| /****************************************************************************** |
| * |
| * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved. |
| * |
| * Portions of this file are derived from the ipw3945 project, as well |
| * as portions of the ieee80211 subsystem header files. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA |
| * |
| * The full GNU General Public License is included in this distribution in the |
| * file called LICENSE. |
| * |
| * Contact Information: |
| * Intel Linux Wireless <ilw@linux.intel.com> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| * |
| *****************************************************************************/ |
| #include <linux/sched.h> |
| #include <linux/wait.h> |
| #include <linux/gfp.h> |
| |
| #include "iwl-prph.h" |
| #include "iwl-io.h" |
| #include "internal.h" |
| #include "iwl-op-mode.h" |
| |
| /****************************************************************************** |
| * |
| * RX path functions |
| * |
| ******************************************************************************/ |
| |
| /* |
| * Rx theory of operation |
| * |
| * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), |
| * each of which point to Receive Buffers to be filled by the NIC. These get |
| * used not only for Rx frames, but for any command response or notification |
| * from the NIC. The driver and NIC manage the Rx buffers by means |
| * of indexes into the circular buffer. |
| * |
| * Rx Queue Indexes |
| * The host/firmware share two index registers for managing the Rx buffers. |
| * |
| * The READ index maps to the first position that the firmware may be writing |
| * to -- the driver can read up to (but not including) this position and get |
| * good data. |
| * The READ index is managed by the firmware once the card is enabled. |
| * |
| * The WRITE index maps to the last position the driver has read from -- the |
| * position preceding WRITE is the last slot the firmware can place a packet. |
| * |
| * The queue is empty (no good data) if WRITE = READ - 1, and is full if |
| * WRITE = READ. |
| * |
| * During initialization, the host sets up the READ queue position to the first |
| * INDEX position, and WRITE to the last (READ - 1 wrapped) |
| * |
| * When the firmware places a packet in a buffer, it will advance the READ index |
| * and fire the RX interrupt. The driver can then query the READ index and |
| * process as many packets as possible, moving the WRITE index forward as it |
| * resets the Rx queue buffers with new memory. |
| * |
| * The management in the driver is as follows: |
| * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When |
| * iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled |
| * to replenish the iwl->rxq->rx_free. |
| * + In iwl_pcie_rx_replenish (scheduled) if 'processed' != 'read' then the |
| * iwl->rxq is replenished and the READ INDEX is updated (updating the |
| * 'processed' and 'read' driver indexes as well) |
| * + A received packet is processed and handed to the kernel network stack, |
| * detached from the iwl->rxq. The driver 'processed' index is updated. |
| * + The Host/Firmware iwl->rxq is replenished at irq thread time from the |
| * rx_free list. If there are no allocated buffers in iwl->rxq->rx_free, |
| * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. |
| * If there were enough free buffers and RX_STALLED is set it is cleared. |
| * |
| * |
| * Driver sequence: |
| * |
| * iwl_rxq_alloc() Allocates rx_free |
| * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls |
| * iwl_pcie_rxq_restock |
| * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx |
| * queue, updates firmware pointers, and updates |
| * the WRITE index. If insufficient rx_free buffers |
| * are available, schedules iwl_pcie_rx_replenish |
| * |
| * -- enable interrupts -- |
| * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the |
| * READ INDEX, detaching the SKB from the pool. |
| * Moves the packet buffer from queue to rx_used. |
| * Calls iwl_pcie_rxq_restock to refill any empty |
| * slots. |
| * ... |
| * |
| */ |
| |
| /* |
| * iwl_rxq_space - Return number of free slots available in queue. |
| */ |
| static int iwl_rxq_space(const struct iwl_rxq *rxq) |
| { |
| /* Make sure RX_QUEUE_SIZE is a power of 2 */ |
| BUILD_BUG_ON(RX_QUEUE_SIZE & (RX_QUEUE_SIZE - 1)); |
| |
| /* |
| * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity |
| * between empty and completely full queues. |
| * The following is equivalent to modulo by RX_QUEUE_SIZE and is well |
| * defined for negative dividends. |
| */ |
| return (rxq->read - rxq->write - 1) & (RX_QUEUE_SIZE - 1); |
| } |
| |
| /* |
| * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr |
| */ |
| static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) |
| { |
| return cpu_to_le32((u32)(dma_addr >> 8)); |
| } |
| |
| /* |
| * iwl_pcie_rx_stop - stops the Rx DMA |
| */ |
| int iwl_pcie_rx_stop(struct iwl_trans *trans) |
| { |
| iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); |
| return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, |
| FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000); |
| } |
| |
| /* |
| * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue |
| */ |
| static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, |
| struct iwl_rxq *rxq) |
| { |
| u32 reg; |
| |
| spin_lock(&rxq->lock); |
| |
| if (rxq->need_update == 0) |
| goto exit_unlock; |
| |
| /* |
| * explicitly wake up the NIC if: |
| * 1. shadow registers aren't enabled |
| * 2. there is a chance that the NIC is asleep |
| */ |
| if (!trans->cfg->base_params->shadow_reg_enable && |
| test_bit(STATUS_TPOWER_PMI, &trans->status)) { |
| reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); |
| |
| if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { |
| IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", |
| reg); |
| iwl_set_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| goto exit_unlock; |
| } |
| } |
| |
| rxq->write_actual = round_down(rxq->write, 8); |
| iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); |
| rxq->need_update = 0; |
| |
| exit_unlock: |
| spin_unlock(&rxq->lock); |
| } |
| |
| /* |
| * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool |
| * |
| * If there are slots in the RX queue that need to be restocked, |
| * and we have free pre-allocated buffers, fill the ranks as much |
| * as we can, pulling from rx_free. |
| * |
| * This moves the 'write' index forward to catch up with 'processed', and |
| * also updates the memory address in the firmware to reference the new |
| * target buffer. |
| */ |
| static void iwl_pcie_rxq_restock(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rxq *rxq = &trans_pcie->rxq; |
| struct iwl_rx_mem_buffer *rxb; |
| |
| /* |
| * If the device isn't enabled - not need to try to add buffers... |
| * This can happen when we stop the device and still have an interrupt |
| * pending. We stop the APM before we sync the interrupts because we |
| * have to (see comment there). On the other hand, since the APM is |
| * stopped, we cannot access the HW (in particular not prph). |
| * So don't try to restock if the APM has been already stopped. |
| */ |
| if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) |
| return; |
| |
| spin_lock(&rxq->lock); |
| while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { |
| /* The overwritten rxb must be a used one */ |
| rxb = rxq->queue[rxq->write]; |
| BUG_ON(rxb && rxb->page); |
| |
| /* Get next free Rx buffer, remove from free list */ |
| rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, |
| list); |
| list_del(&rxb->list); |
| |
| /* Point to Rx buffer via next RBD in circular buffer */ |
| rxq->bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); |
| rxq->queue[rxq->write] = rxb; |
| rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; |
| rxq->free_count--; |
| } |
| spin_unlock(&rxq->lock); |
| /* If the pre-allocated buffer pool is dropping low, schedule to |
| * refill it */ |
| if (rxq->free_count <= RX_LOW_WATERMARK) |
| schedule_work(&trans_pcie->rx_replenish); |
| |
| /* If we've added more space for the firmware to place data, tell it. |
| * Increment device's write pointer in multiples of 8. */ |
| if (rxq->write_actual != (rxq->write & ~0x7)) { |
| spin_lock(&rxq->lock); |
| rxq->need_update = 1; |
| spin_unlock(&rxq->lock); |
| iwl_pcie_rxq_inc_wr_ptr(trans, rxq); |
| } |
| } |
| |
| /* |
| * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD |
| * |
| * A used RBD is an Rx buffer that has been given to the stack. To use it again |
| * a page must be allocated and the RBD must point to the page. This function |
| * doesn't change the HW pointer but handles the list of pages that is used by |
| * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly |
| * allocated buffers. |
| */ |
| static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rxq *rxq = &trans_pcie->rxq; |
| struct iwl_rx_mem_buffer *rxb; |
| struct page *page; |
| gfp_t gfp_mask = priority; |
| |
| while (1) { |
| spin_lock(&rxq->lock); |
| if (list_empty(&rxq->rx_used)) { |
| spin_unlock(&rxq->lock); |
| return; |
| } |
| spin_unlock(&rxq->lock); |
| |
| if (rxq->free_count > RX_LOW_WATERMARK) |
| gfp_mask |= __GFP_NOWARN; |
| |
| if (trans_pcie->rx_page_order > 0) |
| gfp_mask |= __GFP_COMP; |
| |
| /* Alloc a new receive buffer */ |
| page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); |
| if (!page) { |
| if (net_ratelimit()) |
| IWL_DEBUG_INFO(trans, "alloc_pages failed, " |
| "order: %d\n", |
| trans_pcie->rx_page_order); |
| |
| if ((rxq->free_count <= RX_LOW_WATERMARK) && |
| net_ratelimit()) |
| IWL_CRIT(trans, "Failed to alloc_pages with %s." |
| "Only %u free buffers remaining.\n", |
| priority == GFP_ATOMIC ? |
| "GFP_ATOMIC" : "GFP_KERNEL", |
| rxq->free_count); |
| /* We don't reschedule replenish work here -- we will |
| * call the restock method and if it still needs |
| * more buffers it will schedule replenish */ |
| return; |
| } |
| |
| spin_lock(&rxq->lock); |
| |
| if (list_empty(&rxq->rx_used)) { |
| spin_unlock(&rxq->lock); |
| __free_pages(page, trans_pcie->rx_page_order); |
| return; |
| } |
| rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, |
| list); |
| list_del(&rxb->list); |
| spin_unlock(&rxq->lock); |
| |
| BUG_ON(rxb->page); |
| rxb->page = page; |
| /* Get physical address of the RB */ |
| rxb->page_dma = |
| dma_map_page(trans->dev, page, 0, |
| PAGE_SIZE << trans_pcie->rx_page_order, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(trans->dev, rxb->page_dma)) { |
| rxb->page = NULL; |
| spin_lock(&rxq->lock); |
| list_add(&rxb->list, &rxq->rx_used); |
| spin_unlock(&rxq->lock); |
| __free_pages(page, trans_pcie->rx_page_order); |
| return; |
| } |
| /* dma address must be no more than 36 bits */ |
| BUG_ON(rxb->page_dma & ~DMA_BIT_MASK(36)); |
| /* and also 256 byte aligned! */ |
| BUG_ON(rxb->page_dma & DMA_BIT_MASK(8)); |
| |
| spin_lock(&rxq->lock); |
| |
| list_add_tail(&rxb->list, &rxq->rx_free); |
| rxq->free_count++; |
| |
| spin_unlock(&rxq->lock); |
| } |
| } |
| |
| static void iwl_pcie_rxq_free_rbs(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rxq *rxq = &trans_pcie->rxq; |
| int i; |
| |
| lockdep_assert_held(&rxq->lock); |
| |
| for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) { |
| if (!rxq->pool[i].page) |
| continue; |
| dma_unmap_page(trans->dev, rxq->pool[i].page_dma, |
| PAGE_SIZE << trans_pcie->rx_page_order, |
| DMA_FROM_DEVICE); |
| __free_pages(rxq->pool[i].page, trans_pcie->rx_page_order); |
| rxq->pool[i].page = NULL; |
| } |
| } |
| |
| /* |
| * iwl_pcie_rx_replenish - Move all used buffers from rx_used to rx_free |
| * |
| * When moving to rx_free an page is allocated for the slot. |
| * |
| * Also restock the Rx queue via iwl_pcie_rxq_restock. |
| * This is called as a scheduled work item (except for during initialization) |
| */ |
| static void iwl_pcie_rx_replenish(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL); |
| |
| spin_lock(&trans_pcie->irq_lock); |
| iwl_pcie_rxq_restock(trans); |
| spin_unlock(&trans_pcie->irq_lock); |
| } |
| |
| static void iwl_pcie_rx_replenish_now(struct iwl_trans *trans) |
| { |
| iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC); |
| |
| iwl_pcie_rxq_restock(trans); |
| } |
| |
| static void iwl_pcie_rx_replenish_work(struct work_struct *data) |
| { |
| struct iwl_trans_pcie *trans_pcie = |
| container_of(data, struct iwl_trans_pcie, rx_replenish); |
| |
| iwl_pcie_rx_replenish(trans_pcie->trans); |
| } |
| |
| static int iwl_pcie_rx_alloc(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rxq *rxq = &trans_pcie->rxq; |
| struct device *dev = trans->dev; |
| |
| memset(&trans_pcie->rxq, 0, sizeof(trans_pcie->rxq)); |
| |
| spin_lock_init(&rxq->lock); |
| |
| if (WARN_ON(rxq->bd || rxq->rb_stts)) |
| return -EINVAL; |
| |
| /* Allocate the circular buffer of Read Buffer Descriptors (RBDs) */ |
| rxq->bd = dma_zalloc_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE, |
| &rxq->bd_dma, GFP_KERNEL); |
| if (!rxq->bd) |
| goto err_bd; |
| |
| /*Allocate the driver's pointer to receive buffer status */ |
| rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts), |
| &rxq->rb_stts_dma, GFP_KERNEL); |
| if (!rxq->rb_stts) |
| goto err_rb_stts; |
| |
| return 0; |
| |
| err_rb_stts: |
| dma_free_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE, |
| rxq->bd, rxq->bd_dma); |
| rxq->bd_dma = 0; |
| rxq->bd = NULL; |
| err_bd: |
| return -ENOMEM; |
| } |
| |
| static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u32 rb_size; |
| const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ |
| |
| if (trans_pcie->rx_buf_size_8k) |
| rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; |
| else |
| rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; |
| |
| /* Stop Rx DMA */ |
| iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); |
| /* reset and flush pointers */ |
| iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); |
| iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); |
| iwl_write_direct32(trans, FH_RSCSR_CHNL0_RDPTR, 0); |
| |
| /* Reset driver's Rx queue write index */ |
| iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); |
| |
| /* Tell device where to find RBD circular buffer in DRAM */ |
| iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, |
| (u32)(rxq->bd_dma >> 8)); |
| |
| /* Tell device where in DRAM to update its Rx status */ |
| iwl_write_direct32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, |
| rxq->rb_stts_dma >> 4); |
| |
| /* Enable Rx DMA |
| * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in |
| * the credit mechanism in 5000 HW RX FIFO |
| * Direct rx interrupts to hosts |
| * Rx buffer size 4 or 8k |
| * RB timeout 0x10 |
| * 256 RBDs |
| */ |
| iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, |
| FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | |
| FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | |
| FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | |
| rb_size| |
| (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS)| |
| (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); |
| |
| /* Set interrupt coalescing timer to default (2048 usecs) */ |
| iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); |
| |
| /* W/A for interrupt coalescing bug in 7260 and 3160 */ |
| if (trans->cfg->host_interrupt_operation_mode) |
| iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); |
| } |
| |
| static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) |
| { |
| int i; |
| |
| lockdep_assert_held(&rxq->lock); |
| |
| INIT_LIST_HEAD(&rxq->rx_free); |
| INIT_LIST_HEAD(&rxq->rx_used); |
| rxq->free_count = 0; |
| |
| for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) |
| list_add(&rxq->pool[i].list, &rxq->rx_used); |
| } |
| |
| int iwl_pcie_rx_init(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rxq *rxq = &trans_pcie->rxq; |
| int i, err; |
| |
| if (!rxq->bd) { |
| err = iwl_pcie_rx_alloc(trans); |
| if (err) |
| return err; |
| } |
| |
| spin_lock(&rxq->lock); |
| |
| INIT_WORK(&trans_pcie->rx_replenish, iwl_pcie_rx_replenish_work); |
| |
| /* free all first - we might be reconfigured for a different size */ |
| iwl_pcie_rxq_free_rbs(trans); |
| iwl_pcie_rx_init_rxb_lists(rxq); |
| |
| for (i = 0; i < RX_QUEUE_SIZE; i++) |
| rxq->queue[i] = NULL; |
| |
| /* Set us so that we have processed and used all buffers, but have |
| * not restocked the Rx queue with fresh buffers */ |
| rxq->read = rxq->write = 0; |
| rxq->write_actual = 0; |
| memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts)); |
| spin_unlock(&rxq->lock); |
| |
| iwl_pcie_rx_replenish(trans); |
| |
| iwl_pcie_rx_hw_init(trans, rxq); |
| |
| spin_lock(&trans_pcie->irq_lock); |
| rxq->need_update = 1; |
| iwl_pcie_rxq_inc_wr_ptr(trans, rxq); |
| spin_unlock(&trans_pcie->irq_lock); |
| |
| return 0; |
| } |
| |
| void iwl_pcie_rx_free(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rxq *rxq = &trans_pcie->rxq; |
| |
| /*if rxq->bd is NULL, it means that nothing has been allocated, |
| * exit now */ |
| if (!rxq->bd) { |
| IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); |
| return; |
| } |
| |
| cancel_work_sync(&trans_pcie->rx_replenish); |
| |
| spin_lock(&rxq->lock); |
| iwl_pcie_rxq_free_rbs(trans); |
| spin_unlock(&rxq->lock); |
| |
| dma_free_coherent(trans->dev, sizeof(__le32) * RX_QUEUE_SIZE, |
| rxq->bd, rxq->bd_dma); |
| rxq->bd_dma = 0; |
| rxq->bd = NULL; |
| |
| if (rxq->rb_stts) |
| dma_free_coherent(trans->dev, |
| sizeof(struct iwl_rb_status), |
| rxq->rb_stts, rxq->rb_stts_dma); |
| else |
| IWL_DEBUG_INFO(trans, "Free rxq->rb_stts which is NULL\n"); |
| rxq->rb_stts_dma = 0; |
| rxq->rb_stts = NULL; |
| } |
| |
| static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, |
| struct iwl_rx_mem_buffer *rxb) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rxq *rxq = &trans_pcie->rxq; |
| struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue]; |
| bool page_stolen = false; |
| int max_len = PAGE_SIZE << trans_pcie->rx_page_order; |
| u32 offset = 0; |
| |
| if (WARN_ON(!rxb)) |
| return; |
| |
| dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); |
| |
| while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { |
| struct iwl_rx_packet *pkt; |
| struct iwl_device_cmd *cmd; |
| u16 sequence; |
| bool reclaim; |
| int index, cmd_index, err, len; |
| struct iwl_rx_cmd_buffer rxcb = { |
| ._offset = offset, |
| ._rx_page_order = trans_pcie->rx_page_order, |
| ._page = rxb->page, |
| ._page_stolen = false, |
| .truesize = max_len, |
| }; |
| |
| pkt = rxb_addr(&rxcb); |
| |
| if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) |
| break; |
| |
| IWL_DEBUG_RX(trans, "cmd at offset %d: %s (0x%.2x)\n", |
| rxcb._offset, get_cmd_string(trans_pcie, pkt->hdr.cmd), |
| pkt->hdr.cmd); |
| |
| len = iwl_rx_packet_len(pkt); |
| len += sizeof(u32); /* account for status word */ |
| trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len); |
| trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len); |
| |
| /* Reclaim a command buffer only if this packet is a response |
| * to a (driver-originated) command. |
| * If the packet (e.g. Rx frame) originated from uCode, |
| * there is no command buffer to reclaim. |
| * Ucode should set SEQ_RX_FRAME bit if ucode-originated, |
| * but apparently a few don't get set; catch them here. */ |
| reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); |
| if (reclaim) { |
| int i; |
| |
| for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { |
| if (trans_pcie->no_reclaim_cmds[i] == |
| pkt->hdr.cmd) { |
| reclaim = false; |
| break; |
| } |
| } |
| } |
| |
| sequence = le16_to_cpu(pkt->hdr.sequence); |
| index = SEQ_TO_INDEX(sequence); |
| cmd_index = get_cmd_index(&txq->q, index); |
| |
| if (reclaim) |
| cmd = txq->entries[cmd_index].cmd; |
| else |
| cmd = NULL; |
| |
| err = iwl_op_mode_rx(trans->op_mode, &rxcb, cmd); |
| |
| if (reclaim) { |
| kfree(txq->entries[cmd_index].free_buf); |
| txq->entries[cmd_index].free_buf = NULL; |
| } |
| |
| /* |
| * After here, we should always check rxcb._page_stolen, |
| * if it is true then one of the handlers took the page. |
| */ |
| |
| if (reclaim) { |
| /* Invoke any callbacks, transfer the buffer to caller, |
| * and fire off the (possibly) blocking |
| * iwl_trans_send_cmd() |
| * as we reclaim the driver command queue */ |
| if (!rxcb._page_stolen) |
| iwl_pcie_hcmd_complete(trans, &rxcb, err); |
| else |
| IWL_WARN(trans, "Claim null rxb?\n"); |
| } |
| |
| page_stolen |= rxcb._page_stolen; |
| offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); |
| } |
| |
| /* page was stolen from us -- free our reference */ |
| if (page_stolen) { |
| __free_pages(rxb->page, trans_pcie->rx_page_order); |
| rxb->page = NULL; |
| } |
| |
| /* Reuse the page if possible. For notification packets and |
| * SKBs that fail to Rx correctly, add them back into the |
| * rx_free list for reuse later. */ |
| spin_lock(&rxq->lock); |
| if (rxb->page != NULL) { |
| rxb->page_dma = |
| dma_map_page(trans->dev, rxb->page, 0, |
| PAGE_SIZE << trans_pcie->rx_page_order, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(trans->dev, rxb->page_dma)) { |
| /* |
| * free the page(s) as well to not break |
| * the invariant that the items on the used |
| * list have no page(s) |
| */ |
| __free_pages(rxb->page, trans_pcie->rx_page_order); |
| rxb->page = NULL; |
| list_add_tail(&rxb->list, &rxq->rx_used); |
| } else { |
| list_add_tail(&rxb->list, &rxq->rx_free); |
| rxq->free_count++; |
| } |
| } else |
| list_add_tail(&rxb->list, &rxq->rx_used); |
| spin_unlock(&rxq->lock); |
| } |
| |
| /* |
| * iwl_pcie_rx_handle - Main entry function for receiving responses from fw |
| */ |
| static void iwl_pcie_rx_handle(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rxq *rxq = &trans_pcie->rxq; |
| u32 r, i; |
| u8 fill_rx = 0; |
| u32 count = 8; |
| int total_empty; |
| |
| /* uCode's read index (stored in shared DRAM) indicates the last Rx |
| * buffer that the driver may process (last buffer filled by ucode). */ |
| r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF; |
| i = rxq->read; |
| |
| /* Rx interrupt, but nothing sent from uCode */ |
| if (i == r) |
| IWL_DEBUG_RX(trans, "HW = SW = %d\n", r); |
| |
| /* calculate total frames need to be restock after handling RX */ |
| total_empty = r - rxq->write_actual; |
| if (total_empty < 0) |
| total_empty += RX_QUEUE_SIZE; |
| |
| if (total_empty > (RX_QUEUE_SIZE / 2)) |
| fill_rx = 1; |
| |
| while (i != r) { |
| struct iwl_rx_mem_buffer *rxb; |
| |
| rxb = rxq->queue[i]; |
| rxq->queue[i] = NULL; |
| |
| IWL_DEBUG_RX(trans, "rxbuf: HW = %d, SW = %d (%p)\n", |
| r, i, rxb); |
| iwl_pcie_rx_handle_rb(trans, rxb); |
| |
| i = (i + 1) & RX_QUEUE_MASK; |
| /* If there are a lot of unused frames, |
| * restock the Rx queue so ucode wont assert. */ |
| if (fill_rx) { |
| count++; |
| if (count >= 8) { |
| rxq->read = i; |
| iwl_pcie_rx_replenish_now(trans); |
| count = 0; |
| } |
| } |
| } |
| |
| /* Backtrack one entry */ |
| rxq->read = i; |
| if (fill_rx) |
| iwl_pcie_rx_replenish_now(trans); |
| else |
| iwl_pcie_rxq_restock(trans); |
| } |
| |
| /* |
| * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card |
| */ |
| static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ |
| if (trans->cfg->internal_wimax_coex && |
| (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & |
| APMS_CLK_VAL_MRB_FUNC_MODE) || |
| (iwl_read_prph(trans, APMG_PS_CTRL_REG) & |
| APMG_PS_CTRL_VAL_RESET_REQ))) { |
| clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); |
| iwl_op_mode_wimax_active(trans->op_mode); |
| wake_up(&trans_pcie->wait_command_queue); |
| return; |
| } |
| |
| iwl_pcie_dump_csr(trans); |
| iwl_dump_fh(trans, NULL); |
| |
| local_bh_disable(); |
| /* The STATUS_FW_ERROR bit is set in this function. This must happen |
| * before we wake up the command caller, to ensure a proper cleanup. */ |
| iwl_trans_fw_error(trans); |
| local_bh_enable(); |
| |
| clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); |
| wake_up(&trans_pcie->wait_command_queue); |
| } |
| |
| static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) |
| { |
| u32 inta; |
| |
| lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); |
| |
| trace_iwlwifi_dev_irq(trans->dev); |
| |
| /* Discover which interrupts are active/pending */ |
| inta = iwl_read32(trans, CSR_INT); |
| |
| /* the thread will service interrupts and re-enable them */ |
| return inta; |
| } |
| |
| /* a device (PCI-E) page is 4096 bytes long */ |
| #define ICT_SHIFT 12 |
| #define ICT_SIZE (1 << ICT_SHIFT) |
| #define ICT_COUNT (ICT_SIZE / sizeof(u32)) |
| |
| /* interrupt handler using ict table, with this interrupt driver will |
| * stop using INTA register to get device's interrupt, reading this register |
| * is expensive, device will write interrupts in ICT dram table, increment |
| * index then will fire interrupt to driver, driver will OR all ICT table |
| * entries from current index up to table entry with 0 value. the result is |
| * the interrupt we need to service, driver will set the entries back to 0 and |
| * set index. |
| */ |
| static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u32 inta; |
| u32 val = 0; |
| u32 read; |
| |
| trace_iwlwifi_dev_irq(trans->dev); |
| |
| /* Ignore interrupt if there's nothing in NIC to service. |
| * This may be due to IRQ shared with another device, |
| * or due to sporadic interrupts thrown from our NIC. */ |
| read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); |
| trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); |
| if (!read) |
| return 0; |
| |
| /* |
| * Collect all entries up to the first 0, starting from ict_index; |
| * note we already read at ict_index. |
| */ |
| do { |
| val |= read; |
| IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", |
| trans_pcie->ict_index, read); |
| trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; |
| trans_pcie->ict_index = |
| iwl_queue_inc_wrap(trans_pcie->ict_index, ICT_COUNT); |
| |
| read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); |
| trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, |
| read); |
| } while (read); |
| |
| /* We should not get this value, just ignore it. */ |
| if (val == 0xffffffff) |
| val = 0; |
| |
| /* |
| * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit |
| * (bit 15 before shifting it to 31) to clear when using interrupt |
| * coalescing. fortunately, bits 18 and 19 stay set when this happens |
| * so we use them to decide on the real state of the Rx bit. |
| * In order words, bit 15 is set if bit 18 or bit 19 are set. |
| */ |
| if (val & 0xC0000) |
| val |= 0x8000; |
| |
| inta = (0xff & val) | ((0xff00 & val) << 16); |
| return inta; |
| } |
| |
| irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) |
| { |
| struct iwl_trans *trans = dev_id; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct isr_statistics *isr_stats = &trans_pcie->isr_stats; |
| u32 inta = 0; |
| u32 handled = 0; |
| u32 i; |
| |
| lock_map_acquire(&trans->sync_cmd_lockdep_map); |
| |
| spin_lock(&trans_pcie->irq_lock); |
| |
| /* dram interrupt table not set yet, |
| * use legacy interrupt. |
| */ |
| if (likely(trans_pcie->use_ict)) |
| inta = iwl_pcie_int_cause_ict(trans); |
| else |
| inta = iwl_pcie_int_cause_non_ict(trans); |
| |
| if (iwl_have_debug_level(IWL_DL_ISR)) { |
| IWL_DEBUG_ISR(trans, |
| "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", |
| inta, trans_pcie->inta_mask, |
| iwl_read32(trans, CSR_INT_MASK), |
| iwl_read32(trans, CSR_FH_INT_STATUS)); |
| if (inta & (~trans_pcie->inta_mask)) |
| IWL_DEBUG_ISR(trans, |
| "We got a masked interrupt (0x%08x)\n", |
| inta & (~trans_pcie->inta_mask)); |
| } |
| |
| inta &= trans_pcie->inta_mask; |
| |
| /* |
| * Ignore interrupt if there's nothing in NIC to service. |
| * This may be due to IRQ shared with another device, |
| * or due to sporadic interrupts thrown from our NIC. |
| */ |
| if (unlikely(!inta)) { |
| IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); |
| /* |
| * Re-enable interrupts here since we don't |
| * have anything to service |
| */ |
| if (test_bit(STATUS_INT_ENABLED, &trans->status)) |
| iwl_enable_interrupts(trans); |
| spin_unlock(&trans_pcie->irq_lock); |
| lock_map_release(&trans->sync_cmd_lockdep_map); |
| return IRQ_NONE; |
| } |
| |
| if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) { |
| /* |
| * Hardware disappeared. It might have |
| * already raised an interrupt. |
| */ |
| IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); |
| spin_unlock(&trans_pcie->irq_lock); |
| goto out; |
| } |
| |
| /* Ack/clear/reset pending uCode interrupts. |
| * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, |
| */ |
| /* There is a hardware bug in the interrupt mask function that some |
| * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if |
| * they are disabled in the CSR_INT_MASK register. Furthermore the |
| * ICT interrupt handling mechanism has another bug that might cause |
| * these unmasked interrupts fail to be detected. We workaround the |
| * hardware bugs here by ACKing all the possible interrupts so that |
| * interrupt coalescing can still be achieved. |
| */ |
| iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); |
| |
| if (iwl_have_debug_level(IWL_DL_ISR)) |
| IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", |
| inta, iwl_read32(trans, CSR_INT_MASK)); |
| |
| spin_unlock(&trans_pcie->irq_lock); |
| |
| /* Now service all interrupt bits discovered above. */ |
| if (inta & CSR_INT_BIT_HW_ERR) { |
| IWL_ERR(trans, "Hardware error detected. Restarting.\n"); |
| |
| /* Tell the device to stop sending interrupts */ |
| iwl_disable_interrupts(trans); |
| |
| isr_stats->hw++; |
| iwl_pcie_irq_handle_error(trans); |
| |
| handled |= CSR_INT_BIT_HW_ERR; |
| |
| goto out; |
| } |
| |
| if (iwl_have_debug_level(IWL_DL_ISR)) { |
| /* NIC fires this, but we don't use it, redundant with WAKEUP */ |
| if (inta & CSR_INT_BIT_SCD) { |
| IWL_DEBUG_ISR(trans, |
| "Scheduler finished to transmit the frame/frames.\n"); |
| isr_stats->sch++; |
| } |
| |
| /* Alive notification via Rx interrupt will do the real work */ |
| if (inta & CSR_INT_BIT_ALIVE) { |
| IWL_DEBUG_ISR(trans, "Alive interrupt\n"); |
| isr_stats->alive++; |
| } |
| } |
| |
| /* Safely ignore these bits for debug checks below */ |
| inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); |
| |
| /* HW RF KILL switch toggled */ |
| if (inta & CSR_INT_BIT_RF_KILL) { |
| bool hw_rfkill; |
| |
| hw_rfkill = iwl_is_rfkill_set(trans); |
| IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", |
| hw_rfkill ? "disable radio" : "enable radio"); |
| |
| isr_stats->rfkill++; |
| |
| iwl_trans_pcie_rf_kill(trans, hw_rfkill); |
| if (hw_rfkill) { |
| set_bit(STATUS_RFKILL, &trans->status); |
| if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, |
| &trans->status)) |
| IWL_DEBUG_RF_KILL(trans, |
| "Rfkill while SYNC HCMD in flight\n"); |
| wake_up(&trans_pcie->wait_command_queue); |
| } else { |
| clear_bit(STATUS_RFKILL, &trans->status); |
| } |
| |
| handled |= CSR_INT_BIT_RF_KILL; |
| } |
| |
| /* Chip got too hot and stopped itself */ |
| if (inta & CSR_INT_BIT_CT_KILL) { |
| IWL_ERR(trans, "Microcode CT kill error detected.\n"); |
| isr_stats->ctkill++; |
| handled |= CSR_INT_BIT_CT_KILL; |
| } |
| |
| /* Error detected by uCode */ |
| if (inta & CSR_INT_BIT_SW_ERR) { |
| IWL_ERR(trans, "Microcode SW error detected. " |
| " Restarting 0x%X.\n", inta); |
| isr_stats->sw++; |
| iwl_pcie_irq_handle_error(trans); |
| handled |= CSR_INT_BIT_SW_ERR; |
| } |
| |
| /* uCode wakes up after power-down sleep */ |
| if (inta & CSR_INT_BIT_WAKEUP) { |
| IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); |
| iwl_pcie_rxq_inc_wr_ptr(trans, &trans_pcie->rxq); |
| for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) |
| iwl_pcie_txq_inc_wr_ptr(trans, &trans_pcie->txq[i]); |
| |
| isr_stats->wakeup++; |
| |
| handled |= CSR_INT_BIT_WAKEUP; |
| } |
| |
| /* All uCode command responses, including Tx command responses, |
| * Rx "responses" (frame-received notification), and other |
| * notifications from uCode come through here*/ |
| if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | |
| CSR_INT_BIT_RX_PERIODIC)) { |
| IWL_DEBUG_ISR(trans, "Rx interrupt\n"); |
| if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { |
| handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); |
| iwl_write32(trans, CSR_FH_INT_STATUS, |
| CSR_FH_INT_RX_MASK); |
| } |
| if (inta & CSR_INT_BIT_RX_PERIODIC) { |
| handled |= CSR_INT_BIT_RX_PERIODIC; |
| iwl_write32(trans, |
| CSR_INT, CSR_INT_BIT_RX_PERIODIC); |
| } |
| /* Sending RX interrupt require many steps to be done in the |
| * the device: |
| * 1- write interrupt to current index in ICT table. |
| * 2- dma RX frame. |
| * 3- update RX shared data to indicate last write index. |
| * 4- send interrupt. |
| * This could lead to RX race, driver could receive RX interrupt |
| * but the shared data changes does not reflect this; |
| * periodic interrupt will detect any dangling Rx activity. |
| */ |
| |
| /* Disable periodic interrupt; we use it as just a one-shot. */ |
| iwl_write8(trans, CSR_INT_PERIODIC_REG, |
| CSR_INT_PERIODIC_DIS); |
| |
| iwl_pcie_rx_handle(trans); |
| |
| /* |
| * Enable periodic interrupt in 8 msec only if we received |
| * real RX interrupt (instead of just periodic int), to catch |
| * any dangling Rx interrupt. If it was just the periodic |
| * interrupt, there was no dangling Rx activity, and no need |
| * to extend the periodic interrupt; one-shot is enough. |
| */ |
| if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) |
| iwl_write8(trans, CSR_INT_PERIODIC_REG, |
| CSR_INT_PERIODIC_ENA); |
| |
| isr_stats->rx++; |
| } |
| |
| /* This "Tx" DMA channel is used only for loading uCode */ |
| if (inta & CSR_INT_BIT_FH_TX) { |
| iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); |
| IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); |
| isr_stats->tx++; |
| handled |= CSR_INT_BIT_FH_TX; |
| /* Wake up uCode load routine, now that load is complete */ |
| trans_pcie->ucode_write_complete = true; |
| wake_up(&trans_pcie->ucode_write_waitq); |
| } |
| |
| if (inta & ~handled) { |
| IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); |
| isr_stats->unhandled++; |
| } |
| |
| if (inta & ~(trans_pcie->inta_mask)) { |
| IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", |
| inta & ~trans_pcie->inta_mask); |
| } |
| |
| /* Re-enable all interrupts */ |
| /* only Re-enable if disabled by irq */ |
| if (test_bit(STATUS_INT_ENABLED, &trans->status)) |
| iwl_enable_interrupts(trans); |
| /* Re-enable RF_KILL if it occurred */ |
| else if (handled & CSR_INT_BIT_RF_KILL) |
| iwl_enable_rfkill_int(trans); |
| |
| out: |
| lock_map_release(&trans->sync_cmd_lockdep_map); |
| return IRQ_HANDLED; |
| } |
| |
| /****************************************************************************** |
| * |
| * ICT functions |
| * |
| ******************************************************************************/ |
| |
| /* Free dram table */ |
| void iwl_pcie_free_ict(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| if (trans_pcie->ict_tbl) { |
| dma_free_coherent(trans->dev, ICT_SIZE, |
| trans_pcie->ict_tbl, |
| trans_pcie->ict_tbl_dma); |
| trans_pcie->ict_tbl = NULL; |
| trans_pcie->ict_tbl_dma = 0; |
| } |
| } |
| |
| /* |
| * allocate dram shared table, it is an aligned memory |
| * block of ICT_SIZE. |
| * also reset all data related to ICT table interrupt. |
| */ |
| int iwl_pcie_alloc_ict(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| trans_pcie->ict_tbl = |
| dma_zalloc_coherent(trans->dev, ICT_SIZE, |
| &trans_pcie->ict_tbl_dma, |
| GFP_KERNEL); |
| if (!trans_pcie->ict_tbl) |
| return -ENOMEM; |
| |
| /* just an API sanity check ... it is guaranteed to be aligned */ |
| if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { |
| iwl_pcie_free_ict(trans); |
| return -EINVAL; |
| } |
| |
| IWL_DEBUG_ISR(trans, "ict dma addr %Lx ict vir addr %p\n", |
| (unsigned long long)trans_pcie->ict_tbl_dma, |
| trans_pcie->ict_tbl); |
| |
| return 0; |
| } |
| |
| /* Device is going up inform it about using ICT interrupt table, |
| * also we need to tell the driver to start using ICT interrupt. |
| */ |
| void iwl_pcie_reset_ict(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u32 val; |
| |
| if (!trans_pcie->ict_tbl) |
| return; |
| |
| spin_lock(&trans_pcie->irq_lock); |
| iwl_disable_interrupts(trans); |
| |
| memset(trans_pcie->ict_tbl, 0, ICT_SIZE); |
| |
| val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; |
| |
| val |= CSR_DRAM_INT_TBL_ENABLE; |
| val |= CSR_DRAM_INIT_TBL_WRAP_CHECK; |
| |
| IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); |
| |
| iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); |
| trans_pcie->use_ict = true; |
| trans_pcie->ict_index = 0; |
| iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); |
| iwl_enable_interrupts(trans); |
| spin_unlock(&trans_pcie->irq_lock); |
| } |
| |
| /* Device is going down disable ict interrupt usage */ |
| void iwl_pcie_disable_ict(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| spin_lock(&trans_pcie->irq_lock); |
| trans_pcie->use_ict = false; |
| spin_unlock(&trans_pcie->irq_lock); |
| } |
| |
| irqreturn_t iwl_pcie_isr(int irq, void *data) |
| { |
| struct iwl_trans *trans = data; |
| |
| if (!trans) |
| return IRQ_NONE; |
| |
| /* Disable (but don't clear!) interrupts here to avoid |
| * back-to-back ISRs and sporadic interrupts from our NIC. |
| * If we have something to service, the tasklet will re-enable ints. |
| * If we *don't* have something, we'll re-enable before leaving here. |
| */ |
| iwl_write32(trans, CSR_INT_MASK, 0x00000000); |
| |
| return IRQ_WAKE_THREAD; |
| } |