SDEBCR_BA_MASK); |
| out_be32(&sdma->sdmr, (QE_SDMR_GLB_1_MSK | |
| (0x1 << QE_SDMR_CEN_SHIFT))); |
| |
| return 0; |
| } |
| |
| /* The maximum number of RISCs we support */ |
| #define MAX_QE_RISC 2 |
| |
| /* Firmware information stored here for qe_get_firmware_info() */ |
| static struct qe_firmware_info qe_firmware_info; |
| |
| /* |
| * Set to 1 if QE firmware has been uploaded, and therefore |
| * qe_firmware_info contains valid data. |
| */ |
| static int qe_firmware_uploaded; |
| |
| /* |
| * Upload a QE microcode |
| * |
| * This function is a worker function for qe_upload_firmware(). It does |
| * the actual uploading of the microcode. |
| */ |
| static void qe_upload_microcode(const void *base, |
| const struct qe_microcode *ucode) |
| { |
| const __be32 *code = base + be32_to_cpu(ucode->code_offset); |
| unsigned int i; |
| |
| if (ucode->major || ucode->minor || ucode->revision) |
| printk(KERN_INFO "qe-firmware: " |
| "uploading microcode '%s' version %u.%u.%u\n", |
| ucode->id, ucode->major, ucode->minor, ucode->revision); |
| else |
| printk(KERN_INFO "qe-firmware: " |
| "uploading microcode '%s'\n", ucode->id); |
| |
| /* Use auto-increment */ |
| out_be32(&qe_immr->iram.iadd, be32_to_cpu(ucode->iram_offset) | |
| QE_IRAM_IADD_AIE | QE_IRAM_IADD_BADDR); |
| |
| for (i = 0; i < be32_to_cpu(ucode->count); i++) |
| out_be32(&qe_immr->iram.idata, be32_to_cpu(code[i])); |
| } |
| |
| /* |
| * Upload a microcode to the I-RAM at a specific address. |
| * |
| * See Documentation/powerpc/qe-firmware.txt for information on QE microcode |
| * uploading. |
| * |
| * Currently, only version 1 is supported, so the 'version' field must be |
| * set to 1. |
| * |
| * The SOC model and revision are not validated, they are only displayed for |
| * informational purposes. |
| * |
| * 'calc_size' is the calculated size, in bytes, of the firmware structure and |
| * all of the microcode structures, minus the CRC. |
| * |
| * 'length' is the size that the structure says it is, including the CRC. |
| */ |
| int qe_upload_firmware(const struct qe_firmware *firmware) |
| { |
| unsigned int i; |
| unsigned int j; |
| u32 crc; |
| size_t calc_size = sizeof(struct qe_firmware); |
| size_t length; |
| const struct qe_header *hdr; |
| |
| if (!firmware) { |
| printk(KERN_ERR "qe-firmware: invalid pointer\n"); |
| return -EINVAL; |
| } |
| |
| hdr = &firmware->header; |
| length = be32_to_cpu(hdr->length); |
| |
| /* Check the magic */ |
| if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') || |
| (hdr->magic[2] != 'F')) { |
| printk(KERN_ERR "qe-firmware: not a microcode\n"); |
| return -EPERM; |
| } |
| |
| /* Check the version */ |
| if (hdr->version != 1) { |
| printk(KERN_ERR "qe-firmware: unsupported version\n"); |
| return -EPERM; |
| } |
| |
| /* Validate some of the fields */ |
| if ((firmware->count < 1) || (firmware->count > MAX_QE_RISC)) { |
| printk(KERN_ERR "qe-firmware: invalid data\n"); |
| return -EINVAL; |
| } |
| |
| /* Validate the length and check if there's a CRC */ |
| calc_size += (firmware->count - 1) * sizeof(struct qe_microcode); |
| |
| for (i = 0; i < firmware->count; i++) |
| /* |
| * For situations where the second RISC uses the same microcode |
| * as the first, the 'code_offset' and 'count' fields will be |
| * zero, so it's okay to add those. |
| */ |
| calc_size += sizeof(__be32) * |
| be32_to_cpu(firmware->microcode[i].count); |
| |
| /* Validate the length */ |
| if (length != calc_size + sizeof(__be32)) { |
| printk(KERN_ERR "qe-firmware: invalid length\n"); |
| return -EPERM; |
| } |
| |
| /* Validate the CRC */ |
| crc = be32_to_cpu(*(__be32 *)((void *)firmware + calc_size)); |
| if (crc != crc32(0, firmware, calc_size)) { |
| printk(KERN_ERR "qe-firmware: firmware CRC is invalid\n"); |
| return -EIO; |
| } |
| |
| /* |
| * If the microcode calls for it, split the I-RAM. |
| */ |
| if (!firmware->split) |
| setbits16(&qe_immr->cp.cercr, QE_CP_CERCR_CIR); |
| |
| if (firmware->soc.model) |
| printk(KERN_INFO |
| "qe-firmware: firmware '%s' for %u V%u.%u\n", |
| firmware->id, be16_to_cpu(firmware->soc.model), |
| firmware->soc.major, firmware->soc.minor); |
| else |
| printk(KERN_INFO "qe-firmware: firmware '%s'\n", |
| firmware->id); |
| |
| /* |
| * The QE only supports one microcode per RISC, so clear out all the |
| * saved microcode information and put in the new. |
| */ |
| memset(&qe_firmware_info, 0, sizeof(qe_firmware_info)); |
| strcpy(qe_firmware_info.id, firmware->id); |
| qe_firmware_info.extended_modes = firmware->extended_modes; |
| memcpy(qe_firmware_info.vtraps, firmware->vtraps, |
| sizeof(firmware->vtraps)); |
| |
| /* Loop through each microcode. */ |
| for (i = 0; i < firmware->count; i++) { |
| const struct qe_microcode *ucode = &firmware->microcode[i]; |
| |
| /* Upload a microcode if it's present */ |
| if (ucode->code_offset) |
| qe_upload_microcode(firmware, ucode); |
| |
| /* Program the traps for this processor */ |
| for (j = 0; j < 16; j++) { |
| u32 trap = be32_to_cpu(ucode->traps[j]); |
| |
| if (trap) |
| out_be32(&qe_immr->rsp[i].tibcr[j], trap); |
| } |
| |
| /* Enable traps */ |
| out_be32(&qe_immr->rsp[i].eccr, be32_to_cpu(ucode->eccr)); |
| } |
| |
| qe_firmware_uploaded = 1; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(qe_upload_firmware); |
| |
| /* |
| * Get info on the currently-loaded firmware |
| * |
| * This function also checks the device tree to see if the boot loader has |
| * uploaded a firmware already. |
| */ |
| struct qe_firmware_info *qe_get_firmware_info(void) |
| { |
| static int initialized; |
| struct property *prop; |
| struct device_node *qe; |
| struct device_node *fw = NULL; |
| const char *sprop; |
| unsigned int i; |
| |
| /* |
| * If we haven't checked yet, and a driver hasn't uploaded a firmware |
| * yet, then check the device tree for information. |
| */ |
| if (qe_firmware_uploaded) |
| return &qe_firmware_info; |
| |
| if (initialized) |
| return NULL; |
| |
| initialized = 1; |
| |
| /* |
| * Newer device trees have an "fsl,qe" compatible property for the QE |
| * node, but we still need to support older device trees. |
| */ |
| qe = of_find_compatible_node(NULL, NULL, "fsl,qe"); |
| if (!qe) { |
| qe = of_find_node_by_type(NULL, "qe"); |
| if (!qe) |
| return NULL; |
| } |
| |
| /* Find the 'firmware' child node */ |
| for_each_child_of_node(qe, fw) { |
| if (strcmp(fw->name, "firmware") == 0) |
| break; |
| } |
| |
| of_node_put(qe); |
| |
| /* Did we find the 'firmware' node? */ |
| if (!fw) |
| return NULL; |
| |
| qe_firmware_uploaded = 1; |
| |
| /* Copy the data into qe_firmware_info*/ |
| sprop = of_get_property(fw, "id", NULL); |
| if (sprop) |
| strncpy(qe_firmware_info.id, sprop, |
| sizeof(qe_firmware_info.id) - 1); |
| |
| prop = of_find_property(fw, "extended-modes", NULL); |
| if (prop && (prop->length == sizeof(u64))) { |
| const u64 *iprop = prop->value; |
| |
| qe_firmware_info.extended_modes = *iprop; |
| } |
| |
| prop = of_find_property(fw, "virtual-traps", NULL); |
| if (prop && (prop->length == 32)) { |
| const u32 *iprop = prop->value; |
| |
| for (i = 0; i < ARRAY_SIZE(qe_firmware_info.vtraps); i++) |
| qe_firmware_info.vtraps[i] = iprop[i]; |
| } |
| |
| of_node_put(fw); |
| |
| return &qe_firmware_info; |
| } |
| EXPORT_SYMBOL(qe_get_firmware_info); |
| |