| /* |
| * Architecture-specific setup. |
| * |
| * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * Stephane Eranian <eranian@hpl.hp.com> |
| * Copyright (C) 2000, 2004 Intel Corp |
| * Rohit Seth <rohit.seth@intel.com> |
| * Suresh Siddha <suresh.b.siddha@intel.com> |
| * Gordon Jin <gordon.jin@intel.com> |
| * Copyright (C) 1999 VA Linux Systems |
| * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> |
| * |
| * 12/26/04 S.Siddha, G.Jin, R.Seth |
| * Add multi-threading and multi-core detection |
| * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo(). |
| * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map |
| * 03/31/00 R.Seth cpu_initialized and current->processor fixes |
| * 02/04/00 D.Mosberger some more get_cpuinfo fixes... |
| * 02/01/00 R.Seth fixed get_cpuinfo for SMP |
| * 01/07/99 S.Eranian added the support for command line argument |
| * 06/24/99 W.Drummond added boot_cpu_data. |
| * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()" |
| */ |
| #include <linux/module.h> |
| #include <linux/init.h> |
| |
| #include <linux/acpi.h> |
| #include <linux/bootmem.h> |
| #include <linux/console.h> |
| #include <linux/delay.h> |
| #include <linux/kernel.h> |
| #include <linux/reboot.h> |
| #include <linux/sched.h> |
| #include <linux/seq_file.h> |
| #include <linux/string.h> |
| #include <linux/threads.h> |
| #include <linux/screen_info.h> |
| #include <linux/dmi.h> |
| #include <linux/serial.h> |
| #include <linux/serial_core.h> |
| #include <linux/efi.h> |
| #include <linux/initrd.h> |
| #include <linux/pm.h> |
| #include <linux/cpufreq.h> |
| #include <linux/kexec.h> |
| #include <linux/crash_dump.h> |
| |
| #include <asm/ia32.h> |
| #include <asm/machvec.h> |
| #include <asm/mca.h> |
| #include <asm/meminit.h> |
| #include <asm/page.h> |
| #include <asm/paravirt.h> |
| #include <asm/patch.h> |
| #include <asm/pgtable.h> |
| #include <asm/processor.h> |
| #include <asm/sal.h> |
| #include <asm/sections.h> |
| #include <asm/setup.h> |
| #include <asm/smp.h> |
| #include <asm/system.h> |
| #include <asm/tlbflush.h> |
| #include <asm/unistd.h> |
| #include <asm/hpsim.h> |
| |
| #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE) |
| # error "struct cpuinfo_ia64 too big!" |
| #endif |
| |
| #ifdef CONFIG_SMP |
| unsigned long __per_cpu_offset[NR_CPUS]; |
| EXPORT_SYMBOL(__per_cpu_offset); |
| #endif |
| |
| DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info); |
| DEFINE_PER_CPU(unsigned long, local_per_cpu_offset); |
| unsigned long ia64_cycles_per_usec; |
| struct ia64_boot_param *ia64_boot_param; |
| struct screen_info screen_info; |
| unsigned long vga_console_iobase; |
| unsigned long vga_console_membase; |
| |
| static struct resource data_resource = { |
| .name = "Kernel data", |
| .flags = IORESOURCE_BUSY | IORESOURCE_MEM |
| }; |
| |
| static struct resource code_resource = { |
| .name = "Kernel code", |
| .flags = IORESOURCE_BUSY | IORESOURCE_MEM |
| }; |
| |
| static struct resource bss_resource = { |
| .name = "Kernel bss", |
| .flags = IORESOURCE_BUSY | IORESOURCE_MEM |
| }; |
| |
| unsigned long ia64_max_cacheline_size; |
| |
| int dma_get_cache_alignment(void) |
| { |
| return ia64_max_cacheline_size; |
| } |
| EXPORT_SYMBOL(dma_get_cache_alignment); |
| |
| unsigned long ia64_iobase; /* virtual address for I/O accesses */ |
| EXPORT_SYMBOL(ia64_iobase); |
| struct io_space io_space[MAX_IO_SPACES]; |
| EXPORT_SYMBOL(io_space); |
| unsigned int num_io_spaces; |
| |
| /* |
| * "flush_icache_range()" needs to know what processor dependent stride size to use |
| * when it makes i-cache(s) coherent with d-caches. |
| */ |
| #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */ |
| unsigned long ia64_i_cache_stride_shift = ~0; |
| |
| /* |
| * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This |
| * mask specifies a mask of address bits that must be 0 in order for two buffers to be |
| * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start |
| * address of the second buffer must be aligned to (merge_mask+1) in order to be |
| * mergeable). By default, we assume there is no I/O MMU which can merge physically |
| * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu |
| * page-size of 2^64. |
| */ |
| unsigned long ia64_max_iommu_merge_mask = ~0UL; |
| EXPORT_SYMBOL(ia64_max_iommu_merge_mask); |
| |
| /* |
| * We use a special marker for the end of memory and it uses the extra (+1) slot |
| */ |
| struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata; |
| int num_rsvd_regions __initdata; |
| |
| |
| /* |
| * Filter incoming memory segments based on the primitive map created from the boot |
| * parameters. Segments contained in the map are removed from the memory ranges. A |
| * caller-specified function is called with the memory ranges that remain after filtering. |
| * This routine does not assume the incoming segments are sorted. |
| */ |
| int __init |
| filter_rsvd_memory (unsigned long start, unsigned long end, void *arg) |
| { |
| unsigned long range_start, range_end, prev_start; |
| void (*func)(unsigned long, unsigned long, int); |
| int i; |
| |
| #if IGNORE_PFN0 |
| if (start == PAGE_OFFSET) { |
| printk(KERN_WARNING "warning: skipping physical page 0\n"); |
| start += PAGE_SIZE; |
| if (start >= end) return 0; |
| } |
| #endif |
| /* |
| * lowest possible address(walker uses virtual) |
| */ |
| prev_start = PAGE_OFFSET; |
| func = arg; |
| |
| for (i = 0; i < num_rsvd_regions; ++i) { |
| range_start = max(start, prev_start); |
| range_end = min(end, rsvd_region[i].start); |
| |
| if (range_start < range_end) |
| call_pernode_memory(__pa(range_start), range_end - range_start, func); |
| |
| /* nothing more available in this segment */ |
| if (range_end == end) return 0; |
| |
| prev_start = rsvd_region[i].end; |
| } |
| /* end of memory marker allows full processing inside loop body */ |
| return 0; |
| } |
| |
| /* |
| * Similar to "filter_rsvd_memory()", but the reserved memory ranges |
| * are not filtered out. |
| */ |
| int __init |
| filter_memory(unsigned long start, unsigned long end, void *arg) |
| { |
| void (*func)(unsigned long, unsigned long, int); |
| |
| #if IGNORE_PFN0 |
| if (start == PAGE_OFFSET) { |
| printk(KERN_WARNING "warning: skipping physical page 0\n"); |
| start += PAGE_SIZE; |
| if (start >= end) |
| return 0; |
| } |
| #endif |
| func = arg; |
| if (start < end) |
| call_pernode_memory(__pa(start), end - start, func); |
| return 0; |
| } |
| |
| static void __init |
| sort_regions (struct rsvd_region *rsvd_region, int max) |
| { |
| int j; |
| |
| /* simple bubble sorting */ |
| while (max--) { |
| for (j = 0; j < max; ++j) { |
| if (rsvd_region[j].start > rsvd_region[j+1].start) { |
| struct rsvd_region tmp; |
| tmp = rsvd_region[j]; |
| rsvd_region[j] = rsvd_region[j + 1]; |
| rsvd_region[j + 1] = tmp; |
| } |
| } |
| } |
| } |
| |
| /* |
| * Request address space for all standard resources |
| */ |
| static int __init register_memory(void) |
| { |
| code_resource.start = ia64_tpa(_text); |
| code_resource.end = ia64_tpa(_etext) - 1; |
| data_resource.start = ia64_tpa(_etext); |
| data_resource.end = ia64_tpa(_edata) - 1; |
| bss_resource.start = ia64_tpa(__bss_start); |
| bss_resource.end = ia64_tpa(_end) - 1; |
| efi_initialize_iomem_resources(&code_resource, &data_resource, |
| &bss_resource); |
| |
| return 0; |
| } |
| |
| __initcall(register_memory); |
| |
| |
| #ifdef CONFIG_KEXEC |
| |
| /* |
| * This function checks if the reserved crashkernel is allowed on the specific |
| * IA64 machine flavour. Machines without an IO TLB use swiotlb and require |
| * some memory below 4 GB (i.e. in 32 bit area), see the implementation of |
| * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that |
| * in kdump case. See the comment in sba_init() in sba_iommu.c. |
| * |
| * So, the only machvec that really supports loading the kdump kernel |
| * over 4 GB is "sn2". |
| */ |
| static int __init check_crashkernel_memory(unsigned long pbase, size_t size) |
| { |
| if (ia64_platform_is("sn2") || ia64_platform_is("uv")) |
| return 1; |
| else |
| return pbase < (1UL << 32); |
| } |
| |
| static void __init setup_crashkernel(unsigned long total, int *n) |
| { |
| unsigned long long base = 0, size = 0; |
| int ret; |
| |
| ret = parse_crashkernel(boot_command_line, total, |
| &size, &base); |
| if (ret == 0 && size > 0) { |
| if (!base) { |
| sort_regions(rsvd_region, *n); |
| base = kdump_find_rsvd_region(size, |
| rsvd_region, *n); |
| } |
| |
| if (!check_crashkernel_memory(base, size)) { |
| pr_warning("crashkernel: There would be kdump memory " |
| "at %ld GB but this is unusable because it " |
| "must\nbe below 4 GB. Change the memory " |
| "configuration of the machine.\n", |
| (unsigned long)(base >> 30)); |
| return; |
| } |
| |
| if (base != ~0UL) { |
| printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " |
| "for crashkernel (System RAM: %ldMB)\n", |
| (unsigned long)(size >> 20), |
| (unsigned long)(base >> 20), |
| (unsigned long)(total >> 20)); |
| rsvd_region[*n].start = |
| (unsigned long)__va(base); |
| rsvd_region[*n].end = |
| (unsigned long)__va(base + size); |
| (*n)++; |
| crashk_res.start = base; |
| crashk_res.end = base + size - 1; |
| } |
| } |
| efi_memmap_res.start = ia64_boot_param->efi_memmap; |
| efi_memmap_res.end = efi_memmap_res.start + |
| ia64_boot_param->efi_memmap_size; |
| boot_param_res.start = __pa(ia64_boot_param); |
| boot_param_res.end = boot_param_res.start + |
| sizeof(*ia64_boot_param); |
| } |
| #else |
| static inline void __init setup_crashkernel(unsigned long total, int *n) |
| {} |
| #endif |
| |
| /** |
| * reserve_memory - setup reserved memory areas |
| * |
| * Setup the reserved memory areas set aside for the boot parameters, |
| * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined, |
| * see arch/ia64/include/asm/meminit.h if you need to define more. |
| */ |
| void __init |
| reserve_memory (void) |
| { |
| int n = 0; |
| unsigned long total_memory; |
| |
| /* |
| * none of the entries in this table overlap |
| */ |
| rsvd_region[n].start = (unsigned long) ia64_boot_param; |
| rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param); |
| n++; |
| |
| rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap); |
| rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size; |
| n++; |
| |
| rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line); |
| rsvd_region[n].end = (rsvd_region[n].start |
| + strlen(__va(ia64_boot_param->command_line)) + 1); |
| n++; |
| |
| rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START); |
| rsvd_region[n].end = (unsigned long) ia64_imva(_end); |
| n++; |
| |
| n += paravirt_reserve_memory(&rsvd_region[n]); |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| if (ia64_boot_param->initrd_start) { |
| rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start); |
| rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size; |
| n++; |
| } |
| #endif |
| |
| #ifdef CONFIG_PROC_VMCORE |
| if (reserve_elfcorehdr(&rsvd_region[n].start, |
| &rsvd_region[n].end) == 0) |
| n++; |
| #endif |
| |
| total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end); |
| n++; |
| |
| setup_crashkernel(total_memory, &n); |
| |
| /* end of memory marker */ |
| rsvd_region[n].start = ~0UL; |
| rsvd_region[n].end = ~0UL; |
| n++; |
| |
| num_rsvd_regions = n; |
| BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n); |
| |
| sort_regions(rsvd_region, num_rsvd_regions); |
| } |
| |
| |
| /** |
| * find_initrd - get initrd parameters from the boot parameter structure |
| * |
| * Grab the initrd start and end from the boot parameter struct given us by |
| * the boot loader. |
| */ |
| void __init |
| find_initrd (void) |
| { |
| #ifdef CONFIG_BLK_DEV_INITRD |
| if (ia64_boot_param->initrd_start) { |
| initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start); |
| initrd_end = initrd_start+ia64_boot_param->initrd_size; |
| |
| printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n", |
| initrd_start, ia64_boot_param->initrd_size); |
| } |
| #endif |
| } |
| |
| static void __init |
| io_port_init (void) |
| { |
| unsigned long phys_iobase; |
| |
| /* |
| * Set `iobase' based on the EFI memory map or, failing that, the |
| * value firmware left in ar.k0. |
| * |
| * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute |
| * the port's virtual address, so ia32_load_state() loads it with a |
| * user virtual address. But in ia64 mode, glibc uses the |
| * *physical* address in ar.k0 to mmap the appropriate area from |
| * /dev/mem, and the inX()/outX() interfaces use MMIO. In both |
| * cases, user-mode can only use the legacy 0-64K I/O port space. |
| * |
| * ar.k0 is not involved in kernel I/O port accesses, which can use |
| * any of the I/O port spaces and are done via MMIO using the |
| * virtual mmio_base from the appropriate io_space[]. |
| */ |
| phys_iobase = efi_get_iobase(); |
| if (!phys_iobase) { |
| phys_iobase = ia64_get_kr(IA64_KR_IO_BASE); |
| printk(KERN_INFO "No I/O port range found in EFI memory map, " |
| "falling back to AR.KR0 (0x%lx)\n", phys_iobase); |
| } |
| ia64_iobase = (unsigned long) ioremap(phys_iobase, 0); |
| ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase)); |
| |
| /* setup legacy IO port space */ |
| io_space[0].mmio_base = ia64_iobase; |
| io_space[0].sparse = 1; |
| num_io_spaces = 1; |
| } |
| |
| /** |
| * early_console_setup - setup debugging console |
| * |
| * Consoles started here require little enough setup that we can start using |
| * them very early in the boot process, either right after the machine |
| * vector initialization, or even before if the drivers can detect their hw. |
| * |
| * Returns non-zero if a console couldn't be setup. |
| */ |
| static inline int __init |
| early_console_setup (char *cmdline) |
| { |
| int earlycons = 0; |
| |
| #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE |
| { |
| extern int sn_serial_console_early_setup(void); |
| if (!sn_serial_console_early_setup()) |
| earlycons++; |
| } |
| #endif |
| #ifdef CONFIG_EFI_PCDP |
| if (!efi_setup_pcdp_console(cmdline)) |
| earlycons++; |
| #endif |
| if (!simcons_register()) |
| earlycons++; |
| |
| return (earlycons) ? 0 : -1; |
| } |
| |
| static inline void |
| mark_bsp_online (void) |
| { |
| #ifdef CONFIG_SMP |
| /* If we register an early console, allow CPU 0 to printk */ |
| cpu_set(smp_processor_id(), cpu_online_map); |
| #endif |
| } |
| |
| static __initdata int nomca; |
| static __init int setup_nomca(char *s) |
| { |
| nomca = 1; |
| return 0; |
| } |
| early_param("nomca", setup_nomca); |
| |
| /* |
| * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by |
| * is_kdump_kernel() to determine if we are booting after a panic. Hence |
| * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE. |
| */ |
| #ifdef CONFIG_CRASH_DUMP |
| /* elfcorehdr= specifies the location of elf core header |
| * stored by the crashed kernel. |
| */ |
| static int __init parse_elfcorehdr(char *arg) |
| { |
| if (!arg) |
| return -EINVAL; |
| |
| elfcorehdr_addr = memparse(arg, &arg); |
| return 0; |
| } |
| early_param("elfcorehdr", parse_elfcorehdr); |
| #endif |
| |
| #ifdef CONFIG_PROC_VMCORE |
| int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end) |
| { |
| unsigned long length; |
| |
| /* We get the address using the kernel command line, |
| * but the size is extracted from the EFI tables. |
| * Both address and size are required for reservation |
| * to work properly. |
| */ |
| |
| if (elfcorehdr_addr >= ELFCORE_ADDR_MAX) |
| return -EINVAL; |
| |
| if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) { |
| elfcorehdr_addr = ELFCORE_ADDR_MAX; |
| return -EINVAL; |
| } |
| |
| *start = (unsigned long)__va(elfcorehdr_addr); |
| *end = *start + length; |
| return 0; |
| } |
| |
| #endif /* CONFIG_PROC_VMCORE */ |
| |
| void __init |
| setup_arch (char **cmdline_p) |
| { |
| unw_init(); |
| |
| paravirt_arch_setup_early(); |
| |
| ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist); |
| |
| *cmdline_p = __va(ia64_boot_param->command_line); |
| strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE); |
| |
| efi_init(); |
| io_port_init(); |
| |
| #ifdef CONFIG_IA64_GENERIC |
| /* machvec needs to be parsed from the command line |
| * before parse_early_param() is called to ensure |
| * that ia64_mv is initialised before any command line |
| * settings may cause console setup to occur |
| */ |
| machvec_init_from_cmdline(*cmdline_p); |
| #endif |
| |
| parse_early_param(); |
| |
| if (early_console_setup(*cmdline_p) == 0) |
| mark_bsp_online(); |
| |
| #ifdef CONFIG_ACPI |
| /* Initialize the ACPI boot-time table parser */ |
| acpi_table_init(); |
| # ifdef CONFIG_ACPI_NUMA |
| acpi_numa_init(); |
| per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ? |
| 32 : cpus_weight(early_cpu_possible_map)), |
| additional_cpus > 0 ? additional_cpus : 0); |
| # endif |
| #else |
| # ifdef CONFIG_SMP |
| smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */ |
| # endif |
| #endif /* CONFIG_APCI_BOOT */ |
| |
| find_memory(); |
| |
| /* process SAL system table: */ |
| ia64_sal_init(__va(efi.sal_systab)); |
| |
| #ifdef CONFIG_ITANIUM |
| ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist); |
| #else |
| { |
| u64 num_phys_stacked; |
| |
| if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96) |
| ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist); |
| } |
| #endif |
| |
| #ifdef CONFIG_SMP |
| cpu_physical_id(0) = hard_smp_processor_id(); |
| #endif |
| |
| cpu_init(); /* initialize the bootstrap CPU */ |
| mmu_context_init(); /* initialize context_id bitmap */ |
| |
| #ifdef CONFIG_ACPI |
| acpi_boot_init(); |
| #endif |
| |
| paravirt_banner(); |
| paravirt_arch_setup_console(cmdline_p); |
| |
| #ifdef CONFIG_VT |
| if (!conswitchp) { |
| # if defined(CONFIG_DUMMY_CONSOLE) |
| conswitchp = &dummy_con; |
| # endif |
| # if defined(CONFIG_VGA_CONSOLE) |
| /* |
| * Non-legacy systems may route legacy VGA MMIO range to system |
| * memory. vga_con probes the MMIO hole, so memory looks like |
| * a VGA device to it. The EFI memory map can tell us if it's |
| * memory so we can avoid this problem. |
| */ |
| if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY) |
| conswitchp = &vga_con; |
| # endif |
| } |
| #endif |
| |
| /* enable IA-64 Machine Check Abort Handling unless disabled */ |
| if (paravirt_arch_setup_nomca()) |
| nomca = 1; |
| if (!nomca) |
| ia64_mca_init(); |
| |
| platform_setup(cmdline_p); |
| #ifndef CONFIG_IA64_HP_SIM |
| check_sal_cache_flush(); |
| #endif |
| paging_init(); |
| } |
| |
| /* |
| * Display cpu info for all CPUs. |
| */ |
| static int |
| show_cpuinfo (struct seq_file *m, void *v) |
| { |
| #ifdef CONFIG_SMP |
| # define lpj c->loops_per_jiffy |
| # define cpunum c->cpu |
| #else |
| # define lpj loops_per_jiffy |
| # define cpunum 0 |
| #endif |
| static struct { |
| unsigned long mask; |
| const char *feature_name; |
| } feature_bits[] = { |
| { 1UL << 0, "branchlong" }, |
| { 1UL << 1, "spontaneous deferral"}, |
| { 1UL << 2, "16-byte atomic ops" } |
| }; |
| char features[128], *cp, *sep; |
| struct cpuinfo_ia64 *c = v; |
| unsigned long mask; |
| unsigned long proc_freq; |
| int i, size; |
| |
| mask = c->features; |
| |
| /* build the feature string: */ |
| memcpy(features, "standard", 9); |
| cp = features; |
| size = sizeof(features); |
| sep = ""; |
| for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) { |
| if (mask & feature_bits[i].mask) { |
| cp += snprintf(cp, size, "%s%s", sep, |
| feature_bits[i].feature_name), |
| sep = ", "; |
| mask &= ~feature_bits[i].mask; |
| size = sizeof(features) - (cp - features); |
| } |
| } |
| if (mask && size > 1) { |
| /* print unknown features as a hex value */ |
| snprintf(cp, size, "%s0x%lx", sep, mask); |
| } |
| |
| proc_freq = cpufreq_quick_get(cpunum); |
| if (!proc_freq) |
| proc_freq = c->proc_freq / 1000; |
| |
| seq_printf(m, |
| "processor : %d\n" |
| "vendor : %s\n" |
| "arch : IA-64\n" |
| "family : %u\n" |
| "model : %u\n" |
| "model name : %s\n" |
| "revision : %u\n" |
| "archrev : %u\n" |
| "features : %s\n" |
| "cpu number : %lu\n" |
| "cpu regs : %u\n" |
| "cpu MHz : %lu.%03lu\n" |
| "itc MHz : %lu.%06lu\n" |
| "BogoMIPS : %lu.%02lu\n", |
| cpunum, c->vendor, c->family, c->model, |
| c->model_name, c->revision, c->archrev, |
| features, c->ppn, c->number, |
| proc_freq / 1000, proc_freq % 1000, |
| c->itc_freq / 1000000, c->itc_freq % 1000000, |
| lpj*HZ/500000, (lpj*HZ/5000) % 100); |
| #ifdef CONFIG_SMP |
| seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum])); |
| if (c->socket_id != -1) |
| seq_printf(m, "physical id: %u\n", c->socket_id); |
| if (c->threads_per_core > 1 || c->cores_per_socket > 1) |
| seq_printf(m, |
| "core id : %u\n" |
| "thread id : %u\n", |
| c->core_id, c->thread_id); |
| #endif |
| seq_printf(m,"\n"); |
| |
| return 0; |
| } |
| |
| static void * |
| c_start (struct seq_file *m, loff_t *pos) |
| { |
| #ifdef CONFIG_SMP |
| while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map)) |
| ++*pos; |
| #endif |
| return *pos < NR_CPUS ? cpu_data(*pos) : NULL; |
| } |
| |
| static void * |
| c_next (struct seq_file *m, void *v, loff_t *pos) |
| { |
| ++*pos; |
| return c_start(m, pos); |
| } |
| |
| static void |
| c_stop (struct seq_file *m, void *v) |
| { |
| } |
| |
| const struct seq_operations cpuinfo_op = { |
| .start = c_start, |
| .next = c_next, |
| .stop = c_stop, |
| .show = show_cpuinfo |
| }; |
| |
| #define MAX_BRANDS 8 |
| static char brandname[MAX_BRANDS][128]; |
| |
| static char * __cpuinit |
| get_model_name(__u8 family, __u8 model) |
| { |
| static int overflow; |
| char brand[128]; |
| int i; |
| |
| memcpy(brand, "Unknown", 8); |
| if (ia64_pal_get_brand_info(brand)) { |
| if (family == 0x7) |
| memcpy(brand, "Merced", 7); |
| else if (family == 0x1f) switch (model) { |
| case 0: memcpy(brand, "McKinley", 9); break; |
| case 1: memcpy(brand, "Madison", 8); break; |
| case 2: memcpy(brand, "Madison up to 9M cache", 23); break; |
| } |
| } |
| for (i = 0; i < MAX_BRANDS; i++) |
| if (strcmp(brandname[i], brand) == 0) |
| return brandname[i]; |
| for (i = 0; i < MAX_BRANDS; i++) |
| if (brandname[i][0] == '\0') |
| return strcpy(brandname[i], brand); |
| if (overflow++ == 0) |
| printk(KERN_ERR |
| "%s: Table overflow. Some processor model information will be missing\n", |
| __func__); |
| return "Unknown"; |
| } |
| |
| static void __cpuinit |
| identify_cpu (struct cpuinfo_ia64 *c) |
| { |
| union { |
| unsigned long bits[5]; |
| struct { |
| /* id 0 & 1: */ |
| char vendor[16]; |
| |
| /* id 2 */ |
| u64 ppn; /* processor serial number */ |
| |
| /* id 3: */ |
| unsigned number : 8; |
| unsigned revision : 8; |
| unsigned model : 8; |
| unsigned family : 8; |
| unsigned archrev : 8; |
| unsigned reserved : 24; |
| |
| /* id 4: */ |
| u64 features; |
| } field; |
| } cpuid; |
| pal_vm_info_1_u_t vm1; |
| pal_vm_info_2_u_t vm2; |
| pal_status_t status; |
| unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */ |
| int i; |
| for (i = 0; i < 5; ++i) |
| cpuid.bits[i] = ia64_get_cpuid(i); |
| |
| memcpy(c->vendor, cpuid.field.vendor, 16); |
| #ifdef CONFIG_SMP |
| c->cpu = smp_processor_id(); |
| |
| /* below default values will be overwritten by identify_siblings() |
| * for Multi-Threading/Multi-Core capable CPUs |
| */ |
| c->threads_per_core = c->cores_per_socket = c->num_log = 1; |
| c->socket_id = -1; |
| |
| identify_siblings(c); |
| |
| if (c->threads_per_core > smp_num_siblings) |
| smp_num_siblings = c->threads_per_core; |
| #endif |
| c->ppn = cpuid.field.ppn; |
| c->number = cpuid.field.number; |
| c->revision = cpuid.field.revision; |
| c->model = cpuid.field.model; |
| c->family = cpuid.field.family; |
| c->archrev = cpuid.field.archrev; |
| c->features = cpuid.field.features; |
| c->model_name = get_model_name(c->family, c->model); |
| |
| status = ia64_pal_vm_summary(&vm1, &vm2); |
| if (status == PAL_STATUS_SUCCESS) { |
| impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb; |
| phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size; |
| } |
| c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1)); |
| c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1)); |
| } |
| |
| void __init |
| setup_per_cpu_areas (void) |
| { |
| /* start_kernel() requires this... */ |
| #ifdef CONFIG_ACPI_HOTPLUG_CPU |
| prefill_possible_map(); |
| #endif |
| } |
| |
| /* |
| * Calculate the max. cache line size. |
| * |
| * In addition, the minimum of the i-cache stride sizes is calculated for |
| * "flush_icache_range()". |
| */ |
| static void __cpuinit |
| get_max_cacheline_size (void) |
| { |
| unsigned long line_size, max = 1; |
| u64 l, levels, unique_caches; |
| pal_cache_config_info_t cci; |
| s64 status; |
| |
| status = ia64_pal_cache_summary(&levels, &unique_caches); |
| if (status != 0) { |
| printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n", |
| __func__, status); |
| max = SMP_CACHE_BYTES; |
| /* Safest setup for "flush_icache_range()" */ |
| ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT; |
| goto out; |
| } |
| |
| for (l = 0; l < levels; ++l) { |
| status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2, |
| &cci); |
| if (status != 0) { |
| printk(KERN_ERR |
| "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n", |
| __func__, l, status); |
| max = SMP_CACHE_BYTES; |
| /* The safest setup for "flush_icache_range()" */ |
| cci.pcci_stride = I_CACHE_STRIDE_SHIFT; |
| cci.pcci_unified = 1; |
| } |
| line_size = 1 << cci.pcci_line_size; |
| if (line_size > max) |
| max = line_size; |
| if (!cci.pcci_unified) { |
| status = ia64_pal_cache_config_info(l, |
| /* cache_type (instruction)= */ 1, |
| &cci); |
| if (status != 0) { |
| printk(KERN_ERR |
| "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n", |
| __func__, l, status); |
| /* The safest setup for "flush_icache_range()" */ |
| cci.pcci_stride = I_CACHE_STRIDE_SHIFT; |
| } |
| } |
| if (cci.pcci_stride < ia64_i_cache_stride_shift) |
| ia64_i_cache_stride_shift = cci.pcci_stride; |
| } |
| out: |
| if (max > ia64_max_cacheline_size) |
| ia64_max_cacheline_size = max; |
| } |
| |
| /* |
| * cpu_init() initializes state that is per-CPU. This function acts |
| * as a 'CPU state barrier', nothing should get across. |
| */ |
| void __cpuinit |
| cpu_init (void) |
| { |
| extern void __cpuinit ia64_mmu_init (void *); |
| static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG; |
| unsigned long num_phys_stacked; |
| pal_vm_info_2_u_t vmi; |
| unsigned int max_ctx; |
| struct cpuinfo_ia64 *cpu_info; |
| void *cpu_data; |
| |
| cpu_data = per_cpu_init(); |
| #ifdef CONFIG_SMP |
| /* |
| * insert boot cpu into sibling and core mapes |
| * (must be done after per_cpu area is setup) |
| */ |
| if (smp_processor_id() == 0) { |
| cpu_set(0, per_cpu(cpu_sibling_map, 0)); |
| cpu_set(0, cpu_core_map[0]); |
| } else { |
| /* |
| * Set ar.k3 so that assembly code in MCA handler can compute |
| * physical addresses of per cpu variables with a simple: |
| * phys = ar.k3 + &per_cpu_var |
| * and the alt-dtlb-miss handler can set per-cpu mapping into |
| * the TLB when needed. head.S already did this for cpu0. |
| */ |
| ia64_set_kr(IA64_KR_PER_CPU_DATA, |
| ia64_tpa(cpu_data) - (long) __per_cpu_start); |
| } |
| #endif |
| |
| get_max_cacheline_size(); |
| |
| /* |
| * We can't pass "local_cpu_data" to identify_cpu() because we haven't called |
| * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it |
| * depends on the data returned by identify_cpu(). We break the dependency by |
| * accessing cpu_data() through the canonical per-CPU address. |
| */ |
| cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start); |
| identify_cpu(cpu_info); |
| |
| #ifdef CONFIG_MCKINLEY |
| { |
| # define FEATURE_SET 16 |
| struct ia64_pal_retval iprv; |
| |
| if (cpu_info->family == 0x1f) { |
| PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0); |
| if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80)) |
| PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES, |
| (iprv.v1 | 0x80), FEATURE_SET, 0); |
| } |
| } |
| #endif |
| |
| /* Clear the stack memory reserved for pt_regs: */ |
| memset(task_pt_regs(current), 0, sizeof(struct pt_regs)); |
| |
| ia64_set_kr(IA64_KR_FPU_OWNER, 0); |
| |
| /* |
| * Initialize the page-table base register to a global |
| * directory with all zeroes. This ensure that we can handle |
| * TLB-misses to user address-space even before we created the |
| * first user address-space. This may happen, e.g., due to |
| * aggressive use of lfetch.fault. |
| */ |
| ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page))); |
| |
| /* |
| * Initialize default control register to defer speculative faults except |
| * for those arising from TLB misses, which are not deferred. The |
| * kernel MUST NOT depend on a particular setting of these bits (in other words, |
| * the kernel must have recovery code for all speculative accesses). Turn on |
| * dcr.lc as per recommendation by the architecture team. Most IA-32 apps |
| * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll |
| * be fine). |
| */ |
| ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR |
| | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC)); |
| atomic_inc(&init_mm.mm_count); |
| current->active_mm = &init_mm; |
| if (current->mm) |
| BUG(); |
| |
| ia64_mmu_init(ia64_imva(cpu_data)); |
| ia64_mca_cpu_init(ia64_imva(cpu_data)); |
| |
| #ifdef CONFIG_IA32_SUPPORT |
| ia32_cpu_init(); |
| #endif |
| |
| /* Clear ITC to eliminate sched_clock() overflows in human time. */ |
| ia64_set_itc(0); |
| |
| /* disable all local interrupt sources: */ |
| ia64_set_itv(1 << 16); |
| ia64_set_lrr0(1 << 16); |
| ia64_set_lrr1(1 << 16); |
| ia64_setreg(_IA64_REG_CR_PMV, 1 << 16); |
| ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16); |
| |
| /* clear TPR & XTP to enable all interrupt classes: */ |
| ia64_setreg(_IA64_REG_CR_TPR, 0); |
| |
| /* Clear any pending interrupts left by SAL/EFI */ |
| while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR) |
| ia64_eoi(); |
| |
| #ifdef CONFIG_SMP |
| normal_xtp(); |
| #endif |
| |
| /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */ |
| if (ia64_pal_vm_summary(NULL, &vmi) == 0) { |
| max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1; |
| setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL); |
| } else { |
| printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n"); |
| max_ctx = (1U << 15) - 1; /* use architected minimum */ |
| } |
| while (max_ctx < ia64_ctx.max_ctx) { |
| unsigned int old = ia64_ctx.max_ctx; |
| if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old) |
| break; |
| } |
| |
| if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) { |
| printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical " |
| "stacked regs\n"); |
| num_phys_stacked = 96; |
| } |
| /* size of physical stacked register partition plus 8 bytes: */ |
| if (num_phys_stacked > max_num_phys_stacked) { |
| ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8); |
| max_num_phys_stacked = num_phys_stacked; |
| } |
| platform_cpu_init(); |
| pm_idle = default_idle; |
| } |
| |
| void __init |
| check_bugs (void) |
| { |
| ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles, |
| (unsigned long) __end___mckinley_e9_bundles); |
| } |
| |
| static int __init run_dmi_scan(void) |
| { |
| dmi_scan_machine(); |
| return 0; |
| } |
| core_initcall(run_dmi_scan); |