| /* |
| * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. |
| * Author: Joerg Roedel <joerg.roedel@amd.com> |
| * Leo Duran <leo.duran@amd.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/gfp.h> |
| #include <linux/bitops.h> |
| #include <linux/scatterlist.h> |
| #include <linux/iommu-helper.h> |
| #include <asm/proto.h> |
| #include <asm/iommu.h> |
| #include <asm/amd_iommu_types.h> |
| #include <asm/amd_iommu.h> |
| |
| #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) |
| |
| #define EXIT_LOOP_COUNT 10000000 |
| |
| static DEFINE_RWLOCK(amd_iommu_devtable_lock); |
| |
| /* A list of preallocated protection domains */ |
| static LIST_HEAD(iommu_pd_list); |
| static DEFINE_SPINLOCK(iommu_pd_list_lock); |
| |
| /* |
| * general struct to manage commands send to an IOMMU |
| */ |
| struct iommu_cmd { |
| u32 data[4]; |
| }; |
| |
| static int dma_ops_unity_map(struct dma_ops_domain *dma_dom, |
| struct unity_map_entry *e); |
| |
| /* returns !0 if the IOMMU is caching non-present entries in its TLB */ |
| static int iommu_has_npcache(struct amd_iommu *iommu) |
| { |
| return iommu->cap & (1UL << IOMMU_CAP_NPCACHE); |
| } |
| |
| /**************************************************************************** |
| * |
| * Interrupt handling functions |
| * |
| ****************************************************************************/ |
| |
| static void iommu_print_event(void *__evt) |
| { |
| u32 *event = __evt; |
| int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; |
| int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; |
| int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK; |
| int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; |
| u64 address = (u64)(((u64)event[3]) << 32) | event[2]; |
| |
| printk(KERN_ERR "AMD IOMMU: Event logged ["); |
| |
| switch (type) { |
| case EVENT_TYPE_ILL_DEV: |
| printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x " |
| "address=0x%016llx flags=0x%04x]\n", |
| PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| address, flags); |
| break; |
| case EVENT_TYPE_IO_FAULT: |
| printk("IO_PAGE_FAULT device=%02x:%02x.%x " |
| "domain=0x%04x address=0x%016llx flags=0x%04x]\n", |
| PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| domid, address, flags); |
| break; |
| case EVENT_TYPE_DEV_TAB_ERR: |
| printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x " |
| "address=0x%016llx flags=0x%04x]\n", |
| PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| address, flags); |
| break; |
| case EVENT_TYPE_PAGE_TAB_ERR: |
| printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x " |
| "domain=0x%04x address=0x%016llx flags=0x%04x]\n", |
| PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| domid, address, flags); |
| break; |
| case EVENT_TYPE_ILL_CMD: |
| printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address); |
| break; |
| case EVENT_TYPE_CMD_HARD_ERR: |
| printk("COMMAND_HARDWARE_ERROR address=0x%016llx " |
| "flags=0x%04x]\n", address, flags); |
| break; |
| case EVENT_TYPE_IOTLB_INV_TO: |
| printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x " |
| "address=0x%016llx]\n", |
| PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| address); |
| break; |
| case EVENT_TYPE_INV_DEV_REQ: |
| printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x " |
| "address=0x%016llx flags=0x%04x]\n", |
| PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| address, flags); |
| break; |
| default: |
| printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type); |
| } |
| } |
| |
| static void iommu_poll_events(struct amd_iommu *iommu) |
| { |
| u32 head, tail; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); |
| tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); |
| |
| while (head != tail) { |
| iommu_print_event(iommu->evt_buf + head); |
| head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size; |
| } |
| |
| writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| irqreturn_t amd_iommu_int_handler(int irq, void *data) |
| { |
| struct amd_iommu *iommu; |
| |
| list_for_each_entry(iommu, &amd_iommu_list, list) |
| iommu_poll_events(iommu); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /**************************************************************************** |
| * |
| * IOMMU command queuing functions |
| * |
| ****************************************************************************/ |
| |
| /* |
| * Writes the command to the IOMMUs command buffer and informs the |
| * hardware about the new command. Must be called with iommu->lock held. |
| */ |
| static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) |
| { |
| u32 tail, head; |
| u8 *target; |
| |
| tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); |
| target = iommu->cmd_buf + tail; |
| memcpy_toio(target, cmd, sizeof(*cmd)); |
| tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size; |
| head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET); |
| if (tail == head) |
| return -ENOMEM; |
| writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); |
| |
| return 0; |
| } |
| |
| /* |
| * General queuing function for commands. Takes iommu->lock and calls |
| * __iommu_queue_command(). |
| */ |
| static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) |
| { |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| ret = __iommu_queue_command(iommu, cmd); |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| return ret; |
| } |
| |
| /* |
| * This function is called whenever we need to ensure that the IOMMU has |
| * completed execution of all commands we sent. It sends a |
| * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs |
| * us about that by writing a value to a physical address we pass with |
| * the command. |
| */ |
| static int iommu_completion_wait(struct amd_iommu *iommu) |
| { |
| int ret = 0, ready = 0; |
| unsigned status = 0; |
| struct iommu_cmd cmd; |
| unsigned long flags, i = 0; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.data[0] = CMD_COMPL_WAIT_INT_MASK; |
| CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT); |
| |
| iommu->need_sync = 0; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| ret = __iommu_queue_command(iommu, &cmd); |
| |
| if (ret) |
| goto out; |
| |
| while (!ready && (i < EXIT_LOOP_COUNT)) { |
| ++i; |
| /* wait for the bit to become one */ |
| status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); |
| ready = status & MMIO_STATUS_COM_WAIT_INT_MASK; |
| } |
| |
| /* set bit back to zero */ |
| status &= ~MMIO_STATUS_COM_WAIT_INT_MASK; |
| writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET); |
| |
| if (unlikely((i == EXIT_LOOP_COUNT) && printk_ratelimit())) |
| printk(KERN_WARNING "AMD IOMMU: Completion wait loop failed\n"); |
| out: |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| return 0; |
| } |
| |
| /* |
| * Command send function for invalidating a device table entry |
| */ |
| static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid) |
| { |
| struct iommu_cmd cmd; |
| int ret; |
| |
| BUG_ON(iommu == NULL); |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY); |
| cmd.data[0] = devid; |
| |
| ret = iommu_queue_command(iommu, &cmd); |
| |
| iommu->need_sync = 1; |
| |
| return ret; |
| } |
| |
| /* |
| * Generic command send function for invalidaing TLB entries |
| */ |
| static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu, |
| u64 address, u16 domid, int pde, int s) |
| { |
| struct iommu_cmd cmd; |
| int ret; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| address &= PAGE_MASK; |
| CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES); |
| cmd.data[1] |= domid; |
| cmd.data[2] = lower_32_bits(address); |
| cmd.data[3] = upper_32_bits(address); |
| if (s) /* size bit - we flush more than one 4kb page */ |
| cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
| if (pde) /* PDE bit - we wan't flush everything not only the PTEs */ |
| cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; |
| |
| ret = iommu_queue_command(iommu, &cmd); |
| |
| iommu->need_sync = 1; |
| |
| return ret; |
| } |
| |
| /* |
| * TLB invalidation function which is called from the mapping functions. |
| * It invalidates a single PTE if the range to flush is within a single |
| * page. Otherwise it flushes the whole TLB of the IOMMU. |
| */ |
| static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid, |
| u64 address, size_t size) |
| { |
| int s = 0; |
| unsigned pages = iommu_num_pages(address, size, PAGE_SIZE); |
| |
| address &= PAGE_MASK; |
| |
| if (pages > 1) { |
| /* |
| * If we have to flush more than one page, flush all |
| * TLB entries for this domain |
| */ |
| address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; |
| s = 1; |
| } |
| |
| iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s); |
| |
| return 0; |
| } |
| |
| /* Flush the whole IO/TLB for a given protection domain */ |
| static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid) |
| { |
| u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; |
| |
| iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1); |
| } |
| |
| /**************************************************************************** |
| * |
| * The functions below are used the create the page table mappings for |
| * unity mapped regions. |
| * |
| ****************************************************************************/ |
| |
| /* |
| * Generic mapping functions. It maps a physical address into a DMA |
| * address space. It allocates the page table pages if necessary. |
| * In the future it can be extended to a generic mapping function |
| * supporting all features of AMD IOMMU page tables like level skipping |
| * and full 64 bit address spaces. |
| */ |
| static int iommu_map(struct protection_domain *dom, |
| unsigned long bus_addr, |
| unsigned long phys_addr, |
| int prot) |
| { |
| u64 __pte, *pte, *page; |
| |
| bus_addr = PAGE_ALIGN(bus_addr); |
| phys_addr = PAGE_ALIGN(bus_addr); |
| |
| /* only support 512GB address spaces for now */ |
| if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK)) |
| return -EINVAL; |
| |
| pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)]; |
| |
| if (!IOMMU_PTE_PRESENT(*pte)) { |
| page = (u64 *)get_zeroed_page(GFP_KERNEL); |
| if (!page) |
| return -ENOMEM; |
| *pte = IOMMU_L2_PDE(virt_to_phys(page)); |
| } |
| |
| pte = IOMMU_PTE_PAGE(*pte); |
| pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)]; |
| |
| if (!IOMMU_PTE_PRESENT(*pte)) { |
| page = (u64 *)get_zeroed_page(GFP_KERNEL); |
| if (!page) |
| return -ENOMEM; |
| *pte = IOMMU_L1_PDE(virt_to_phys(page)); |
| } |
| |
| pte = IOMMU_PTE_PAGE(*pte); |
| pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)]; |
| |
| if (IOMMU_PTE_PRESENT(*pte)) |
| return -EBUSY; |
| |
| __pte = phys_addr | IOMMU_PTE_P; |
| if (prot & IOMMU_PROT_IR) |
| __pte |= IOMMU_PTE_IR; |
| if (prot & IOMMU_PROT_IW) |
| __pte |= IOMMU_PTE_IW; |
| |
| *pte = __pte; |
| |
| return 0; |
| } |
| |
| /* |
| * This function checks if a specific unity mapping entry is needed for |
| * this specific IOMMU. |
| */ |
| static int iommu_for_unity_map(struct amd_iommu *iommu, |
| struct unity_map_entry *entry) |
| { |
| u16 bdf, i; |
| |
| for (i = entry->devid_start; i <= entry->devid_end; ++i) { |
| bdf = amd_iommu_alias_table[i]; |
| if (amd_iommu_rlookup_table[bdf] == iommu) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Init the unity mappings for a specific IOMMU in the system |
| * |
| * Basically iterates over all unity mapping entries and applies them to |
| * the default domain DMA of that IOMMU if necessary. |
| */ |
| static int iommu_init_unity_mappings(struct amd_iommu *iommu) |
| { |
| struct unity_map_entry *entry; |
| int ret; |
| |
| list_for_each_entry(entry, &amd_iommu_unity_map, list) { |
| if (!iommu_for_unity_map(iommu, entry)) |
| continue; |
| ret = dma_ops_unity_map(iommu->default_dom, entry); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This function actually applies the mapping to the page table of the |
| * dma_ops domain. |
| */ |
| static int dma_ops_unity_map(struct dma_ops_domain *dma_dom, |
| struct unity_map_entry *e) |
| { |
| u64 addr; |
| int ret; |
| |
| for (addr = e->address_start; addr < e->address_end; |
| addr += PAGE_SIZE) { |
| ret = iommu_map(&dma_dom->domain, addr, addr, e->prot); |
| if (ret) |
| return ret; |
| /* |
| * if unity mapping is in aperture range mark the page |
| * as allocated in the aperture |
| */ |
| if (addr < dma_dom->aperture_size) |
| __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Inits the unity mappings required for a specific device |
| */ |
| static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom, |
| u16 devid) |
| { |
| struct unity_map_entry *e; |
| int ret; |
| |
| list_for_each_entry(e, &amd_iommu_unity_map, list) { |
| if (!(devid >= e->devid_start && devid <= e->devid_end)) |
| continue; |
| ret = dma_ops_unity_map(dma_dom, e); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /**************************************************************************** |
| * |
| * The next functions belong to the address allocator for the dma_ops |
| * interface functions. They work like the allocators in the other IOMMU |
| * drivers. Its basically a bitmap which marks the allocated pages in |
| * the aperture. Maybe it could be enhanced in the future to a more |
| * efficient allocator. |
| * |
| ****************************************************************************/ |
| |
| /* |
| * The address allocator core function. |
| * |
| * called with domain->lock held |
| */ |
| static unsigned long dma_ops_alloc_addresses(struct device *dev, |
| struct dma_ops_domain *dom, |
| unsigned int pages, |
| unsigned long align_mask, |
| u64 dma_mask) |
| { |
| unsigned long limit; |
| unsigned long address; |
| unsigned long boundary_size; |
| |
| boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1, |
| PAGE_SIZE) >> PAGE_SHIFT; |
| limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0, |
| dma_mask >> PAGE_SHIFT); |
| |
| if (dom->next_bit >= limit) { |
| dom->next_bit = 0; |
| dom->need_flush = true; |
| } |
| |
| address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages, |
| 0 , boundary_size, align_mask); |
| if (address == -1) { |
| address = iommu_area_alloc(dom->bitmap, limit, 0, pages, |
| 0, boundary_size, align_mask); |
| dom->need_flush = true; |
| } |
| |
| if (likely(address != -1)) { |
| dom->next_bit = address + pages; |
| address <<= PAGE_SHIFT; |
| } else |
| address = bad_dma_address; |
| |
| WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size); |
| |
| return address; |
| } |
| |
| /* |
| * The address free function. |
| * |
| * called with domain->lock held |
| */ |
| static void dma_ops_free_addresses(struct dma_ops_domain *dom, |
| unsigned long address, |
| unsigned int pages) |
| { |
| address >>= PAGE_SHIFT; |
| iommu_area_free(dom->bitmap, address, pages); |
| |
| if (address + pages >= dom->next_bit) |
| dom->need_flush = true; |
| } |
| |
| /**************************************************************************** |
| * |
| * The next functions belong to the domain allocation. A domain is |
| * allocated for every IOMMU as the default domain. If device isolation |
| * is enabled, every device get its own domain. The most important thing |
| * about domains is the page table mapping the DMA address space they |
| * contain. |
| * |
| ****************************************************************************/ |
| |
| static u16 domain_id_alloc(void) |
| { |
| unsigned long flags; |
| int id; |
| |
| write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); |
| BUG_ON(id == 0); |
| if (id > 0 && id < MAX_DOMAIN_ID) |
| __set_bit(id, amd_iommu_pd_alloc_bitmap); |
| else |
| id = 0; |
| write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| |
| return id; |
| } |
| |
| /* |
| * Used to reserve address ranges in the aperture (e.g. for exclusion |
| * ranges. |
| */ |
| static void dma_ops_reserve_addresses(struct dma_ops_domain *dom, |
| unsigned long start_page, |
| unsigned int pages) |
| { |
| unsigned int last_page = dom->aperture_size >> PAGE_SHIFT; |
| |
| if (start_page + pages > last_page) |
| pages = last_page - start_page; |
| |
| iommu_area_reserve(dom->bitmap, start_page, pages); |
| } |
| |
| static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom) |
| { |
| int i, j; |
| u64 *p1, *p2, *p3; |
| |
| p1 = dma_dom->domain.pt_root; |
| |
| if (!p1) |
| return; |
| |
| for (i = 0; i < 512; ++i) { |
| if (!IOMMU_PTE_PRESENT(p1[i])) |
| continue; |
| |
| p2 = IOMMU_PTE_PAGE(p1[i]); |
| for (j = 0; j < 512; ++i) { |
| if (!IOMMU_PTE_PRESENT(p2[j])) |
| continue; |
| p3 = IOMMU_PTE_PAGE(p2[j]); |
| free_page((unsigned long)p3); |
| } |
| |
| free_page((unsigned long)p2); |
| } |
| |
| free_page((unsigned long)p1); |
| } |
| |
| /* |
| * Free a domain, only used if something went wrong in the |
| * allocation path and we need to free an already allocated page table |
| */ |
| static void dma_ops_domain_free(struct dma_ops_domain *dom) |
| { |
| if (!dom) |
| return; |
| |
| dma_ops_free_pagetable(dom); |
| |
| kfree(dom->pte_pages); |
| |
| kfree(dom->bitmap); |
| |
| kfree(dom); |
| } |
| |
| /* |
| * Allocates a new protection domain usable for the dma_ops functions. |
| * It also intializes the page table and the address allocator data |
| * structures required for the dma_ops interface |
| */ |
| static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu, |
| unsigned order) |
| { |
| struct dma_ops_domain *dma_dom; |
| unsigned i, num_pte_pages; |
| u64 *l2_pde; |
| u64 address; |
| |
| /* |
| * Currently the DMA aperture must be between 32 MB and 1GB in size |
| */ |
| if ((order < 25) || (order > 30)) |
| return NULL; |
| |
| dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL); |
| if (!dma_dom) |
| return NULL; |
| |
| spin_lock_init(&dma_dom->domain.lock); |
| |
| dma_dom->domain.id = domain_id_alloc(); |
| if (dma_dom->domain.id == 0) |
| goto free_dma_dom; |
| dma_dom->domain.mode = PAGE_MODE_3_LEVEL; |
| dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL); |
| dma_dom->domain.priv = dma_dom; |
| if (!dma_dom->domain.pt_root) |
| goto free_dma_dom; |
| dma_dom->aperture_size = (1ULL << order); |
| dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8), |
| GFP_KERNEL); |
| if (!dma_dom->bitmap) |
| goto free_dma_dom; |
| /* |
| * mark the first page as allocated so we never return 0 as |
| * a valid dma-address. So we can use 0 as error value |
| */ |
| dma_dom->bitmap[0] = 1; |
| dma_dom->next_bit = 0; |
| |
| dma_dom->need_flush = false; |
| dma_dom->target_dev = 0xffff; |
| |
| /* Intialize the exclusion range if necessary */ |
| if (iommu->exclusion_start && |
| iommu->exclusion_start < dma_dom->aperture_size) { |
| unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT; |
| int pages = iommu_num_pages(iommu->exclusion_start, |
| iommu->exclusion_length, |
| PAGE_SIZE); |
| dma_ops_reserve_addresses(dma_dom, startpage, pages); |
| } |
| |
| /* |
| * At the last step, build the page tables so we don't need to |
| * allocate page table pages in the dma_ops mapping/unmapping |
| * path. |
| */ |
| num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512); |
| dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *), |
| GFP_KERNEL); |
| if (!dma_dom->pte_pages) |
| goto free_dma_dom; |
| |
| l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL); |
| if (l2_pde == NULL) |
| goto free_dma_dom; |
| |
| dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde)); |
| |
| for (i = 0; i < num_pte_pages; ++i) { |
| dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL); |
| if (!dma_dom->pte_pages[i]) |
| goto free_dma_dom; |
| address = virt_to_phys(dma_dom->pte_pages[i]); |
| l2_pde[i] = IOMMU_L1_PDE(address); |
| } |
| |
| return dma_dom; |
| |
| free_dma_dom: |
| dma_ops_domain_free(dma_dom); |
| |
| return NULL; |
| } |
| |
| /* |
| * Find out the protection domain structure for a given PCI device. This |
| * will give us the pointer to the page table root for example. |
| */ |
| static struct protection_domain *domain_for_device(u16 devid) |
| { |
| struct protection_domain *dom; |
| unsigned long flags; |
| |
| read_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| dom = amd_iommu_pd_table[devid]; |
| read_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| |
| return dom; |
| } |
| |
| /* |
| * If a device is not yet associated with a domain, this function does |
| * assigns it visible for the hardware |
| */ |
| static void set_device_domain(struct amd_iommu *iommu, |
| struct protection_domain *domain, |
| u16 devid) |
| { |
| unsigned long flags; |
| |
| u64 pte_root = virt_to_phys(domain->pt_root); |
| |
| pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK) |
| << DEV_ENTRY_MODE_SHIFT; |
| pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV; |
| |
| write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root); |
| amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root); |
| amd_iommu_dev_table[devid].data[2] = domain->id; |
| |
| amd_iommu_pd_table[devid] = domain; |
| write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| |
| iommu_queue_inv_dev_entry(iommu, devid); |
| |
| iommu->need_sync = 1; |
| } |
| |
| /***************************************************************************** |
| * |
| * The next functions belong to the dma_ops mapping/unmapping code. |
| * |
| *****************************************************************************/ |
| |
| /* |
| * This function checks if the driver got a valid device from the caller to |
| * avoid dereferencing invalid pointers. |
| */ |
| static bool check_device(struct device *dev) |
| { |
| if (!dev || !dev->dma_mask) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * In this function the list of preallocated protection domains is traversed to |
| * find the domain for a specific device |
| */ |
| static struct dma_ops_domain *find_protection_domain(u16 devid) |
| { |
| struct dma_ops_domain *entry, *ret = NULL; |
| unsigned long flags; |
| |
| if (list_empty(&iommu_pd_list)) |
| return NULL; |
| |
| spin_lock_irqsave(&iommu_pd_list_lock, flags); |
| |
| list_for_each_entry(entry, &iommu_pd_list, list) { |
| if (entry->target_dev == devid) { |
| ret = entry; |
| list_del(&ret->list); |
| break; |
| } |
| } |
| |
| spin_unlock_irqrestore(&iommu_pd_list_lock, flags); |
| |
| return ret; |
| } |
| |
| /* |
| * In the dma_ops path we only have the struct device. This function |
| * finds the corresponding IOMMU, the protection domain and the |
| * requestor id for a given device. |
| * If the device is not yet associated with a domain this is also done |
| * in this function. |
| */ |
| static int get_device_resources(struct device *dev, |
| struct amd_iommu **iommu, |
| struct protection_domain **domain, |
| u16 *bdf) |
| { |
| struct dma_ops_domain *dma_dom; |
| struct pci_dev *pcidev; |
| u16 _bdf; |
| |
| *iommu = NULL; |
| *domain = NULL; |
| *bdf = 0xffff; |
| |
| if (dev->bus != &pci_bus_type) |
| return 0; |
| |
| pcidev = to_pci_dev(dev); |
| _bdf = calc_devid(pcidev->bus->number, pcidev->devfn); |
| |
| /* device not translated by any IOMMU in the system? */ |
| if (_bdf > amd_iommu_last_bdf) |
| return 0; |
| |
| *bdf = amd_iommu_alias_table[_bdf]; |
| |
| *iommu = amd_iommu_rlookup_table[*bdf]; |
| if (*iommu == NULL) |
| return 0; |
| *domain = domain_for_device(*bdf); |
| if (*domain == NULL) { |
| dma_dom = find_protection_domain(*bdf); |
| if (!dma_dom) |
| dma_dom = (*iommu)->default_dom; |
| *domain = &dma_dom->domain; |
| set_device_domain(*iommu, *domain, *bdf); |
| printk(KERN_INFO "AMD IOMMU: Using protection domain %d for " |
| "device ", (*domain)->id); |
| print_devid(_bdf, 1); |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * This is the generic map function. It maps one 4kb page at paddr to |
| * the given address in the DMA address space for the domain. |
| */ |
| static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu, |
| struct dma_ops_domain *dom, |
| unsigned long address, |
| phys_addr_t paddr, |
| int direction) |
| { |
| u64 *pte, __pte; |
| |
| WARN_ON(address > dom->aperture_size); |
| |
| paddr &= PAGE_MASK; |
| |
| pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)]; |
| pte += IOMMU_PTE_L0_INDEX(address); |
| |
| __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC; |
| |
| if (direction == DMA_TO_DEVICE) |
| __pte |= IOMMU_PTE_IR; |
| else if (direction == DMA_FROM_DEVICE) |
| __pte |= IOMMU_PTE_IW; |
| else if (direction == DMA_BIDIRECTIONAL) |
| __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW; |
| |
| WARN_ON(*pte); |
| |
| *pte = __pte; |
| |
| return (dma_addr_t)address; |
| } |
| |
| /* |
| * The generic unmapping function for on page in the DMA address space. |
| */ |
| static void dma_ops_domain_unmap(struct amd_iommu *iommu, |
| struct dma_ops_domain *dom, |
| unsigned long address) |
| { |
| u64 *pte; |
| |
| if (address >= dom->aperture_size) |
| return; |
| |
| WARN_ON(address & 0xfffULL || address > dom->aperture_size); |
| |
| pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)]; |
| pte += IOMMU_PTE_L0_INDEX(address); |
| |
| WARN_ON(!*pte); |
| |
| *pte = 0ULL; |
| } |
| |
| /* |
| * This function contains common code for mapping of a physically |
| * contiguous memory region into DMA address space. It is uses by all |
| * mapping functions provided by this IOMMU driver. |
| * Must be called with the domain lock held. |
| */ |
| static dma_addr_t __map_single(struct device *dev, |
| struct amd_iommu *iommu, |
| struct dma_ops_domain *dma_dom, |
| phys_addr_t paddr, |
| size_t size, |
| int dir, |
| bool align, |
| u64 dma_mask) |
| { |
| dma_addr_t offset = paddr & ~PAGE_MASK; |
| dma_addr_t address, start; |
| unsigned int pages; |
| unsigned long align_mask = 0; |
| int i; |
| |
| pages = iommu_num_pages(paddr, size, PAGE_SIZE); |
| paddr &= PAGE_MASK; |
| |
| if (align) |
| align_mask = (1UL << get_order(size)) - 1; |
| |
| address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask, |
| dma_mask); |
| if (unlikely(address == bad_dma_address)) |
| goto out; |
| |
| start = address; |
| for (i = 0; i < pages; ++i) { |
| dma_ops_domain_map(iommu, dma_dom, start, paddr, dir); |
| paddr += PAGE_SIZE; |
| start += PAGE_SIZE; |
| } |
| address += offset; |
| |
| if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) { |
| iommu_flush_tlb(iommu, dma_dom->domain.id); |
| dma_dom->need_flush = false; |
| } else if (unlikely(iommu_has_npcache(iommu))) |
| iommu_flush_pages(iommu, dma_dom->domain.id, address, size); |
| |
| out: |
| return address; |
| } |
| |
| /* |
| * Does the reverse of the __map_single function. Must be called with |
| * the domain lock held too |
| */ |
| static void __unmap_single(struct amd_iommu *iommu, |
| struct dma_ops_domain *dma_dom, |
| dma_addr_t dma_addr, |
| size_t size, |
| int dir) |
| { |
| dma_addr_t i, start; |
| unsigned int pages; |
| |
| if ((dma_addr == 0) || (dma_addr + size > dma_dom->aperture_size)) |
| return; |
| |
| pages = iommu_num_pages(dma_addr, size, PAGE_SIZE); |
| dma_addr &= PAGE_MASK; |
| start = dma_addr; |
| |
| for (i = 0; i < pages; ++i) { |
| dma_ops_domain_unmap(iommu, dma_dom, start); |
| start += PAGE_SIZE; |
| } |
| |
| dma_ops_free_addresses(dma_dom, dma_addr, pages); |
| |
| if (amd_iommu_unmap_flush || dma_dom->need_flush) { |
| iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size); |
| dma_dom->need_flush = false; |
| } |
| } |
| |
| /* |
| * The exported map_single function for dma_ops. |
| */ |
| static dma_addr_t map_single(struct device *dev, phys_addr_t paddr, |
| size_t size, int dir) |
| { |
| unsigned long flags; |
| struct amd_iommu *iommu; |
| struct protection_domain *domain; |
| u16 devid; |
| dma_addr_t addr; |
| u64 dma_mask; |
| |
| if (!check_device(dev)) |
| return bad_dma_address; |
| |
| dma_mask = *dev->dma_mask; |
| |
| get_device_resources(dev, &iommu, &domain, &devid); |
| |
| if (iommu == NULL || domain == NULL) |
| /* device not handled by any AMD IOMMU */ |
| return (dma_addr_t)paddr; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false, |
| dma_mask); |
| if (addr == bad_dma_address) |
| goto out; |
| |
| if (unlikely(iommu->need_sync)) |
| iommu_completion_wait(iommu); |
| |
| out: |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| return addr; |
| } |
| |
| /* |
| * The exported unmap_single function for dma_ops. |
| */ |
| static void unmap_single(struct device *dev, dma_addr_t dma_addr, |
| size_t size, int dir) |
| { |
| unsigned long flags; |
| struct amd_iommu *iommu; |
| struct protection_domain *domain; |
| u16 devid; |
| |
| if (!check_device(dev) || |
| !get_device_resources(dev, &iommu, &domain, &devid)) |
| /* device not handled by any AMD IOMMU */ |
| return; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| |
| __unmap_single(iommu, domain->priv, dma_addr, size, dir); |
| |
| if (unlikely(iommu->need_sync)) |
| iommu_completion_wait(iommu); |
| |
| spin_unlock_irqrestore(&domain->lock, flags); |
| } |
| |
| /* |
| * This is a special map_sg function which is used if we should map a |
| * device which is not handled by an AMD IOMMU in the system. |
| */ |
| static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist, |
| int nelems, int dir) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sglist, s, nelems, i) { |
| s->dma_address = (dma_addr_t)sg_phys(s); |
| s->dma_length = s->length; |
| } |
| |
| return nelems; |
| } |
| |
| /* |
| * The exported map_sg function for dma_ops (handles scatter-gather |
| * lists). |
| */ |
| static int map_sg(struct device *dev, struct scatterlist *sglist, |
| int nelems, int dir) |
| { |
| unsigned long flags; |
| struct amd_iommu *iommu; |
| struct protection_domain *domain; |
| u16 devid; |
| int i; |
| struct scatterlist *s; |
| phys_addr_t paddr; |
| int mapped_elems = 0; |
| u64 dma_mask; |
| |
| if (!check_device(dev)) |
| return 0; |
| |
| dma_mask = *dev->dma_mask; |
| |
| get_device_resources(dev, &iommu, &domain, &devid); |
| |
| if (!iommu || !domain) |
| return map_sg_no_iommu(dev, sglist, nelems, dir); |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| |
| for_each_sg(sglist, s, nelems, i) { |
| paddr = sg_phys(s); |
| |
| s->dma_address = __map_single(dev, iommu, domain->priv, |
| paddr, s->length, dir, false, |
| dma_mask); |
| |
| if (s->dma_address) { |
| s->dma_length = s->length; |
| mapped_elems++; |
| } else |
| goto unmap; |
| } |
| |
| if (unlikely(iommu->need_sync)) |
| iommu_completion_wait(iommu); |
| |
| out: |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| return mapped_elems; |
| unmap: |
| for_each_sg(sglist, s, mapped_elems, i) { |
| if (s->dma_address) |
| __unmap_single(iommu, domain->priv, s->dma_address, |
| s->dma_length, dir); |
| s->dma_address = s->dma_length = 0; |
| } |
| |
| mapped_elems = 0; |
| |
| goto out; |
| } |
| |
| /* |
| * The exported map_sg function for dma_ops (handles scatter-gather |
| * lists). |
| */ |
| static void unmap_sg(struct device *dev, struct scatterlist *sglist, |
| int nelems, int dir) |
| { |
| unsigned long flags; |
| struct amd_iommu *iommu; |
| struct protection_domain *domain; |
| struct scatterlist *s; |
| u16 devid; |
| int i; |
| |
| if (!check_device(dev) || |
| !get_device_resources(dev, &iommu, &domain, &devid)) |
| return; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| |
| for_each_sg(sglist, s, nelems, i) { |
| __unmap_single(iommu, domain->priv, s->dma_address, |
| s->dma_length, dir); |
| s->dma_address = s->dma_length = 0; |
| } |
| |
| if (unlikely(iommu->need_sync)) |
| iommu_completion_wait(iommu); |
| |
| spin_unlock_irqrestore(&domain->lock, flags); |
| } |
| |
| /* |
| * The exported alloc_coherent function for dma_ops. |
| */ |
| static void *alloc_coherent(struct device *dev, size_t size, |
| dma_addr_t *dma_addr, gfp_t flag) |
| { |
| unsigned long flags; |
| void *virt_addr; |
| struct amd_iommu *iommu; |
| struct protection_domain *domain; |
| u16 devid; |
| phys_addr_t paddr; |
| u64 dma_mask = dev->coherent_dma_mask; |
| |
| if (!check_device(dev)) |
| return NULL; |
| |
| if (!get_device_resources(dev, &iommu, &domain, &devid)) |
| flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32); |
| |
| flag |= __GFP_ZERO; |
| virt_addr = (void *)__get_free_pages(flag, get_order(size)); |
| if (!virt_addr) |
| return 0; |
| |
| paddr = virt_to_phys(virt_addr); |
| |
| if (!iommu || !domain) { |
| *dma_addr = (dma_addr_t)paddr; |
| return virt_addr; |
| } |
| |
| if (!dma_mask) |
| dma_mask = *dev->dma_mask; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| |
| *dma_addr = __map_single(dev, iommu, domain->priv, paddr, |
| size, DMA_BIDIRECTIONAL, true, dma_mask); |
| |
| if (*dma_addr == bad_dma_address) { |
| free_pages((unsigned long)virt_addr, get_order(size)); |
| virt_addr = NULL; |
| goto out; |
| } |
| |
| if (unlikely(iommu->need_sync)) |
| iommu_completion_wait(iommu); |
| |
| out: |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| return virt_addr; |
| } |
| |
| /* |
| * The exported free_coherent function for dma_ops. |
| */ |
| static void free_coherent(struct device *dev, size_t size, |
| void *virt_addr, dma_addr_t dma_addr) |
| { |
| unsigned long flags; |
| struct amd_iommu *iommu; |
| struct protection_domain *domain; |
| u16 devid; |
| |
| if (!check_device(dev)) |
| return; |
| |
| get_device_resources(dev, &iommu, &domain, &devid); |
| |
| if (!iommu || !domain) |
| goto free_mem; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| |
| __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL); |
| |
| if (unlikely(iommu->need_sync)) |
| iommu_completion_wait(iommu); |
| |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| free_mem: |
| free_pages((unsigned long)virt_addr, get_order(size)); |
| } |
| |
| /* |
| * This function is called by the DMA layer to find out if we can handle a |
| * particular device. It is part of the dma_ops. |
| */ |
| static int amd_iommu_dma_supported(struct device *dev, u64 mask) |
| { |
| u16 bdf; |
| struct pci_dev *pcidev; |
| |
| /* No device or no PCI device */ |
| if (!dev || dev->bus != &pci_bus_type) |
| return 0; |
| |
| pcidev = to_pci_dev(dev); |
| |
| bdf = calc_devid(pcidev->bus->number, pcidev->devfn); |
| |
| /* Out of our scope? */ |
| if (bdf > amd_iommu_last_bdf) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* |
| * The function for pre-allocating protection domains. |
| * |
| * If the driver core informs the DMA layer if a driver grabs a device |
| * we don't need to preallocate the protection domains anymore. |
| * For now we have to. |
| */ |
| void prealloc_protection_domains(void) |
| { |
| struct pci_dev *dev = NULL; |
| struct dma_ops_domain *dma_dom; |
| struct amd_iommu *iommu; |
| int order = amd_iommu_aperture_order; |
| u16 devid; |
| |
| while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { |
| devid = (dev->bus->number << 8) | dev->devfn; |
| if (devid > amd_iommu_last_bdf) |
| continue; |
| devid = amd_iommu_alias_table[devid]; |
| if (domain_for_device(devid)) |
| continue; |
| iommu = amd_iommu_rlookup_table[devid]; |
| if (!iommu) |
| continue; |
| dma_dom = dma_ops_domain_alloc(iommu, order); |
| if (!dma_dom) |
| continue; |
| init_unity_mappings_for_device(dma_dom, devid); |
| dma_dom->target_dev = devid; |
| |
| list_add_tail(&dma_dom->list, &iommu_pd_list); |
| } |
| } |
| |
| static struct dma_mapping_ops amd_iommu_dma_ops = { |
| .alloc_coherent = alloc_coherent, |
| .free_coherent = free_coherent, |
| .map_single = map_single, |
| .unmap_single = unmap_single, |
| .map_sg = map_sg, |
| .unmap_sg = unmap_sg, |
| .dma_supported = amd_iommu_dma_supported, |
| }; |
| |
| /* |
| * The function which clues the AMD IOMMU driver into dma_ops. |
| */ |
| int __init amd_iommu_init_dma_ops(void) |
| { |
| struct amd_iommu *iommu; |
| int order = amd_iommu_aperture_order; |
| int ret; |
| |
| /* |
| * first allocate a default protection domain for every IOMMU we |
| * found in the system. Devices not assigned to any other |
| * protection domain will be assigned to the default one. |
| */ |
| list_for_each_entry(iommu, &amd_iommu_list, list) { |
| iommu->default_dom = dma_ops_domain_alloc(iommu, order); |
| if (iommu->default_dom == NULL) |
| return -ENOMEM; |
| ret = iommu_init_unity_mappings(iommu); |
| if (ret) |
| goto free_domains; |
| } |
| |
| /* |
| * If device isolation is enabled, pre-allocate the protection |
| * domains for each device. |
| */ |
| if (amd_iommu_isolate) |
| prealloc_protection_domains(); |
| |
| iommu_detected = 1; |
| force_iommu = 1; |
| bad_dma_address = 0; |
| #ifdef CONFIG_GART_IOMMU |
| gart_iommu_aperture_disabled = 1; |
| gart_iommu_aperture = 0; |
| #endif |
| |
| /* Make the driver finally visible to the drivers */ |
| dma_ops = &amd_iommu_dma_ops; |
| |
| return 0; |
| |
| free_domains: |
| |
| list_for_each_entry(iommu, &amd_iommu_list, list) { |
| if (iommu->default_dom) |
| dma_ops_domain_free(iommu->default_dom); |
| } |
| |
| return ret; |
| } |