| /* |
| * libata-scsi.c - helper library for ATA |
| * |
| * Maintained by: Jeff Garzik <jgarzik@pobox.com> |
| * Please ALWAYS copy linux-ide@vger.kernel.org |
| * on emails. |
| * |
| * Copyright 2003-2004 Red Hat, Inc. All rights reserved. |
| * Copyright 2003-2004 Jeff Garzik |
| * |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; see the file COPYING. If not, write to |
| * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * |
| * libata documentation is available via 'make {ps|pdf}docs', |
| * as Documentation/DocBook/libata.* |
| * |
| * Hardware documentation available from |
| * - http://www.t10.org/ |
| * - http://www.t13.org/ |
| * |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/kernel.h> |
| #include <linux/blkdev.h> |
| #include <linux/spinlock.h> |
| #include <linux/export.h> |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_host.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_eh.h> |
| #include <scsi/scsi_device.h> |
| #include <scsi/scsi_tcq.h> |
| #include <scsi/scsi_transport.h> |
| #include <linux/libata.h> |
| #include <linux/hdreg.h> |
| #include <linux/uaccess.h> |
| #include <linux/suspend.h> |
| #include <asm/unaligned.h> |
| |
| #include "libata.h" |
| #include "libata-transport.h" |
| |
| #define ATA_SCSI_RBUF_SIZE 4096 |
| |
| static DEFINE_SPINLOCK(ata_scsi_rbuf_lock); |
| static u8 ata_scsi_rbuf[ATA_SCSI_RBUF_SIZE]; |
| |
| typedef unsigned int (*ata_xlat_func_t)(struct ata_queued_cmd *qc); |
| |
| static struct ata_device *__ata_scsi_find_dev(struct ata_port *ap, |
| const struct scsi_device *scsidev); |
| static struct ata_device *ata_scsi_find_dev(struct ata_port *ap, |
| const struct scsi_device *scsidev); |
| |
| #define RW_RECOVERY_MPAGE 0x1 |
| #define RW_RECOVERY_MPAGE_LEN 12 |
| #define CACHE_MPAGE 0x8 |
| #define CACHE_MPAGE_LEN 20 |
| #define CONTROL_MPAGE 0xa |
| #define CONTROL_MPAGE_LEN 12 |
| #define ALL_MPAGES 0x3f |
| #define ALL_SUB_MPAGES 0xff |
| |
| |
| static const u8 def_rw_recovery_mpage[RW_RECOVERY_MPAGE_LEN] = { |
| RW_RECOVERY_MPAGE, |
| RW_RECOVERY_MPAGE_LEN - 2, |
| (1 << 7), /* AWRE */ |
| 0, /* read retry count */ |
| 0, 0, 0, 0, |
| 0, /* write retry count */ |
| 0, 0, 0 |
| }; |
| |
| static const u8 def_cache_mpage[CACHE_MPAGE_LEN] = { |
| CACHE_MPAGE, |
| CACHE_MPAGE_LEN - 2, |
| 0, /* contains WCE, needs to be 0 for logic */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, /* contains DRA, needs to be 0 for logic */ |
| 0, 0, 0, 0, 0, 0, 0 |
| }; |
| |
| static const u8 def_control_mpage[CONTROL_MPAGE_LEN] = { |
| CONTROL_MPAGE, |
| CONTROL_MPAGE_LEN - 2, |
| 2, /* DSENSE=0, GLTSD=1 */ |
| 0, /* [QAM+QERR may be 1, see 05-359r1] */ |
| 0, 0, 0, 0, 0xff, 0xff, |
| 0, 30 /* extended self test time, see 05-359r1 */ |
| }; |
| |
| static const char *ata_lpm_policy_names[] = { |
| [ATA_LPM_UNKNOWN] = "max_performance", |
| [ATA_LPM_MAX_POWER] = "max_performance", |
| [ATA_LPM_MED_POWER] = "medium_power", |
| [ATA_LPM_MIN_POWER] = "min_power", |
| }; |
| |
| static ssize_t ata_scsi_lpm_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct Scsi_Host *shost = class_to_shost(dev); |
| struct ata_port *ap = ata_shost_to_port(shost); |
| enum ata_lpm_policy policy; |
| unsigned long flags; |
| |
| /* UNKNOWN is internal state, iterate from MAX_POWER */ |
| for (policy = ATA_LPM_MAX_POWER; |
| policy < ARRAY_SIZE(ata_lpm_policy_names); policy++) { |
| const char *name = ata_lpm_policy_names[policy]; |
| |
| if (strncmp(name, buf, strlen(name)) == 0) |
| break; |
| } |
| if (policy == ARRAY_SIZE(ata_lpm_policy_names)) |
| return -EINVAL; |
| |
| spin_lock_irqsave(ap->lock, flags); |
| ap->target_lpm_policy = policy; |
| ata_port_schedule_eh(ap); |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| return count; |
| } |
| |
| static ssize_t ata_scsi_lpm_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct Scsi_Host *shost = class_to_shost(dev); |
| struct ata_port *ap = ata_shost_to_port(shost); |
| |
| if (ap->target_lpm_policy >= ARRAY_SIZE(ata_lpm_policy_names)) |
| return -EINVAL; |
| |
| return snprintf(buf, PAGE_SIZE, "%s\n", |
| ata_lpm_policy_names[ap->target_lpm_policy]); |
| } |
| DEVICE_ATTR(link_power_management_policy, S_IRUGO | S_IWUSR, |
| ata_scsi_lpm_show, ata_scsi_lpm_store); |
| EXPORT_SYMBOL_GPL(dev_attr_link_power_management_policy); |
| |
| static ssize_t ata_scsi_park_show(struct device *device, |
| struct device_attribute *attr, char *buf) |
| { |
| struct scsi_device *sdev = to_scsi_device(device); |
| struct ata_port *ap; |
| struct ata_link *link; |
| struct ata_device *dev; |
| unsigned long flags, now; |
| unsigned int uninitialized_var(msecs); |
| int rc = 0; |
| |
| ap = ata_shost_to_port(sdev->host); |
| |
| spin_lock_irqsave(ap->lock, flags); |
| dev = ata_scsi_find_dev(ap, sdev); |
| if (!dev) { |
| rc = -ENODEV; |
| goto unlock; |
| } |
| if (dev->flags & ATA_DFLAG_NO_UNLOAD) { |
| rc = -EOPNOTSUPP; |
| goto unlock; |
| } |
| |
| link = dev->link; |
| now = jiffies; |
| if (ap->pflags & ATA_PFLAG_EH_IN_PROGRESS && |
| link->eh_context.unloaded_mask & (1 << dev->devno) && |
| time_after(dev->unpark_deadline, now)) |
| msecs = jiffies_to_msecs(dev->unpark_deadline - now); |
| else |
| msecs = 0; |
| |
| unlock: |
| spin_unlock_irq(ap->lock); |
| |
| return rc ? rc : snprintf(buf, 20, "%u\n", msecs); |
| } |
| |
| static ssize_t ata_scsi_park_store(struct device *device, |
| struct device_attribute *attr, |
| const char *buf, size_t len) |
| { |
| struct scsi_device *sdev = to_scsi_device(device); |
| struct ata_port *ap; |
| struct ata_device *dev; |
| long int input; |
| unsigned long flags; |
| int rc; |
| |
| rc = strict_strtol(buf, 10, &input); |
| if (rc || input < -2) |
| return -EINVAL; |
| if (input > ATA_TMOUT_MAX_PARK) { |
| rc = -EOVERFLOW; |
| input = ATA_TMOUT_MAX_PARK; |
| } |
| |
| ap = ata_shost_to_port(sdev->host); |
| |
| spin_lock_irqsave(ap->lock, flags); |
| dev = ata_scsi_find_dev(ap, sdev); |
| if (unlikely(!dev)) { |
| rc = -ENODEV; |
| goto unlock; |
| } |
| if (dev->class != ATA_DEV_ATA) { |
| rc = -EOPNOTSUPP; |
| goto unlock; |
| } |
| |
| if (input >= 0) { |
| if (dev->flags & ATA_DFLAG_NO_UNLOAD) { |
| rc = -EOPNOTSUPP; |
| goto unlock; |
| } |
| |
| dev->unpark_deadline = ata_deadline(jiffies, input); |
| dev->link->eh_info.dev_action[dev->devno] |= ATA_EH_PARK; |
| ata_port_schedule_eh(ap); |
| complete(&ap->park_req_pending); |
| } else { |
| switch (input) { |
| case -1: |
| dev->flags &= ~ATA_DFLAG_NO_UNLOAD; |
| break; |
| case -2: |
| dev->flags |= ATA_DFLAG_NO_UNLOAD; |
| break; |
| } |
| } |
| unlock: |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| return rc ? rc : len; |
| } |
| DEVICE_ATTR(unload_heads, S_IRUGO | S_IWUSR, |
| ata_scsi_park_show, ata_scsi_park_store); |
| EXPORT_SYMBOL_GPL(dev_attr_unload_heads); |
| |
| static void ata_scsi_set_sense(struct scsi_cmnd *cmd, u8 sk, u8 asc, u8 ascq) |
| { |
| cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION; |
| |
| scsi_build_sense_buffer(0, cmd->sense_buffer, sk, asc, ascq); |
| } |
| |
| static ssize_t |
| ata_scsi_em_message_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct Scsi_Host *shost = class_to_shost(dev); |
| struct ata_port *ap = ata_shost_to_port(shost); |
| if (ap->ops->em_store && (ap->flags & ATA_FLAG_EM)) |
| return ap->ops->em_store(ap, buf, count); |
| return -EINVAL; |
| } |
| |
| static ssize_t |
| ata_scsi_em_message_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct Scsi_Host *shost = class_to_shost(dev); |
| struct ata_port *ap = ata_shost_to_port(shost); |
| |
| if (ap->ops->em_show && (ap->flags & ATA_FLAG_EM)) |
| return ap->ops->em_show(ap, buf); |
| return -EINVAL; |
| } |
| DEVICE_ATTR(em_message, S_IRUGO | S_IWUSR, |
| ata_scsi_em_message_show, ata_scsi_em_message_store); |
| EXPORT_SYMBOL_GPL(dev_attr_em_message); |
| |
| static ssize_t |
| ata_scsi_em_message_type_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct Scsi_Host *shost = class_to_shost(dev); |
| struct ata_port *ap = ata_shost_to_port(shost); |
| |
| return snprintf(buf, 23, "%d\n", ap->em_message_type); |
| } |
| DEVICE_ATTR(em_message_type, S_IRUGO, |
| ata_scsi_em_message_type_show, NULL); |
| EXPORT_SYMBOL_GPL(dev_attr_em_message_type); |
| |
| static ssize_t |
| ata_scsi_activity_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct scsi_device *sdev = to_scsi_device(dev); |
| struct ata_port *ap = ata_shost_to_port(sdev->host); |
| struct ata_device *atadev = ata_scsi_find_dev(ap, sdev); |
| |
| if (ap->ops->sw_activity_show && (ap->flags & ATA_FLAG_SW_ACTIVITY)) |
| return ap->ops->sw_activity_show(atadev, buf); |
| return -EINVAL; |
| } |
| |
| static ssize_t |
| ata_scsi_activity_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct scsi_device *sdev = to_scsi_device(dev); |
| struct ata_port *ap = ata_shost_to_port(sdev->host); |
| struct ata_device *atadev = ata_scsi_find_dev(ap, sdev); |
| enum sw_activity val; |
| int rc; |
| |
| if (ap->ops->sw_activity_store && (ap->flags & ATA_FLAG_SW_ACTIVITY)) { |
| val = simple_strtoul(buf, NULL, 0); |
| switch (val) { |
| case OFF: case BLINK_ON: case BLINK_OFF: |
| rc = ap->ops->sw_activity_store(atadev, val); |
| if (!rc) |
| return count; |
| else |
| return rc; |
| } |
| } |
| return -EINVAL; |
| } |
| DEVICE_ATTR(sw_activity, S_IWUSR | S_IRUGO, ata_scsi_activity_show, |
| ata_scsi_activity_store); |
| EXPORT_SYMBOL_GPL(dev_attr_sw_activity); |
| |
| struct device_attribute *ata_common_sdev_attrs[] = { |
| &dev_attr_unload_heads, |
| NULL |
| }; |
| EXPORT_SYMBOL_GPL(ata_common_sdev_attrs); |
| |
| static void ata_scsi_invalid_field(struct scsi_cmnd *cmd) |
| { |
| ata_scsi_set_sense(cmd, ILLEGAL_REQUEST, 0x24, 0x0); |
| /* "Invalid field in cbd" */ |
| cmd->scsi_done(cmd); |
| } |
| |
| /** |
| * ata_std_bios_param - generic bios head/sector/cylinder calculator used by sd. |
| * @sdev: SCSI device for which BIOS geometry is to be determined |
| * @bdev: block device associated with @sdev |
| * @capacity: capacity of SCSI device |
| * @geom: location to which geometry will be output |
| * |
| * Generic bios head/sector/cylinder calculator |
| * used by sd. Most BIOSes nowadays expect a XXX/255/16 (CHS) |
| * mapping. Some situations may arise where the disk is not |
| * bootable if this is not used. |
| * |
| * LOCKING: |
| * Defined by the SCSI layer. We don't really care. |
| * |
| * RETURNS: |
| * Zero. |
| */ |
| int ata_std_bios_param(struct scsi_device *sdev, struct block_device *bdev, |
| sector_t capacity, int geom[]) |
| { |
| geom[0] = 255; |
| geom[1] = 63; |
| sector_div(capacity, 255*63); |
| geom[2] = capacity; |
| |
| return 0; |
| } |
| |
| /** |
| * ata_scsi_unlock_native_capacity - unlock native capacity |
| * @sdev: SCSI device to adjust device capacity for |
| * |
| * This function is called if a partition on @sdev extends beyond |
| * the end of the device. It requests EH to unlock HPA. |
| * |
| * LOCKING: |
| * Defined by the SCSI layer. Might sleep. |
| */ |
| void ata_scsi_unlock_native_capacity(struct scsi_device *sdev) |
| { |
| struct ata_port *ap = ata_shost_to_port(sdev->host); |
| struct ata_device *dev; |
| unsigned long flags; |
| |
| spin_lock_irqsave(ap->lock, flags); |
| |
| dev = ata_scsi_find_dev(ap, sdev); |
| if (dev && dev->n_sectors < dev->n_native_sectors) { |
| dev->flags |= ATA_DFLAG_UNLOCK_HPA; |
| dev->link->eh_info.action |= ATA_EH_RESET; |
| ata_port_schedule_eh(ap); |
| } |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| ata_port_wait_eh(ap); |
| } |
| |
| /** |
| * ata_get_identity - Handler for HDIO_GET_IDENTITY ioctl |
| * @ap: target port |
| * @sdev: SCSI device to get identify data for |
| * @arg: User buffer area for identify data |
| * |
| * LOCKING: |
| * Defined by the SCSI layer. We don't really care. |
| * |
| * RETURNS: |
| * Zero on success, negative errno on error. |
| */ |
| static int ata_get_identity(struct ata_port *ap, struct scsi_device *sdev, |
| void __user *arg) |
| { |
| struct ata_device *dev = ata_scsi_find_dev(ap, sdev); |
| u16 __user *dst = arg; |
| char buf[40]; |
| |
| if (!dev) |
| return -ENOMSG; |
| |
| if (copy_to_user(dst, dev->id, ATA_ID_WORDS * sizeof(u16))) |
| return -EFAULT; |
| |
| ata_id_string(dev->id, buf, ATA_ID_PROD, ATA_ID_PROD_LEN); |
| if (copy_to_user(dst + ATA_ID_PROD, buf, ATA_ID_PROD_LEN)) |
| return -EFAULT; |
| |
| ata_id_string(dev->id, buf, ATA_ID_FW_REV, ATA_ID_FW_REV_LEN); |
| if (copy_to_user(dst + ATA_ID_FW_REV, buf, ATA_ID_FW_REV_LEN)) |
| return -EFAULT; |
| |
| ata_id_string(dev->id, buf, ATA_ID_SERNO, ATA_ID_SERNO_LEN); |
| if (copy_to_user(dst + ATA_ID_SERNO, buf, ATA_ID_SERNO_LEN)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /** |
| * ata_cmd_ioctl - Handler for HDIO_DRIVE_CMD ioctl |
| * @scsidev: Device to which we are issuing command |
| * @arg: User provided data for issuing command |
| * |
| * LOCKING: |
| * Defined by the SCSI layer. We don't really care. |
| * |
| * RETURNS: |
| * Zero on success, negative errno on error. |
| */ |
| int ata_cmd_ioctl(struct scsi_device *scsidev, void __user *arg) |
| { |
| int rc = 0; |
| u8 scsi_cmd[MAX_COMMAND_SIZE]; |
| u8 args[4], *argbuf = NULL, *sensebuf = NULL; |
| int argsize = 0; |
| enum dma_data_direction data_dir; |
| int cmd_result; |
| |
| if (arg == NULL) |
| return -EINVAL; |
| |
| if (copy_from_user(args, arg, sizeof(args))) |
| return -EFAULT; |
| |
| sensebuf = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); |
| if (!sensebuf) |
| return -ENOMEM; |
| |
| memset(scsi_cmd, 0, sizeof(scsi_cmd)); |
| |
| if (args[3]) { |
| argsize = ATA_SECT_SIZE * args[3]; |
| argbuf = kmalloc(argsize, GFP_KERNEL); |
| if (argbuf == NULL) { |
| rc = -ENOMEM; |
| goto error; |
| } |
| |
| scsi_cmd[1] = (4 << 1); /* PIO Data-in */ |
| scsi_cmd[2] = 0x0e; /* no off.line or cc, read from dev, |
| block count in sector count field */ |
| data_dir = DMA_FROM_DEVICE; |
| } else { |
| scsi_cmd[1] = (3 << 1); /* Non-data */ |
| scsi_cmd[2] = 0x20; /* cc but no off.line or data xfer */ |
| data_dir = DMA_NONE; |
| } |
| |
| scsi_cmd[0] = ATA_16; |
| |
| scsi_cmd[4] = args[2]; |
| if (args[0] == ATA_CMD_SMART) { /* hack -- ide driver does this too */ |
| scsi_cmd[6] = args[3]; |
| scsi_cmd[8] = args[1]; |
| scsi_cmd[10] = 0x4f; |
| scsi_cmd[12] = 0xc2; |
| } else { |
| scsi_cmd[6] = args[1]; |
| } |
| scsi_cmd[14] = args[0]; |
| |
| /* Good values for timeout and retries? Values below |
| from scsi_ioctl_send_command() for default case... */ |
| cmd_result = scsi_execute(scsidev, scsi_cmd, data_dir, argbuf, argsize, |
| sensebuf, (10*HZ), 5, 0, NULL); |
| |
| if (driver_byte(cmd_result) == DRIVER_SENSE) {/* sense data available */ |
| u8 *desc = sensebuf + 8; |
| cmd_result &= ~(0xFF<<24); /* DRIVER_SENSE is not an error */ |
| |
| /* If we set cc then ATA pass-through will cause a |
| * check condition even if no error. Filter that. */ |
| if (cmd_result & SAM_STAT_CHECK_CONDITION) { |
| struct scsi_sense_hdr sshdr; |
| scsi_normalize_sense(sensebuf, SCSI_SENSE_BUFFERSIZE, |
| &sshdr); |
| if (sshdr.sense_key == 0 && |
| sshdr.asc == 0 && sshdr.ascq == 0) |
| cmd_result &= ~SAM_STAT_CHECK_CONDITION; |
| } |
| |
| /* Send userspace a few ATA registers (same as drivers/ide) */ |
| if (sensebuf[0] == 0x72 && /* format is "descriptor" */ |
| desc[0] == 0x09) { /* code is "ATA Descriptor" */ |
| args[0] = desc[13]; /* status */ |
| args[1] = desc[3]; /* error */ |
| args[2] = desc[5]; /* sector count (0:7) */ |
| if (copy_to_user(arg, args, sizeof(args))) |
| rc = -EFAULT; |
| } |
| } |
| |
| |
| if (cmd_result) { |
| rc = -EIO; |
| goto error; |
| } |
| |
| if ((argbuf) |
| && copy_to_user(arg + sizeof(args), argbuf, argsize)) |
| rc = -EFAULT; |
| error: |
| kfree(sensebuf); |
| kfree(argbuf); |
| return rc; |
| } |
| |
| /** |
| * ata_task_ioctl - Handler for HDIO_DRIVE_TASK ioctl |
| * @scsidev: Device to which we are issuing command |
| * @arg: User provided data for issuing command |
| * |
| * LOCKING: |
| * Defined by the SCSI layer. We don't really care. |
| * |
| * RETURNS: |
| * Zero on success, negative errno on error. |
| */ |
| int ata_task_ioctl(struct scsi_device *scsidev, void __user *arg) |
| { |
| int rc = 0; |
| u8 scsi_cmd[MAX_COMMAND_SIZE]; |
| u8 args[7], *sensebuf = NULL; |
| int cmd_result; |
| |
| if (arg == NULL) |
| return -EINVAL; |
| |
| if (copy_from_user(args, arg, sizeof(args))) |
| return -EFAULT; |
| |
| sensebuf = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); |
| if (!sensebuf) |
| return -ENOMEM; |
| |
| memset(scsi_cmd, 0, sizeof(scsi_cmd)); |
| scsi_cmd[0] = ATA_16; |
| scsi_cmd[1] = (3 << 1); /* Non-data */ |
| scsi_cmd[2] = 0x20; /* cc but no off.line or data xfer */ |
| scsi_cmd[4] = args[1]; |
| scsi_cmd[6] = args[2]; |
| scsi_cmd[8] = args[3]; |
| scsi_cmd[10] = args[4]; |
| scsi_cmd[12] = args[5]; |
| scsi_cmd[13] = args[6] & 0x4f; |
| scsi_cmd[14] = args[0]; |
| |
| /* Good values for timeout and retries? Values below |
| from scsi_ioctl_send_command() for default case... */ |
| cmd_result = scsi_execute(scsidev, scsi_cmd, DMA_NONE, NULL, 0, |
| sensebuf, (10*HZ), 5, 0, NULL); |
| |
| if (driver_byte(cmd_result) == DRIVER_SENSE) {/* sense data available */ |
| u8 *desc = sensebuf + 8; |
| cmd_result &= ~(0xFF<<24); /* DRIVER_SENSE is not an error */ |
| |
| /* If we set cc then ATA pass-through will cause a |
| * check condition even if no error. Filter that. */ |
| if (cmd_result & SAM_STAT_CHECK_CONDITION) { |
| struct scsi_sense_hdr sshdr; |
| scsi_normalize_sense(sensebuf, SCSI_SENSE_BUFFERSIZE, |
| &sshdr); |
| if (sshdr.sense_key == 0 && |
| sshdr.asc == 0 && sshdr.ascq == 0) |
| cmd_result &= ~SAM_STAT_CHECK_CONDITION; |
| } |
| |
| /* Send userspace ATA registers */ |
| if (sensebuf[0] == 0x72 && /* format is "descriptor" */ |
| desc[0] == 0x09) {/* code is "ATA Descriptor" */ |
| args[0] = desc[13]; /* status */ |
| args[1] = desc[3]; /* error */ |
| args[2] = desc[5]; /* sector count (0:7) */ |
| args[3] = desc[7]; /* lbal */ |
| args[4] = desc[9]; /* lbam */ |
| args[5] = desc[11]; /* lbah */ |
| args[6] = desc[12]; /* select */ |
| if (copy_to_user(arg, args, sizeof(args))) |
| rc = -EFAULT; |
| } |
| } |
| |
| if (cmd_result) { |
| rc = -EIO; |
| goto error; |
| } |
| |
| error: |
| kfree(sensebuf); |
| return rc; |
| } |
| |
| static int ata_ioc32(struct ata_port *ap) |
| { |
| if (ap->flags & ATA_FLAG_PIO_DMA) |
| return 1; |
| if (ap->pflags & ATA_PFLAG_PIO32) |
| return 1; |
| return 0; |
| } |
| |
| int ata_sas_scsi_ioctl(struct ata_port *ap, struct scsi_device *scsidev, |
| int cmd, void __user *arg) |
| { |
| int val = -EINVAL, rc = -EINVAL; |
| unsigned long flags; |
| |
| switch (cmd) { |
| case ATA_IOC_GET_IO32: |
| spin_lock_irqsave(ap->lock, flags); |
| val = ata_ioc32(ap); |
| spin_unlock_irqrestore(ap->lock, flags); |
| if (copy_to_user(arg, &val, 1)) |
| return -EFAULT; |
| return 0; |
| |
| case ATA_IOC_SET_IO32: |
| val = (unsigned long) arg; |
| rc = 0; |
| spin_lock_irqsave(ap->lock, flags); |
| if (ap->pflags & ATA_PFLAG_PIO32CHANGE) { |
| if (val) |
| ap->pflags |= ATA_PFLAG_PIO32; |
| else |
| ap->pflags &= ~ATA_PFLAG_PIO32; |
| } else { |
| if (val != ata_ioc32(ap)) |
| rc = -EINVAL; |
| } |
| spin_unlock_irqrestore(ap->lock, flags); |
| return rc; |
| |
| case HDIO_GET_IDENTITY: |
| return ata_get_identity(ap, scsidev, arg); |
| |
| case HDIO_DRIVE_CMD: |
| if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) |
| return -EACCES; |
| return ata_cmd_ioctl(scsidev, arg); |
| |
| case HDIO_DRIVE_TASK: |
| if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) |
| return -EACCES; |
| return ata_task_ioctl(scsidev, arg); |
| |
| default: |
| rc = -ENOTTY; |
| break; |
| } |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(ata_sas_scsi_ioctl); |
| |
| int ata_scsi_ioctl(struct scsi_device *scsidev, int cmd, void __user *arg) |
| { |
| return ata_sas_scsi_ioctl(ata_shost_to_port(scsidev->host), |
| scsidev, cmd, arg); |
| } |
| EXPORT_SYMBOL_GPL(ata_scsi_ioctl); |
| |
| /** |
| * ata_scsi_qc_new - acquire new ata_queued_cmd reference |
| * @dev: ATA device to which the new command is attached |
| * @cmd: SCSI command that originated this ATA command |
| * |
| * Obtain a reference to an unused ata_queued_cmd structure, |
| * which is the basic libata structure representing a single |
| * ATA command sent to the hardware. |
| * |
| * If a command was available, fill in the SCSI-specific |
| * portions of the structure with information on the |
| * current command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * Command allocated, or %NULL if none available. |
| */ |
| static struct ata_queued_cmd *ata_scsi_qc_new(struct ata_device *dev, |
| struct scsi_cmnd *cmd) |
| { |
| struct ata_queued_cmd *qc; |
| |
| qc = ata_qc_new_init(dev); |
| if (qc) { |
| qc->scsicmd = cmd; |
| qc->scsidone = cmd->scsi_done; |
| |
| qc->sg = scsi_sglist(cmd); |
| qc->n_elem = scsi_sg_count(cmd); |
| } else { |
| cmd->result = (DID_OK << 16) | (QUEUE_FULL << 1); |
| cmd->scsi_done(cmd); |
| } |
| |
| return qc; |
| } |
| |
| static void ata_qc_set_pc_nbytes(struct ata_queued_cmd *qc) |
| { |
| struct scsi_cmnd *scmd = qc->scsicmd; |
| |
| qc->extrabytes = scmd->request->extra_len; |
| qc->nbytes = scsi_bufflen(scmd) + qc->extrabytes; |
| } |
| |
| /** |
| * ata_dump_status - user friendly display of error info |
| * @id: id of the port in question |
| * @tf: ptr to filled out taskfile |
| * |
| * Decode and dump the ATA error/status registers for the user so |
| * that they have some idea what really happened at the non |
| * make-believe layer. |
| * |
| * LOCKING: |
| * inherited from caller |
| */ |
| static void ata_dump_status(unsigned id, struct ata_taskfile *tf) |
| { |
| u8 stat = tf->command, err = tf->feature; |
| |
| printk(KERN_WARNING "ata%u: status=0x%02x { ", id, stat); |
| if (stat & ATA_BUSY) { |
| printk("Busy }\n"); /* Data is not valid in this case */ |
| } else { |
| if (stat & 0x40) printk("DriveReady "); |
| if (stat & 0x20) printk("DeviceFault "); |
| if (stat & 0x10) printk("SeekComplete "); |
| if (stat & 0x08) printk("DataRequest "); |
| if (stat & 0x04) printk("CorrectedError "); |
| if (stat & 0x02) printk("Index "); |
| if (stat & 0x01) printk("Error "); |
| printk("}\n"); |
| |
| if (err) { |
| printk(KERN_WARNING "ata%u: error=0x%02x { ", id, err); |
| if (err & 0x04) printk("DriveStatusError "); |
| if (err & 0x80) { |
| if (err & 0x04) printk("BadCRC "); |
| else printk("Sector "); |
| } |
| if (err & 0x40) printk("UncorrectableError "); |
| if (err & 0x10) printk("SectorIdNotFound "); |
| if (err & 0x02) printk("TrackZeroNotFound "); |
| if (err & 0x01) printk("AddrMarkNotFound "); |
| printk("}\n"); |
| } |
| } |
| } |
| |
| /** |
| * ata_to_sense_error - convert ATA error to SCSI error |
| * @id: ATA device number |
| * @drv_stat: value contained in ATA status register |
| * @drv_err: value contained in ATA error register |
| * @sk: the sense key we'll fill out |
| * @asc: the additional sense code we'll fill out |
| * @ascq: the additional sense code qualifier we'll fill out |
| * @verbose: be verbose |
| * |
| * Converts an ATA error into a SCSI error. Fill out pointers to |
| * SK, ASC, and ASCQ bytes for later use in fixed or descriptor |
| * format sense blocks. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| static void ata_to_sense_error(unsigned id, u8 drv_stat, u8 drv_err, u8 *sk, |
| u8 *asc, u8 *ascq, int verbose) |
| { |
| int i; |
| |
| /* Based on the 3ware driver translation table */ |
| static const unsigned char sense_table[][4] = { |
| /* BBD|ECC|ID|MAR */ |
| {0xd1, ABORTED_COMMAND, 0x00, 0x00}, // Device busy Aborted command |
| /* BBD|ECC|ID */ |
| {0xd0, ABORTED_COMMAND, 0x00, 0x00}, // Device busy Aborted command |
| /* ECC|MC|MARK */ |
| {0x61, HARDWARE_ERROR, 0x00, 0x00}, // Device fault Hardware error |
| /* ICRC|ABRT */ /* NB: ICRC & !ABRT is BBD */ |
| {0x84, ABORTED_COMMAND, 0x47, 0x00}, // Data CRC error SCSI parity error |
| /* MC|ID|ABRT|TRK0|MARK */ |
| {0x37, NOT_READY, 0x04, 0x00}, // Unit offline Not ready |
| /* MCR|MARK */ |
| {0x09, NOT_READY, 0x04, 0x00}, // Unrecovered disk error Not ready |
| /* Bad address mark */ |
| {0x01, MEDIUM_ERROR, 0x13, 0x00}, // Address mark not found Address mark not found for data field |
| /* TRK0 */ |
| {0x02, HARDWARE_ERROR, 0x00, 0x00}, // Track 0 not found Hardware error |
| /* Abort & !ICRC */ |
| {0x04, ABORTED_COMMAND, 0x00, 0x00}, // Aborted command Aborted command |
| /* Media change request */ |
| {0x08, NOT_READY, 0x04, 0x00}, // Media change request FIXME: faking offline |
| /* SRV */ |
| {0x10, ABORTED_COMMAND, 0x14, 0x00}, // ID not found Recorded entity not found |
| /* Media change */ |
| {0x08, NOT_READY, 0x04, 0x00}, // Media change FIXME: faking offline |
| /* ECC */ |
| {0x40, MEDIUM_ERROR, 0x11, 0x04}, // Uncorrectable ECC error Unrecovered read error |
| /* BBD - block marked bad */ |
| {0x80, MEDIUM_ERROR, 0x11, 0x04}, // Block marked bad Medium error, unrecovered read error |
| {0xFF, 0xFF, 0xFF, 0xFF}, // END mark |
| }; |
| static const unsigned char stat_table[][4] = { |
| /* Must be first because BUSY means no other bits valid */ |
| {0x80, ABORTED_COMMAND, 0x47, 0x00}, // Busy, fake parity for now |
| {0x20, HARDWARE_ERROR, 0x00, 0x00}, // Device fault |
| {0x08, ABORTED_COMMAND, 0x47, 0x00}, // Timed out in xfer, fake parity for now |
| {0x04, RECOVERED_ERROR, 0x11, 0x00}, // Recovered ECC error Medium error, recovered |
| {0xFF, 0xFF, 0xFF, 0xFF}, // END mark |
| }; |
| |
| /* |
| * Is this an error we can process/parse |
| */ |
| if (drv_stat & ATA_BUSY) { |
| drv_err = 0; /* Ignore the err bits, they're invalid */ |
| } |
| |
| if (drv_err) { |
| /* Look for drv_err */ |
| for (i = 0; sense_table[i][0] != 0xFF; i++) { |
| /* Look for best matches first */ |
| if ((sense_table[i][0] & drv_err) == |
| sense_table[i][0]) { |
| *sk = sense_table[i][1]; |
| *asc = sense_table[i][2]; |
| *ascq = sense_table[i][3]; |
| goto translate_done; |
| } |
| } |
| /* No immediate match */ |
| if (verbose) |
| printk(KERN_WARNING "ata%u: no sense translation for " |
| "error 0x%02x\n", id, drv_err); |
| } |
| |
| /* Fall back to interpreting status bits */ |
| for (i = 0; stat_table[i][0] != 0xFF; i++) { |
| if (stat_table[i][0] & drv_stat) { |
| *sk = stat_table[i][1]; |
| *asc = stat_table[i][2]; |
| *ascq = stat_table[i][3]; |
| goto translate_done; |
| } |
| } |
| /* No error? Undecoded? */ |
| if (verbose) |
| printk(KERN_WARNING "ata%u: no sense translation for " |
| "status: 0x%02x\n", id, drv_stat); |
| |
| /* We need a sensible error return here, which is tricky, and one |
| that won't cause people to do things like return a disk wrongly */ |
| *sk = ABORTED_COMMAND; |
| *asc = 0x00; |
| *ascq = 0x00; |
| |
| translate_done: |
| if (verbose) |
| printk(KERN_ERR "ata%u: translated ATA stat/err 0x%02x/%02x " |
| "to SCSI SK/ASC/ASCQ 0x%x/%02x/%02x\n", |
| id, drv_stat, drv_err, *sk, *asc, *ascq); |
| return; |
| } |
| |
| /* |
| * ata_gen_passthru_sense - Generate check condition sense block. |
| * @qc: Command that completed. |
| * |
| * This function is specific to the ATA descriptor format sense |
| * block specified for the ATA pass through commands. Regardless |
| * of whether the command errored or not, return a sense |
| * block. Copy all controller registers into the sense |
| * block. Clear sense key, ASC & ASCQ if there is no error. |
| * |
| * LOCKING: |
| * None. |
| */ |
| static void ata_gen_passthru_sense(struct ata_queued_cmd *qc) |
| { |
| struct scsi_cmnd *cmd = qc->scsicmd; |
| struct ata_taskfile *tf = &qc->result_tf; |
| unsigned char *sb = cmd->sense_buffer; |
| unsigned char *desc = sb + 8; |
| int verbose = qc->ap->ops->error_handler == NULL; |
| |
| memset(sb, 0, SCSI_SENSE_BUFFERSIZE); |
| |
| cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION; |
| |
| /* |
| * Use ata_to_sense_error() to map status register bits |
| * onto sense key, asc & ascq. |
| */ |
| if (qc->err_mask || |
| tf->command & (ATA_BUSY | ATA_DF | ATA_ERR | ATA_DRQ)) { |
| ata_to_sense_error(qc->ap->print_id, tf->command, tf->feature, |
| &sb[1], &sb[2], &sb[3], verbose); |
| sb[1] &= 0x0f; |
| } |
| |
| /* |
| * Sense data is current and format is descriptor. |
| */ |
| sb[0] = 0x72; |
| |
| desc[0] = 0x09; |
| |
| /* set length of additional sense data */ |
| sb[7] = 14; |
| desc[1] = 12; |
| |
| /* |
| * Copy registers into sense buffer. |
| */ |
| desc[2] = 0x00; |
| desc[3] = tf->feature; /* == error reg */ |
| desc[5] = tf->nsect; |
| desc[7] = tf->lbal; |
| desc[9] = tf->lbam; |
| desc[11] = tf->lbah; |
| desc[12] = tf->device; |
| desc[13] = tf->command; /* == status reg */ |
| |
| /* |
| * Fill in Extend bit, and the high order bytes |
| * if applicable. |
| */ |
| if (tf->flags & ATA_TFLAG_LBA48) { |
| desc[2] |= 0x01; |
| desc[4] = tf->hob_nsect; |
| desc[6] = tf->hob_lbal; |
| desc[8] = tf->hob_lbam; |
| desc[10] = tf->hob_lbah; |
| } |
| } |
| |
| /** |
| * ata_gen_ata_sense - generate a SCSI fixed sense block |
| * @qc: Command that we are erroring out |
| * |
| * Generate sense block for a failed ATA command @qc. Descriptor |
| * format is used to accommodate LBA48 block address. |
| * |
| * LOCKING: |
| * None. |
| */ |
| static void ata_gen_ata_sense(struct ata_queued_cmd *qc) |
| { |
| struct ata_device *dev = qc->dev; |
| struct scsi_cmnd *cmd = qc->scsicmd; |
| struct ata_taskfile *tf = &qc->result_tf; |
| unsigned char *sb = cmd->sense_buffer; |
| unsigned char *desc = sb + 8; |
| int verbose = qc->ap->ops->error_handler == NULL; |
| u64 block; |
| |
| memset(sb, 0, SCSI_SENSE_BUFFERSIZE); |
| |
| cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION; |
| |
| /* sense data is current and format is descriptor */ |
| sb[0] = 0x72; |
| |
| /* Use ata_to_sense_error() to map status register bits |
| * onto sense key, asc & ascq. |
| */ |
| if (qc->err_mask || |
| tf->command & (ATA_BUSY | ATA_DF | ATA_ERR | ATA_DRQ)) { |
| ata_to_sense_error(qc->ap->print_id, tf->command, tf->feature, |
| &sb[1], &sb[2], &sb[3], verbose); |
| sb[1] &= 0x0f; |
| } |
| |
| block = ata_tf_read_block(&qc->result_tf, dev); |
| |
| /* information sense data descriptor */ |
| sb[7] = 12; |
| desc[0] = 0x00; |
| desc[1] = 10; |
| |
| desc[2] |= 0x80; /* valid */ |
| desc[6] = block >> 40; |
| desc[7] = block >> 32; |
| desc[8] = block >> 24; |
| desc[9] = block >> 16; |
| desc[10] = block >> 8; |
| desc[11] = block; |
| } |
| |
| static void ata_scsi_sdev_config(struct scsi_device *sdev) |
| { |
| sdev->use_10_for_rw = 1; |
| sdev->use_10_for_ms = 1; |
| |
| /* Schedule policy is determined by ->qc_defer() callback and |
| * it needs to see every deferred qc. Set dev_blocked to 1 to |
| * prevent SCSI midlayer from automatically deferring |
| * requests. |
| */ |
| sdev->max_device_blocked = 1; |
| } |
| |
| /** |
| * atapi_drain_needed - Check whether data transfer may overflow |
| * @rq: request to be checked |
| * |
| * ATAPI commands which transfer variable length data to host |
| * might overflow due to application error or hardare bug. This |
| * function checks whether overflow should be drained and ignored |
| * for @request. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * 1 if ; otherwise, 0. |
| */ |
| static int atapi_drain_needed(struct request *rq) |
| { |
| if (likely(rq->cmd_type != REQ_TYPE_BLOCK_PC)) |
| return 0; |
| |
| if (!blk_rq_bytes(rq) || (rq->cmd_flags & REQ_WRITE)) |
| return 0; |
| |
| return atapi_cmd_type(rq->cmd[0]) == ATAPI_MISC; |
| } |
| |
| static int ata_scsi_dev_config(struct scsi_device *sdev, |
| struct ata_device *dev) |
| { |
| struct request_queue *q = sdev->request_queue; |
| |
| if (!ata_id_has_unload(dev->id)) |
| dev->flags |= ATA_DFLAG_NO_UNLOAD; |
| |
| /* configure max sectors */ |
| blk_queue_max_hw_sectors(q, dev->max_sectors); |
| |
| if (dev->class == ATA_DEV_ATAPI) { |
| void *buf; |
| |
| sdev->sector_size = ATA_SECT_SIZE; |
| |
| /* set DMA padding */ |
| blk_queue_update_dma_pad(q, ATA_DMA_PAD_SZ - 1); |
| |
| /* configure draining */ |
| buf = kmalloc(ATAPI_MAX_DRAIN, q->bounce_gfp | GFP_KERNEL); |
| if (!buf) { |
| ata_dev_err(dev, "drain buffer allocation failed\n"); |
| return -ENOMEM; |
| } |
| |
| blk_queue_dma_drain(q, atapi_drain_needed, buf, ATAPI_MAX_DRAIN); |
| } else { |
| sdev->sector_size = ata_id_logical_sector_size(dev->id); |
| sdev->manage_start_stop = 1; |
| } |
| |
| /* |
| * ata_pio_sectors() expects buffer for each sector to not cross |
| * page boundary. Enforce it by requiring buffers to be sector |
| * aligned, which works iff sector_size is not larger than |
| * PAGE_SIZE. ATAPI devices also need the alignment as |
| * IDENTIFY_PACKET is executed as ATA_PROT_PIO. |
| */ |
| if (sdev->sector_size > PAGE_SIZE) |
| ata_dev_warn(dev, |
| "sector_size=%u > PAGE_SIZE, PIO may malfunction\n", |
| sdev->sector_size); |
| |
| blk_queue_update_dma_alignment(q, sdev->sector_size - 1); |
| |
| if (dev->flags & ATA_DFLAG_AN) |
| set_bit(SDEV_EVT_MEDIA_CHANGE, sdev->supported_events); |
| |
| if (dev->flags & ATA_DFLAG_NCQ) { |
| int depth; |
| |
| depth = min(sdev->host->can_queue, ata_id_queue_depth(dev->id)); |
| depth = min(ATA_MAX_QUEUE - 1, depth); |
| scsi_adjust_queue_depth(sdev, MSG_SIMPLE_TAG, depth); |
| } |
| |
| blk_queue_flush_queueable(q, false); |
| |
| dev->sdev = sdev; |
| return 0; |
| } |
| |
| /** |
| * ata_scsi_slave_config - Set SCSI device attributes |
| * @sdev: SCSI device to examine |
| * |
| * This is called before we actually start reading |
| * and writing to the device, to configure certain |
| * SCSI mid-layer behaviors. |
| * |
| * LOCKING: |
| * Defined by SCSI layer. We don't really care. |
| */ |
| |
| int ata_scsi_slave_config(struct scsi_device *sdev) |
| { |
| struct ata_port *ap = ata_shost_to_port(sdev->host); |
| struct ata_device *dev = __ata_scsi_find_dev(ap, sdev); |
| int rc = 0; |
| |
| ata_scsi_sdev_config(sdev); |
| |
| if (dev) |
| rc = ata_scsi_dev_config(sdev, dev); |
| |
| return rc; |
| } |
| |
| /** |
| * ata_scsi_slave_destroy - SCSI device is about to be destroyed |
| * @sdev: SCSI device to be destroyed |
| * |
| * @sdev is about to be destroyed for hot/warm unplugging. If |
| * this unplugging was initiated by libata as indicated by NULL |
| * dev->sdev, this function doesn't have to do anything. |
| * Otherwise, SCSI layer initiated warm-unplug is in progress. |
| * Clear dev->sdev, schedule the device for ATA detach and invoke |
| * EH. |
| * |
| * LOCKING: |
| * Defined by SCSI layer. We don't really care. |
| */ |
| void ata_scsi_slave_destroy(struct scsi_device *sdev) |
| { |
| struct ata_port *ap = ata_shost_to_port(sdev->host); |
| struct request_queue *q = sdev->request_queue; |
| unsigned long flags; |
| struct ata_device *dev; |
| |
| if (!ap->ops->error_handler) |
| return; |
| |
| spin_lock_irqsave(ap->lock, flags); |
| dev = __ata_scsi_find_dev(ap, sdev); |
| if (dev && dev->sdev) { |
| /* SCSI device already in CANCEL state, no need to offline it */ |
| dev->sdev = NULL; |
| dev->flags |= ATA_DFLAG_DETACH; |
| ata_port_schedule_eh(ap); |
| } |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| kfree(q->dma_drain_buffer); |
| q->dma_drain_buffer = NULL; |
| q->dma_drain_size = 0; |
| } |
| |
| /** |
| * __ata_change_queue_depth - helper for ata_scsi_change_queue_depth |
| * @ap: ATA port to which the device change the queue depth |
| * @sdev: SCSI device to configure queue depth for |
| * @queue_depth: new queue depth |
| * @reason: calling context |
| * |
| * libsas and libata have different approaches for associating a sdev to |
| * its ata_port. |
| * |
| */ |
| int __ata_change_queue_depth(struct ata_port *ap, struct scsi_device *sdev, |
| int queue_depth, int reason) |
| { |
| struct ata_device *dev; |
| unsigned long flags; |
| |
| if (reason != SCSI_QDEPTH_DEFAULT) |
| return -EOPNOTSUPP; |
| |
| if (queue_depth < 1 || queue_depth == sdev->queue_depth) |
| return sdev->queue_depth; |
| |
| dev = ata_scsi_find_dev(ap, sdev); |
| if (!dev || !ata_dev_enabled(dev)) |
| return sdev->queue_depth; |
| |
| /* NCQ enabled? */ |
| spin_lock_irqsave(ap->lock, flags); |
| dev->flags &= ~ATA_DFLAG_NCQ_OFF; |
| if (queue_depth == 1 || !ata_ncq_enabled(dev)) { |
| dev->flags |= ATA_DFLAG_NCQ_OFF; |
| queue_depth = 1; |
| } |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| /* limit and apply queue depth */ |
| queue_depth = min(queue_depth, sdev->host->can_queue); |
| queue_depth = min(queue_depth, ata_id_queue_depth(dev->id)); |
| queue_depth = min(queue_depth, ATA_MAX_QUEUE - 1); |
| |
| if (sdev->queue_depth == queue_depth) |
| return -EINVAL; |
| |
| scsi_adjust_queue_depth(sdev, MSG_SIMPLE_TAG, queue_depth); |
| return queue_depth; |
| } |
| |
| /** |
| * ata_scsi_change_queue_depth - SCSI callback for queue depth config |
| * @sdev: SCSI device to configure queue depth for |
| * @queue_depth: new queue depth |
| * @reason: calling context |
| * |
| * This is libata standard hostt->change_queue_depth callback. |
| * SCSI will call into this callback when user tries to set queue |
| * depth via sysfs. |
| * |
| * LOCKING: |
| * SCSI layer (we don't care) |
| * |
| * RETURNS: |
| * Newly configured queue depth. |
| */ |
| int ata_scsi_change_queue_depth(struct scsi_device *sdev, int queue_depth, |
| int reason) |
| { |
| struct ata_port *ap = ata_shost_to_port(sdev->host); |
| |
| return __ata_change_queue_depth(ap, sdev, queue_depth, reason); |
| } |
| |
| /** |
| * ata_scsi_start_stop_xlat - Translate SCSI START STOP UNIT command |
| * @qc: Storage for translated ATA taskfile |
| * |
| * Sets up an ATA taskfile to issue STANDBY (to stop) or READ VERIFY |
| * (to start). Perhaps these commands should be preceded by |
| * CHECK POWER MODE to see what power mode the device is already in. |
| * [See SAT revision 5 at www.t10.org] |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * Zero on success, non-zero on error. |
| */ |
| static unsigned int ata_scsi_start_stop_xlat(struct ata_queued_cmd *qc) |
| { |
| struct scsi_cmnd *scmd = qc->scsicmd; |
| struct ata_taskfile *tf = &qc->tf; |
| const u8 *cdb = scmd->cmnd; |
| |
| if (scmd->cmd_len < 5) |
| goto invalid_fld; |
| |
| tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; |
| tf->protocol = ATA_PROT_NODATA; |
| if (cdb[1] & 0x1) { |
| ; /* ignore IMMED bit, violates sat-r05 */ |
| } |
| if (cdb[4] & 0x2) |
| goto invalid_fld; /* LOEJ bit set not supported */ |
| if (((cdb[4] >> 4) & 0xf) != 0) |
| goto invalid_fld; /* power conditions not supported */ |
| |
| if (cdb[4] & 0x1) { |
| tf->nsect = 1; /* 1 sector, lba=0 */ |
| |
| if (qc->dev->flags & ATA_DFLAG_LBA) { |
| tf->flags |= ATA_TFLAG_LBA; |
| |
| tf->lbah = 0x0; |
| tf->lbam = 0x0; |
| tf->lbal = 0x0; |
| tf->device |= ATA_LBA; |
| } else { |
| /* CHS */ |
| tf->lbal = 0x1; /* sect */ |
| tf->lbam = 0x0; /* cyl low */ |
| tf->lbah = 0x0; /* cyl high */ |
| } |
| |
| tf->command = ATA_CMD_VERIFY; /* READ VERIFY */ |
| } else { |
| /* Some odd clown BIOSen issue spindown on power off (ACPI S4 |
| * or S5) causing some drives to spin up and down again. |
| */ |
| if ((qc->ap->flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) && |
| system_state == SYSTEM_POWER_OFF) |
| goto skip; |
| |
| if ((qc->ap->flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) && |
| system_entering_hibernation()) |
| goto skip; |
| |
| /* Issue ATA STANDBY IMMEDIATE command */ |
| tf->command = ATA_CMD_STANDBYNOW1; |
| } |
| |
| /* |
| * Standby and Idle condition timers could be implemented but that |
| * would require libata to implement the Power condition mode page |
| * and allow the user to change it. Changing mode pages requires |
| * MODE SELECT to be implemented. |
| */ |
| |
| return 0; |
| |
| invalid_fld: |
| ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x24, 0x0); |
| /* "Invalid field in cbd" */ |
| return 1; |
| skip: |
| scmd->result = SAM_STAT_GOOD; |
| return 1; |
| } |
| |
| |
| /** |
| * ata_scsi_flush_xlat - Translate SCSI SYNCHRONIZE CACHE command |
| * @qc: Storage for translated ATA taskfile |
| * |
| * Sets up an ATA taskfile to issue FLUSH CACHE or |
| * FLUSH CACHE EXT. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * Zero on success, non-zero on error. |
| */ |
| static unsigned int ata_scsi_flush_xlat(struct ata_queued_cmd *qc) |
| { |
| struct ata_taskfile *tf = &qc->tf; |
| |
| tf->flags |= ATA_TFLAG_DEVICE; |
| tf->protocol = ATA_PROT_NODATA; |
| |
| if (qc->dev->flags & ATA_DFLAG_FLUSH_EXT) |
| tf->command = ATA_CMD_FLUSH_EXT; |
| else |
| tf->command = ATA_CMD_FLUSH; |
| |
| /* flush is critical for IO integrity, consider it an IO command */ |
| qc->flags |= ATA_QCFLAG_IO; |
| |
| return 0; |
| } |
| |
| /** |
| * scsi_6_lba_len - Get LBA and transfer length |
| * @cdb: SCSI command to translate |
| * |
| * Calculate LBA and transfer length for 6-byte commands. |
| * |
| * RETURNS: |
| * @plba: the LBA |
| * @plen: the transfer length |
| */ |
| static void scsi_6_lba_len(const u8 *cdb, u64 *plba, u32 *plen) |
| { |
| u64 lba = 0; |
| u32 len; |
| |
| VPRINTK("six-byte command\n"); |
| |
| lba |= ((u64)(cdb[1] & 0x1f)) << 16; |
| lba |= ((u64)cdb[2]) << 8; |
| lba |= ((u64)cdb[3]); |
| |
| len = cdb[4]; |
| |
| *plba = lba; |
| *plen = len; |
| } |
| |
| /** |
| * scsi_10_lba_len - Get LBA and transfer length |
| * @cdb: SCSI command to translate |
| * |
| * Calculate LBA and transfer length for 10-byte commands. |
| * |
| * RETURNS: |
| * @plba: the LBA |
| * @plen: the transfer length |
| */ |
| static void scsi_10_lba_len(const u8 *cdb, u64 *plba, u32 *plen) |
| { |
| u64 lba = 0; |
| u32 len = 0; |
| |
| VPRINTK("ten-byte command\n"); |
| |
| lba |= ((u64)cdb[2]) << 24; |
| lba |= ((u64)cdb[3]) << 16; |
| lba |= ((u64)cdb[4]) << 8; |
| lba |= ((u64)cdb[5]); |
| |
| len |= ((u32)cdb[7]) << 8; |
| len |= ((u32)cdb[8]); |
| |
| *plba = lba; |
| *plen = len; |
| } |
| |
| /** |
| * scsi_16_lba_len - Get LBA and transfer length |
| * @cdb: SCSI command to translate |
| * |
| * Calculate LBA and transfer length for 16-byte commands. |
| * |
| * RETURNS: |
| * @plba: the LBA |
| * @plen: the transfer length |
| */ |
| static void scsi_16_lba_len(const u8 *cdb, u64 *plba, u32 *plen) |
| { |
| u64 lba = 0; |
| u32 len = 0; |
| |
| VPRINTK("sixteen-byte command\n"); |
| |
| lba |= ((u64)cdb[2]) << 56; |
| lba |= ((u64)cdb[3]) << 48; |
| lba |= ((u64)cdb[4]) << 40; |
| lba |= ((u64)cdb[5]) << 32; |
| lba |= ((u64)cdb[6]) << 24; |
| lba |= ((u64)cdb[7]) << 16; |
| lba |= ((u64)cdb[8]) << 8; |
| lba |= ((u64)cdb[9]); |
| |
| len |= ((u32)cdb[10]) << 24; |
| len |= ((u32)cdb[11]) << 16; |
| len |= ((u32)cdb[12]) << 8; |
| len |= ((u32)cdb[13]); |
| |
| *plba = lba; |
| *plen = len; |
| } |
| |
| /** |
| * ata_scsi_verify_xlat - Translate SCSI VERIFY command into an ATA one |
| * @qc: Storage for translated ATA taskfile |
| * |
| * Converts SCSI VERIFY command to an ATA READ VERIFY command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * Zero on success, non-zero on error. |
| */ |
| static unsigned int ata_scsi_verify_xlat(struct ata_queued_cmd *qc) |
| { |
| struct scsi_cmnd *scmd = qc->scsicmd; |
| struct ata_taskfile *tf = &qc->tf; |
| struct ata_device *dev = qc->dev; |
| u64 dev_sectors = qc->dev->n_sectors; |
| const u8 *cdb = scmd->cmnd; |
| u64 block; |
| u32 n_block; |
| |
| tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; |
| tf->protocol = ATA_PROT_NODATA; |
| |
| if (cdb[0] == VERIFY) { |
| if (scmd->cmd_len < 10) |
| goto invalid_fld; |
| scsi_10_lba_len(cdb, &block, &n_block); |
| } else if (cdb[0] == VERIFY_16) { |
| if (scmd->cmd_len < 16) |
| goto invalid_fld; |
| scsi_16_lba_len(cdb, &block, &n_block); |
| } else |
| goto invalid_fld; |
| |
| if (!n_block) |
| goto nothing_to_do; |
| if (block >= dev_sectors) |
| goto out_of_range; |
| if ((block + n_block) > dev_sectors) |
| goto out_of_range; |
| |
| if (dev->flags & ATA_DFLAG_LBA) { |
| tf->flags |= ATA_TFLAG_LBA; |
| |
| if (lba_28_ok(block, n_block)) { |
| /* use LBA28 */ |
| tf->command = ATA_CMD_VERIFY; |
| tf->device |= (block >> 24) & 0xf; |
| } else if (lba_48_ok(block, n_block)) { |
| if (!(dev->flags & ATA_DFLAG_LBA48)) |
| goto out_of_range; |
| |
| /* use LBA48 */ |
| tf->flags |= ATA_TFLAG_LBA48; |
| tf->command = ATA_CMD_VERIFY_EXT; |
| |
| tf->hob_nsect = (n_block >> 8) & 0xff; |
| |
| tf->hob_lbah = (block >> 40) & 0xff; |
| tf->hob_lbam = (block >> 32) & 0xff; |
| tf->hob_lbal = (block >> 24) & 0xff; |
| } else |
| /* request too large even for LBA48 */ |
| goto out_of_range; |
| |
| tf->nsect = n_block & 0xff; |
| |
| tf->lbah = (block >> 16) & 0xff; |
| tf->lbam = (block >> 8) & 0xff; |
| tf->lbal = block & 0xff; |
| |
| tf->device |= ATA_LBA; |
| } else { |
| /* CHS */ |
| u32 sect, head, cyl, track; |
| |
| if (!lba_28_ok(block, n_block)) |
| goto out_of_range; |
| |
| /* Convert LBA to CHS */ |
| track = (u32)block / dev->sectors; |
| cyl = track / dev->heads; |
| head = track % dev->heads; |
| sect = (u32)block % dev->sectors + 1; |
| |
| DPRINTK("block %u track %u cyl %u head %u sect %u\n", |
| (u32)block, track, cyl, head, sect); |
| |
| /* Check whether the converted CHS can fit. |
| Cylinder: 0-65535 |
| Head: 0-15 |
| Sector: 1-255*/ |
| if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) |
| goto out_of_range; |
| |
| tf->command = ATA_CMD_VERIFY; |
| tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ |
| tf->lbal = sect; |
| tf->lbam = cyl; |
| tf->lbah = cyl >> 8; |
| tf->device |= head; |
| } |
| |
| return 0; |
| |
| invalid_fld: |
| ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x24, 0x0); |
| /* "Invalid field in cbd" */ |
| return 1; |
| |
| out_of_range: |
| ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x21, 0x0); |
| /* "Logical Block Address out of range" */ |
| return 1; |
| |
| nothing_to_do: |
| scmd->result = SAM_STAT_GOOD; |
| return 1; |
| } |
| |
| /** |
| * ata_scsi_rw_xlat - Translate SCSI r/w command into an ATA one |
| * @qc: Storage for translated ATA taskfile |
| * |
| * Converts any of six SCSI read/write commands into the |
| * ATA counterpart, including starting sector (LBA), |
| * sector count, and taking into account the device's LBA48 |
| * support. |
| * |
| * Commands %READ_6, %READ_10, %READ_16, %WRITE_6, %WRITE_10, and |
| * %WRITE_16 are currently supported. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * Zero on success, non-zero on error. |
| */ |
| static unsigned int ata_scsi_rw_xlat(struct ata_queued_cmd *qc) |
| { |
| struct scsi_cmnd *scmd = qc->scsicmd; |
| const u8 *cdb = scmd->cmnd; |
| unsigned int tf_flags = 0; |
| u64 block; |
| u32 n_block; |
| int rc; |
| |
| if (cdb[0] == WRITE_10 || cdb[0] == WRITE_6 || cdb[0] == WRITE_16) |
| tf_flags |= ATA_TFLAG_WRITE; |
| |
| /* Calculate the SCSI LBA, transfer length and FUA. */ |
| switch (cdb[0]) { |
| case READ_10: |
| case WRITE_10: |
| if (unlikely(scmd->cmd_len < 10)) |
| goto invalid_fld; |
| scsi_10_lba_len(cdb, &block, &n_block); |
| if (unlikely(cdb[1] & (1 << 3))) |
| tf_flags |= ATA_TFLAG_FUA; |
| break; |
| case READ_6: |
| case WRITE_6: |
| if (unlikely(scmd->cmd_len < 6)) |
| goto invalid_fld; |
| scsi_6_lba_len(cdb, &block, &n_block); |
| |
| /* for 6-byte r/w commands, transfer length 0 |
| * means 256 blocks of data, not 0 block. |
| */ |
| if (!n_block) |
| n_block = 256; |
| break; |
| case READ_16: |
| case WRITE_16: |
| if (unlikely(scmd->cmd_len < 16)) |
| goto invalid_fld; |
| scsi_16_lba_len(cdb, &block, &n_block); |
| if (unlikely(cdb[1] & (1 << 3))) |
| tf_flags |= ATA_TFLAG_FUA; |
| break; |
| default: |
| DPRINTK("no-byte command\n"); |
| goto invalid_fld; |
| } |
| |
| /* Check and compose ATA command */ |
| if (!n_block) |
| /* For 10-byte and 16-byte SCSI R/W commands, transfer |
| * length 0 means transfer 0 block of data. |
| * However, for ATA R/W commands, sector count 0 means |
| * 256 or 65536 sectors, not 0 sectors as in SCSI. |
| * |
| * WARNING: one or two older ATA drives treat 0 as 0... |
| */ |
| goto nothing_to_do; |
| |
| qc->flags |= ATA_QCFLAG_IO; |
| qc->nbytes = n_block * scmd->device->sector_size; |
| |
| rc = ata_build_rw_tf(&qc->tf, qc->dev, block, n_block, tf_flags, |
| qc->tag); |
| if (likely(rc == 0)) |
| return 0; |
| |
| if (rc == -ERANGE) |
| goto out_of_range; |
| /* treat all other errors as -EINVAL, fall through */ |
| invalid_fld: |
| ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x24, 0x0); |
| /* "Invalid field in cbd" */ |
| return 1; |
| |
| out_of_range: |
| ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x21, 0x0); |
| /* "Logical Block Address out of range" */ |
| return 1; |
| |
| nothing_to_do: |
| scmd->result = SAM_STAT_GOOD; |
| return 1; |
| } |
| |
| static void ata_scsi_qc_complete(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct scsi_cmnd *cmd = qc->scsicmd; |
| u8 *cdb = cmd->cmnd; |
| int need_sense = (qc->err_mask != 0); |
| |
| /* For ATA pass thru (SAT) commands, generate a sense block if |
| * user mandated it or if there's an error. Note that if we |
| * generate because the user forced us to, a check condition |
| * is generated and the ATA register values are returned |
| * whether the command completed successfully or not. If there |
| * was no error, SK, ASC and ASCQ will all be zero. |
| */ |
| if (((cdb[0] == ATA_16) || (cdb[0] == ATA_12)) && |
| ((cdb[2] & 0x20) || need_sense)) { |
| ata_gen_passthru_sense(qc); |
| } else { |
| if (!need_sense) { |
| cmd->result = SAM_STAT_GOOD; |
| } else { |
| /* TODO: decide which descriptor format to use |
| * for 48b LBA devices and call that here |
| * instead of the fixed desc, which is only |
| * good for smaller LBA (and maybe CHS?) |
| * devices. |
| */ |
| ata_gen_ata_sense(qc); |
| } |
| } |
| |
| if (need_sense && !ap->ops->error_handler) |
| ata_dump_status(ap->print_id, &qc->result_tf); |
| |
| qc->scsidone(cmd); |
| |
| ata_qc_free(qc); |
| } |
| |
| /** |
| * ata_scsi_translate - Translate then issue SCSI command to ATA device |
| * @dev: ATA device to which the command is addressed |
| * @cmd: SCSI command to execute |
| * @xlat_func: Actor which translates @cmd to an ATA taskfile |
| * |
| * Our ->queuecommand() function has decided that the SCSI |
| * command issued can be directly translated into an ATA |
| * command, rather than handled internally. |
| * |
| * This function sets up an ata_queued_cmd structure for the |
| * SCSI command, and sends that ata_queued_cmd to the hardware. |
| * |
| * The xlat_func argument (actor) returns 0 if ready to execute |
| * ATA command, else 1 to finish translation. If 1 is returned |
| * then cmd->result (and possibly cmd->sense_buffer) are assumed |
| * to be set reflecting an error condition or clean (early) |
| * termination. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * 0 on success, SCSI_ML_QUEUE_DEVICE_BUSY if the command |
| * needs to be deferred. |
| */ |
| static int ata_scsi_translate(struct ata_device *dev, struct scsi_cmnd *cmd, |
| ata_xlat_func_t xlat_func) |
| { |
| struct ata_port *ap = dev->link->ap; |
| struct ata_queued_cmd *qc; |
| int rc; |
| |
| VPRINTK("ENTER\n"); |
| |
| qc = ata_scsi_qc_new(dev, cmd); |
| if (!qc) |
| goto err_mem; |
| |
| /* data is present; dma-map it */ |
| if (cmd->sc_data_direction == DMA_FROM_DEVICE || |
| cmd->sc_data_direction == DMA_TO_DEVICE) { |
| if (unlikely(scsi_bufflen(cmd) < 1)) { |
| ata_dev_warn(dev, "WARNING: zero len r/w req\n"); |
| goto err_did; |
| } |
| |
| ata_sg_init(qc, scsi_sglist(cmd), scsi_sg_count(cmd)); |
| |
| qc->dma_dir = cmd->sc_data_direction; |
| } |
| |
| qc->complete_fn = ata_scsi_qc_complete; |
| |
| if (xlat_func(qc)) |
| goto early_finish; |
| |
| if (ap->ops->qc_defer) { |
| if ((rc = ap->ops->qc_defer(qc))) |
| goto defer; |
| } |
| |
| /* select device, send command to hardware */ |
| ata_qc_issue(qc); |
| |
| VPRINTK("EXIT\n"); |
| return 0; |
| |
| early_finish: |
| ata_qc_free(qc); |
| cmd->scsi_done(cmd); |
| DPRINTK("EXIT - early finish (good or error)\n"); |
| return 0; |
| |
| err_did: |
| ata_qc_free(qc); |
| cmd->result = (DID_ERROR << 16); |
| cmd->scsi_done(cmd); |
| err_mem: |
| DPRINTK("EXIT - internal\n"); |
| return 0; |
| |
| defer: |
| ata_qc_free(qc); |
| DPRINTK("EXIT - defer\n"); |
| if (rc == ATA_DEFER_LINK) |
| return SCSI_MLQUEUE_DEVICE_BUSY; |
| else |
| return SCSI_MLQUEUE_HOST_BUSY; |
| } |
| |
| /** |
| * ata_scsi_rbuf_get - Map response buffer. |
| * @cmd: SCSI command containing buffer to be mapped. |
| * @flags: unsigned long variable to store irq enable status |
| * @copy_in: copy in from user buffer |
| * |
| * Prepare buffer for simulated SCSI commands. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(ata_scsi_rbuf_lock) on success |
| * |
| * RETURNS: |
| * Pointer to response buffer. |
| */ |
| static void *ata_scsi_rbuf_get(struct scsi_cmnd *cmd, bool copy_in, |
| unsigned long *flags) |
| { |
| spin_lock_irqsave(&ata_scsi_rbuf_lock, *flags); |
| |
| memset(ata_scsi_rbuf, 0, ATA_SCSI_RBUF_SIZE); |
| if (copy_in) |
| sg_copy_to_buffer(scsi_sglist(cmd), scsi_sg_count(cmd), |
| ata_scsi_rbuf, ATA_SCSI_RBUF_SIZE); |
| return ata_scsi_rbuf; |
| } |
| |
| /** |
| * ata_scsi_rbuf_put - Unmap response buffer. |
| * @cmd: SCSI command containing buffer to be unmapped. |
| * @copy_out: copy out result |
| * @flags: @flags passed to ata_scsi_rbuf_get() |
| * |
| * Returns rbuf buffer. The result is copied to @cmd's buffer if |
| * @copy_back is true. |
| * |
| * LOCKING: |
| * Unlocks ata_scsi_rbuf_lock. |
| */ |
| static inline void ata_scsi_rbuf_put(struct scsi_cmnd *cmd, bool copy_out, |
| unsigned long *flags) |
| { |
| if (copy_out) |
| sg_copy_from_buffer(scsi_sglist(cmd), scsi_sg_count(cmd), |
| ata_scsi_rbuf, ATA_SCSI_RBUF_SIZE); |
| spin_unlock_irqrestore(&ata_scsi_rbuf_lock, *flags); |
| } |
| |
| /** |
| * ata_scsi_rbuf_fill - wrapper for SCSI command simulators |
| * @args: device IDENTIFY data / SCSI command of interest. |
| * @actor: Callback hook for desired SCSI command simulator |
| * |
| * Takes care of the hard work of simulating a SCSI command... |
| * Mapping the response buffer, calling the command's handler, |
| * and handling the handler's return value. This return value |
| * indicates whether the handler wishes the SCSI command to be |
| * completed successfully (0), or not (in which case cmd->result |
| * and sense buffer are assumed to be set). |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| static void ata_scsi_rbuf_fill(struct ata_scsi_args *args, |
| unsigned int (*actor)(struct ata_scsi_args *args, u8 *rbuf)) |
| { |
| u8 *rbuf; |
| unsigned int rc; |
| struct scsi_cmnd *cmd = args->cmd; |
| unsigned long flags; |
| |
| rbuf = ata_scsi_rbuf_get(cmd, false, &flags); |
| rc = actor(args, rbuf); |
| ata_scsi_rbuf_put(cmd, rc == 0, &flags); |
| |
| if (rc == 0) |
| cmd->result = SAM_STAT_GOOD; |
| args->done(cmd); |
| } |
| |
| /** |
| * ata_scsiop_inq_std - Simulate INQUIRY command |
| * @args: device IDENTIFY data / SCSI command of interest. |
| * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. |
| * |
| * Returns standard device identification data associated |
| * with non-VPD INQUIRY command output. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| static unsigned int ata_scsiop_inq_std(struct ata_scsi_args *args, u8 *rbuf) |
| { |
| const u8 versions[] = { |
| 0x60, /* SAM-3 (no version claimed) */ |
| |
| 0x03, |
| 0x20, /* SBC-2 (no version claimed) */ |
| |
| 0x02, |
| 0x60 /* SPC-3 (no version claimed) */ |
| }; |
| u8 hdr[] = { |
| TYPE_DISK, |
| 0, |
| 0x5, /* claim SPC-3 version compatibility */ |
| 2, |
| 95 - 4 |
| }; |
| |
| VPRINTK("ENTER\n"); |
| |
| /* set scsi removeable (RMB) bit per ata bit */ |
| if (ata_id_removeable(args->id)) |
| hdr[1] |= (1 << 7); |
| |
| memcpy(rbuf, hdr, sizeof(hdr)); |
| memcpy(&rbuf[8], "ATA ", 8); |
| ata_id_string(args->id, &rbuf[16], ATA_ID_PROD, 16); |
| ata_id_string(args->id, &rbuf[32], ATA_ID_FW_REV, 4); |
| |
| if (rbuf[32] == 0 || rbuf[32] == ' ') |
| memcpy(&rbuf[32], "n/a ", 4); |
| |
| memcpy(rbuf + 59, versions, sizeof(versions)); |
| |
| return 0; |
| } |
| |
| /** |
| * ata_scsiop_inq_00 - Simulate INQUIRY VPD page 0, list of pages |
| * @args: device IDENTIFY data / SCSI command of interest. |
| * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. |
| * |
| * Returns list of inquiry VPD pages available. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| static unsigned int ata_scsiop_inq_00(struct ata_scsi_args *args, u8 *rbuf) |
| { |
| const u8 pages[] = { |
| 0x00, /* page 0x00, this page */ |
| 0x80, /* page 0x80, unit serial no page */ |
| 0x83, /* page 0x83, device ident page */ |
| 0x89, /* page 0x89, ata info page */ |
| 0xb0, /* page 0xb0, block limits page */ |
| 0xb1, /* page 0xb1, block device characteristics page */ |
| 0xb2, /* page 0xb2, thin provisioning page */ |
| }; |
| |
| rbuf[3] = sizeof(pages); /* number of supported VPD pages */ |
| memcpy(rbuf + 4, pages, sizeof(pages)); |
| return 0; |
| } |
| |
| /** |
| * ata_scsiop_inq_80 - Simulate INQUIRY VPD page 80, device serial number |
| * @args: device IDENTIFY data / SCSI command of interest. |
| * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. |
| * |
| * Returns ATA device serial number. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| static unsigned int ata_scsiop_inq_80(struct ata_scsi_args *args, u8 *rbuf) |
| { |
| const u8 hdr[] = { |
| 0, |
| 0x80, /* this page code */ |
| 0, |
| ATA_ID_SERNO_LEN, /* page len */ |
| }; |
| |
| memcpy(rbuf, hdr, sizeof(hdr)); |
| ata_id_string(args->id, (unsigned char *) &rbuf[4], |
| ATA_ID_SERNO, ATA_ID_SERNO_LEN); |
| return 0; |
| } |
| |
| /** |
| * ata_scsiop_inq_83 - Simulate INQUIRY VPD page 83, device identity |
| * @args: device IDENTIFY data / SCSI command of interest. |
| * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. |
| * |
| * Yields two logical unit device identification designators: |
| * - vendor specific ASCII containing the ATA serial number |
| * - SAT defined "t10 vendor id based" containing ASCII vendor |
| * name ("ATA "), model and serial numbers. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| static unsigned int ata_scsiop_inq_83(struct ata_scsi_args *args, u8 *rbuf) |
| { |
| const int sat_model_serial_desc_len = 68; |
| int num; |
| |
| rbuf[1] = 0x83; /* this page code */ |
| num = 4; |
| |
| /* piv=0, assoc=lu, code_set=ACSII, designator=vendor */ |
| rbuf[num + 0] = 2; |
| rbuf[num + 3] = ATA_ID_SERNO_LEN; |
| num += 4; |
| ata_id_string(args->id, (unsigned char *) rbuf + num, |
| ATA_ID_SERNO, ATA_ID_SERNO_LEN); |
| num += ATA_ID_SERNO_LEN; |
| |
| /* SAT defined lu model and serial numbers descriptor */ |
| /* piv=0, assoc=lu, code_set=ACSII, designator=t10 vendor id */ |
| rbuf[num + 0] = 2; |
| rbuf[num + 1] = 1; |
| rbuf[num + 3] = sat_model_serial_desc_len; |
| num += 4; |
| memcpy(rbuf + num, "ATA ", 8); |
| num += 8; |
| ata_id_string(args->id, (unsigned char *) rbuf + num, ATA_ID_PROD, |
| ATA_ID_PROD_LEN); |
| num += ATA_ID_PROD_LEN; |
| ata_id_string(args->id, (unsigned char *) rbuf + num, ATA_ID_SERNO, |
| ATA_ID_SERNO_LEN); |
| num += ATA_ID_SERNO_LEN; |
| |
| if (ata_id_has_wwn(args->id)) { |
| /* SAT defined lu world wide name */ |
| /* piv=0, assoc=lu, code_set=binary, designator=NAA */ |
| rbuf[num + 0] = 1; |
| rbuf[num + 1] = 3; |
| rbuf[num + 3] = ATA_ID_WWN_LEN; |
| num += 4; |
| ata_id_string(args->id, (unsigned char *) rbuf + num, |
| ATA_ID_WWN, ATA_ID_WWN_LEN); |
| num += ATA_ID_WWN_LEN; |
| } |
| rbuf[3] = num - 4; /* page len (assume less than 256 bytes) */ |
| return 0; |
| } |
| |
| /** |
| * ata_scsiop_inq_89 - Simulate INQUIRY VPD page 89, ATA info |
| * @args: device IDENTIFY data / SCSI command of interest. |
| * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. |
| * |
| * Yields SAT-specified ATA VPD page. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| static unsigned int ata_scsiop_inq_89(struct ata_scsi_args *args, u8 *rbuf) |
| { |
| struct ata_taskfile tf; |
| |
| memset(&tf, 0, sizeof(tf)); |
| |
| rbuf[1] = 0x89; /* our page code */ |
| rbuf[2] = (0x238 >> 8); /* page size fixed at 238h */ |
| rbuf[3] = (0x238 & 0xff); |
| |
| memcpy(&rbuf[8], "linux ", 8); |
| memcpy(&rbuf[16], "libata ", 16); |
| memcpy(&rbuf[32], DRV_VERSION, 4); |
| ata_id_string(args->id, &rbuf[32], ATA_ID_FW_REV, 4); |
| |
| /* we don't store the ATA device signature, so we fake it */ |
| |
| tf.command = ATA_DRDY; /* really, this is Status reg */ |
| tf.lbal = 0x1; |
| tf.nsect = 0x1; |
| |
| ata_tf_to_fis(&tf, 0, 1, &rbuf[36]); /* TODO: PMP? */ |
| rbuf[36] = 0x34; /* force D2H Reg FIS (34h) */ |
| |
| rbuf[56] = ATA_CMD_ID_ATA; |
| |
| memcpy(&rbuf[60], &args->id[0], 512); |
| return 0; |
| } |
| |
| static unsigned int ata_scsiop_inq_b0(struct ata_scsi_args *args, u8 *rbuf) |
| { |
| u16 min_io_sectors; |
| |
| rbuf[1] = 0xb0; |
| rbuf[3] = 0x3c; /* required VPD size with unmap support */ |
| |
| /* |
| * Optimal transfer length granularity. |
| * |
| * This is always one physical block, but for disks with a smaller |
| * logical than physical sector size we need to figure out what the |
| * latter is. |
| */ |
| min_io_sectors = 1 << ata_id_log2_per_physical_sector(args->id); |
| put_unaligned_be16(min_io_sectors, &rbuf[6]); |
| |
| /* |
| * Optimal unmap granularity. |
| * |
| * The ATA spec doesn't even know about a granularity or alignment |
| * for the TRIM command. We can leave away most of the unmap related |
| * VPD page entries, but we have specifify a granularity to signal |
| * that we support some form of unmap - in thise case via WRITE SAME |
| * with the unmap bit set. |
| */ |
| if (ata_id_has_trim(args->id)) { |
| put_unaligned_be64(65535 * 512 / 8, &rbuf[36]); |
| put_unaligned_be32(1, &rbuf[28]); |
| } |
| |
| return 0; |
| } |
| |
| static unsigned int ata_scsiop_inq_b1(struct ata_scsi_args *args, u8 *rbuf) |
| { |
| int form_factor = ata_id_form_factor(args->id); |
| int media_rotation_rate = ata_id_rotation_rate(args->id); |
| |
| rbuf[1] = 0xb1; |
| rbuf[3] = 0x3c; |
| rbuf[4] = media_rotation_rate >> 8; |
| rbuf[5] = media_rotation_rate; |
| rbuf[7] = form_factor; |
| |
| return 0; |
| } |
| |
| static unsigned int ata_scsiop_inq_b2(struct ata_scsi_args *args, u8 *rbuf) |
| { |
| /* SCSI Thin Provisioning VPD page: SBC-3 rev 22 or later */ |
| rbuf[1] = 0xb2; |
| rbuf[3] = 0x4; |
| rbuf[5] = 1 << 6; /* TPWS */ |
| |
| return 0; |
| } |
| |
| /** |
| * ata_scsiop_noop - Command handler that simply returns success. |
| * @args: device IDENTIFY data / SCSI command of interest. |
| * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. |
| * |
| * No operation. Simply returns success to caller, to indicate |
| * that the caller should successfully complete this SCSI command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| static unsigned int ata_scsiop_noop(struct ata_scsi_args *args, u8 *rbuf) |
| { |
| VPRINTK("ENTER\n"); |
| return 0; |
| } |
| |
| /** |
| * ata_msense_caching - Simulate MODE SENSE caching info page |
| * @id: device IDENTIFY data |
| * @buf: output buffer |
| * |
| * Generate a caching info page, which conditionally indicates |
| * write caching to the SCSI layer, depending on device |
| * capabilities. |
| * |
| * LOCKING: |
| * None. |
| */ |
| static unsigned int ata_msense_caching(u16 *id, u8 *buf) |
| { |
| memcpy(buf, def_cache_mpage, sizeof(def_cache_mpage)); |
| if (ata_id_wcache_enabled(id)) |
| buf[2] |= (1 << 2); /* write cache enable */ |
| if (!ata_id_rahead_enabled(id)) |
| buf[12] |= (1 << 5); /* disable read ahead */ |
| return sizeof(def_cache_mpage); |
| } |
| |
| /** |
| * ata_msense_ctl_mode - Simulate MODE SENSE control mode page |
| * @buf: output buffer |
| * |
| * Generate a generic MODE SENSE control mode page. |
| * |
| * LOCKING: |
| * None. |
| */ |
| static unsigned int ata_msense_ctl_mode(u8 *buf) |
| { |
| memcpy(buf, def_control_mpage, sizeof(def_control_mpage)); |
| return sizeof(def_control_mpage); |
| } |
| |
| /** |
| * ata_msense_rw_recovery - Simulate MODE SENSE r/w error recovery page |
| * @buf: output buffer |
| * |
| * Generate a generic MODE SENSE r/w error recovery page. |
| * |
| * LOCKING: |
| * None. |
| */ |
| static unsigned int ata_msense_rw_recovery(u8 *buf) |
| { |
| memcpy(buf, def_rw_recovery_mpage, sizeof(def_rw_recovery_mpage)); |
| return sizeof(def_rw_recovery_mpage); |
| } |
| |
| /* |
| * We can turn this into a real blacklist if it's needed, for now just |
| * blacklist any Maxtor BANC1G10 revision firmware |
| */ |
| static int ata_dev_supports_fua(u16 *id) |
| { |
| unsigned char model[ATA_ID_PROD_LEN + 1], fw[ATA_ID_FW_REV_LEN + 1]; |
| |
| if (!libata_fua) |
| return 0; |
| if (!ata_id_has_fua(id)) |
| return 0; |
| |
| ata_id_c_string(id, model, ATA_ID_PROD, sizeof(model)); |
| ata_id_c_string(id, fw, ATA_ID_FW_REV, sizeof(fw)); |
| |
| if (strcmp(model, "Maxtor")) |
| return 1; |
| if (strcmp(fw, "BANC1G10")) |
| return 1; |
| |
| return 0; /* blacklisted */ |
| } |
| |
| /** |
| * ata_scsiop_mode_sense - Simulate MODE SENSE 6, 10 commands |
| * @args: device IDENTIFY data / SCSI command of interest. |
| * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. |
| * |
| * Simulate MODE SENSE commands. Assume this is invoked for direct |
| * access devices (e.g. disks) only. There should be no block |
| * descriptor for other device types. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| static unsigned int ata_scsiop_mode_sense(struct ata_scsi_args *args, u8 *rbuf) |
| { |
| struct ata_device *dev = args->dev; |
| u8 *scsicmd = args->cmd->cmnd, *p = rbuf; |
| const u8 sat_blk_desc[] = { |
| 0, 0, 0, 0, /* number of blocks: sat unspecified */ |
| 0, |
| 0, 0x2, 0x0 /* block length: 512 bytes */ |
| }; |
| u8 pg, spg; |
| unsigned int ebd, page_control, six_byte; |
| u8 dpofua; |
| |
| VPRINTK("ENTER\n"); |
| |
| six_byte = (scsicmd[0] == MODE_SENSE); |
| ebd = !(scsicmd[1] & 0x8); /* dbd bit inverted == edb */ |
| /* |
| * LLBA bit in msense(10) ignored (compliant) |
| */ |
| |
| page_control = scsicmd[2] >> 6; |
| switch (page_control) { |
| case 0: /* current */ |
| break; /* supported */ |
| case 3: /* saved */ |
| goto saving_not_supp; |
| case 1: /* changeable */ |
| case 2: /* defaults */ |
| default: |
| goto invalid_fld; |
| } |
| |
| if (six_byte) |
| p += 4 + (ebd ? 8 : 0); |
| else |
| p += 8 + (ebd ? 8 : 0); |
| |
| pg = scsicmd[2] & 0x3f; |
| spg = scsicmd[3]; |
| /* |
| * No mode subpages supported (yet) but asking for _all_ |
| * subpages may be valid |
| */ |
| if (spg && (spg != ALL_SUB_MPAGES)) |
| goto invalid_fld; |
| |
| switch(pg) { |
| case RW_RECOVERY_MPAGE: |
| p += ata_msense_rw_recovery(p); |
| break; |
| |
| case CACHE_MPAGE: |
| p += ata_msense_caching(args->id, p); |
| break; |
| |
| case CONTROL_MPAGE: |
| p += ata_msense_ctl_mode(p); |
| break; |
| |
| case ALL_MPAGES: |
| p += ata_msense_rw_recovery(p); |
| p += ata_msense_caching(args->id, p); |
| p += ata_msense_ctl_mode(p); |
| break; |
| |
| default: /* invalid page code */ |
| goto invalid_fld; |
| } |
| |
| dpofua = 0; |
| if (ata_dev_supports_fua(args->id) && (dev->flags & ATA_DFLAG_LBA48) && |
| (!(dev->flags & ATA_DFLAG_PIO) || dev->multi_count)) |
| dpofua = 1 << 4; |
| |
| if (six_byte) { |
| rbuf[0] = p - rbuf - 1; |
| rbuf[2] |= dpofua; |
| if (ebd) { |
| rbuf[3] = sizeof(sat_blk_desc); |
| memcpy(rbuf + 4, sat_blk_desc, sizeof(sat_blk_desc)); |
| } |
| } else { |
| unsigned int output_len = p - rbuf - 2; |
| |
| rbuf[0] = output_len >> 8; |
| rbuf[1] = output_len; |
| rbuf[3] |= dpofua; |
| if (ebd) { |
| rbuf[7] = sizeof(sat_blk_desc); |
| memcpy(rbuf + 8, sat_blk_desc, sizeof(sat_blk_desc)); |
| } |
| } |
| return 0; |
| |
| invalid_fld: |
| ata_scsi_set_sense(args->cmd, ILLEGAL_REQUEST, 0x24, 0x0); |
| /* "Invalid field in cbd" */ |
| return 1; |
| |
| saving_not_supp: |
| ata_scsi_set_sense(args->cmd, ILLEGAL_REQUEST, 0x39, 0x0); |
| /* "Saving parameters not supported" */ |
| return 1; |
| } |
| |
| /** |
| * ata_scsiop_read_cap - Simulate READ CAPACITY[ 16] commands |
| * @args: device IDENTIFY data / SCSI command of interest. |
| * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. |
| * |
| * Simulate READ CAPACITY commands. |
| * |
| * LOCKING: |
| * None. |
| */ |
| static unsigned int ata_scsiop_read_cap(struct ata_scsi_args *args, u8 *rbuf) |
| { |
| struct ata_device *dev = args->dev; |
| u64 last_lba = dev->n_sectors - 1; /* LBA of the last block */ |
| u32 sector_size; /* physical sector size in bytes */ |
| u8 log2_per_phys; |
| u16 lowest_aligned; |
| |
| sector_size = ata_id_logical_sector_size(dev->id); |
| log2_per_phys = ata_id_log2_per_physical_sector(dev->id); |
| lowest_aligned = ata_id_logical_sector_offset(dev->id, log2_per_phys); |
| |
| VPRINTK("ENTER\n"); |
| |
| if (args->cmd->cmnd[0] == READ_CAPACITY) { |
| if (last_lba >= 0xffffffffULL) |
| last_lba = 0xffffffff; |
| |
| /* sector count, 32-bit */ |
| rbuf[0] = last_lba >> (8 * 3); |
| rbuf[1] = last_lba >> (8 * 2); |
| rbuf[2] = last_lba >> (8 * 1); |
| rbuf[3] = last_lba; |
| |
| /* sector size */ |
| rbuf[4] = sector_size >> (8 * 3); |
| rbuf[5] = sector_size >> (8 * 2); |
| rbuf[6] = sector_size >> (8 * 1); |
| rbuf[7] = sector_size; |
| } else { |
| /* sector count, 64-bit */ |
| rbuf[0] = last_lba >> (8 * 7); |
| rbuf[1] = last_lba >> (8 * 6); |
| rbuf[2] = last_lba >> (8 * 5); |
| rbuf[3] = last_lba >> (8 * 4); |
| rbuf[4] = last_lba >> (8 * 3); |
| rbuf[5] = last_lba >> (8 * 2); |
| rbuf[6] = last_lba >> (8 * 1); |
| rbuf[7] = last_lba; |
| |
| /* sector size */ |
| rbuf[ 8] = sector_size >> (8 * 3); |
| rbuf[ 9] = sector_size >> (8 * 2); |
| rbuf[10] = sector_size >> (8 * 1); |
| rbuf[11] = sector_size; |
| |
| rbuf[12] = 0; |
| rbuf[13] = log2_per_phys; |
| rbuf[14] = (lowest_aligned >> 8) & 0x3f; |
| rbuf[15] = lowest_aligned; |
| |
| if (ata_id_has_trim(args->id)) { |
| rbuf[14] |= 0x80; /* TPE */ |
| |
| if (ata_id_has_zero_after_trim(args->id)) |
| rbuf[14] |= 0x40; /* TPRZ */ |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ata_scsiop_report_luns - Simulate REPORT LUNS command |
| * @args: device IDENTIFY data / SCSI command of interest. |
| * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. |
| * |
| * Simulate REPORT LUNS command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| static unsigned int ata_scsiop_report_luns(struct ata_scsi_args *args, u8 *rbuf) |
| { |
| VPRINTK("ENTER\n"); |
| rbuf[3] = 8; /* just one lun, LUN 0, size 8 bytes */ |
| |
| return 0; |
| } |
| |
| static void atapi_sense_complete(struct ata_queued_cmd *qc) |
| { |
| if (qc->err_mask && ((qc->err_mask & AC_ERR_DEV) == 0)) { |
| /* FIXME: not quite right; we don't want the |
| * translation of taskfile registers into |
| * a sense descriptors, since that's only |
| * correct for ATA, not ATAPI |
| */ |
| ata_gen_passthru_sense(qc); |
| } |
| |
| qc->scsidone(qc->scsicmd); |
| ata_qc_free(qc); |
| } |
| |
| /* is it pointless to prefer PIO for "safety reasons"? */ |
| static inline int ata_pio_use_silly(struct ata_port *ap) |
| { |
| return (ap->flags & ATA_FLAG_PIO_DMA); |
| } |
| |
| static void atapi_request_sense(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct scsi_cmnd *cmd = qc->scsicmd; |
| |
| DPRINTK("ATAPI request sense\n"); |
| |
| /* FIXME: is this needed? */ |
| memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); |
| |
| #ifdef CONFIG_ATA_SFF |
| if (ap->ops->sff_tf_read) |
| ap->ops->sff_tf_read(ap, &qc->tf); |
| #endif |
| |
| /* fill these in, for the case where they are -not- overwritten */ |
| cmd->sense_buffer[0] = 0x70; |
| cmd->sense_buffer[2] = qc->tf.feature >> 4; |
| |
| ata_qc_reinit(qc); |
| |
| /* setup sg table and init transfer direction */ |
| sg_init_one(&qc->sgent, cmd->sense_buffer, SCSI_SENSE_BUFFERSIZE); |
| ata_sg_init(qc, &qc->sgent, 1); |
| qc->dma_dir = DMA_FROM_DEVICE; |
| |
| memset(&qc->cdb, 0, qc->dev->cdb_len); |
| qc->cdb[0] = REQUEST_SENSE; |
| qc->cdb[4] = SCSI_SENSE_BUFFERSIZE; |
| |
| qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; |
| qc->tf.command = ATA_CMD_PACKET; |
| |
| if (ata_pio_use_silly(ap)) { |
| qc->tf.protocol = ATAPI_PROT_DMA; |
| qc->tf.feature |= ATAPI_PKT_DMA; |
| } else { |
| qc->tf.protocol = ATAPI_PROT_PIO; |
| qc->tf.lbam = SCSI_SENSE_BUFFERSIZE; |
| qc->tf.lbah = 0; |
| } |
| qc->nbytes = SCSI_SENSE_BUFFERSIZE; |
| |
| qc->complete_fn = atapi_sense_complete; |
| |
| ata_qc_issue(qc); |
| |
| DPRINTK("EXIT\n"); |
| } |
| |
| static void atapi_qc_complete(struct ata_queued_cmd *qc) |
| { |
| struct scsi_cmnd *cmd = qc->scsicmd; |
| unsigned int err_mask = qc->err_mask; |
| |
| VPRINTK("ENTER, err_mask 0x%X\n", err_mask); |
| |
| /* handle completion from new EH */ |
| if (unlikely(qc->ap->ops->error_handler && |
| (err_mask || qc->flags & ATA_QCFLAG_SENSE_VALID))) { |
| |
| if (!(qc->flags & ATA_QCFLAG_SENSE_VALID)) { |
| /* FIXME: not quite right; we don't want the |
| * translation of taskfile registers into a |
| * sense descriptors, since that's only |
| * correct for ATA, not ATAPI |
| */ |
| ata_gen_passthru_sense(qc); |
| } |
| |
| /* SCSI EH automatically locks door if sdev->locked is |
| * set. Sometimes door lock request continues to |
| * fail, for example, when no media is present. This |
| * creates a loop - SCSI EH issues door lock which |
| * fails and gets invoked again to acquire sense data |
| * for the failed command. |
| * |
| * If door lock fails, always clear sdev->locked to |
| * avoid this infinite loop. |
| * |
| * This may happen before SCSI scan is complete. Make |
| * sure qc->dev->sdev isn't NULL before dereferencing. |
| */ |
| if (qc->cdb[0] == ALLOW_MEDIUM_REMOVAL && qc->dev->sdev) |
| qc->dev->sdev->locked = 0; |
| |
| qc->scsicmd->result = SAM_STAT_CHECK_CONDITION; |
| qc->scsidone(cmd); |
| ata_qc_free(qc); |
| return; |
| } |
| |
| /* successful completion or old EH failure path */ |
| if (unlikely(err_mask & AC_ERR_DEV)) { |
| cmd->result = SAM_STAT_CHECK_CONDITION; |
| atapi_request_sense(qc); |
| return; |
| } else if (unlikely(err_mask)) { |
| /* FIXME: not quite right; we don't want the |
| * translation of taskfile registers into |
| * a sense descriptors, since that's only |
| * correct for ATA, not ATAPI |
| */ |
| ata_gen_passthru_sense(qc); |
| } else { |
| u8 *scsicmd = cmd->cmnd; |
| |
| if ((scsicmd[0] == INQUIRY) && ((scsicmd[1] & 0x03) == 0)) { |
| unsigned long flags; |
| u8 *buf; |
| |
| buf = ata_scsi_rbuf_get(cmd, true, &flags); |
| |
| /* ATAPI devices typically report zero for their SCSI version, |
| * and sometimes deviate from the spec WRT response data |
| * format. If SCSI version is reported as zero like normal, |
| * then we make the following fixups: 1) Fake MMC-5 version, |
| * to indicate to the Linux scsi midlayer this is a modern |
| * device. 2) Ensure response data format / ATAPI information |
| * are always correct. |
| */ |
| if (buf[2] == 0) { |
| buf[2] = 0x5; |
| buf[3] = 0x32; |
| } |
| |
| ata_scsi_rbuf_put(cmd, true, &flags); |
| } |
| |
| cmd->result = SAM_STAT_GOOD; |
| } |
| |
| qc->scsidone(cmd); |
| ata_qc_free(qc); |
| } |
| /** |
| * atapi_xlat - Initialize PACKET taskfile |
| * @qc: command structure to be initialized |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * Zero on success, non-zero on failure. |
| */ |
| static unsigned int atapi_xlat(struct ata_queued_cmd *qc) |
| { |
| struct scsi_cmnd *scmd = qc->scsicmd; |
| struct ata_device *dev = qc->dev; |
| int nodata = (scmd->sc_data_direction == DMA_NONE); |
| int using_pio = !nodata && (dev->flags & ATA_DFLAG_PIO); |
| unsigned int nbytes; |
| |
| memset(qc->cdb, 0, dev->cdb_len); |
| memcpy(qc->cdb, scmd->cmnd, scmd->cmd_len); |
| |
| qc->complete_fn = atapi_qc_complete; |
| |
| qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; |
| if (scmd->sc_data_direction == DMA_TO_DEVICE) { |
| qc->tf.flags |= ATA_TFLAG_WRITE; |
| DPRINTK("direction: write\n"); |
| } |
| |
| qc->tf.command = ATA_CMD_PACKET; |
| ata_qc_set_pc_nbytes(qc); |
| |
| /* check whether ATAPI DMA is safe */ |
| if (!nodata && !using_pio && atapi_check_dma(qc)) |
| using_pio = 1; |
| |
| /* Some controller variants snoop this value for Packet |
| * transfers to do state machine and FIFO management. Thus we |
| * want to set it properly, and for DMA where it is |
| * effectively meaningless. |
| */ |
| nbytes = min(ata_qc_raw_nbytes(qc), (unsigned int)63 * 1024); |
| |
| /* Most ATAPI devices which honor transfer chunk size don't |
| * behave according to the spec when odd chunk size which |
| * matches the transfer length is specified. If the number of |
| * bytes to transfer is 2n+1. According to the spec, what |
| * should happen is to indicate that 2n+1 is going to be |
| * transferred and transfer 2n+2 bytes where the last byte is |
| * padding. |
| * |
| * In practice, this doesn't happen. ATAPI devices first |
| * indicate and transfer 2n bytes and then indicate and |
| * transfer 2 bytes where the last byte is padding. |
| * |
| * This inconsistency confuses several controllers which |
| * perform PIO using DMA such as Intel AHCIs and sil3124/32. |
| * These controllers use actual number of transferred bytes to |
| * update DMA poitner and transfer of 4n+2 bytes make those |
| * controller push DMA pointer by 4n+4 bytes because SATA data |
| * FISes are aligned to 4 bytes. This causes data corruption |
| * and buffer overrun. |
| * |
| * Always setting nbytes to even number solves this problem |
| * because then ATAPI devices don't have to split data at 2n |
| * boundaries. |
| */ |
| if (nbytes & 0x1) |
| nbytes++; |
| |
| qc->tf.lbam = (nbytes & 0xFF); |
| qc->tf.lbah = (nbytes >> 8); |
| |
| if (nodata) |
| qc->tf.protocol = ATAPI_PROT_NODATA; |
| else if (using_pio) |
| qc->tf.protocol = ATAPI_PROT_PIO; |
| else { |
| /* DMA data xfer */ |
| qc->tf.protocol = ATAPI_PROT_DMA; |
| qc->tf.feature |= ATAPI_PKT_DMA; |
| |
| if ((dev->flags & ATA_DFLAG_DMADIR) && |
| (scmd->sc_data_direction != DMA_TO_DEVICE)) |
| /* some SATA bridges need us to indicate data xfer direction */ |
| qc->tf.feature |= ATAPI_DMADIR; |
| } |
| |
| |
| /* FIXME: We need to translate 0x05 READ_BLOCK_LIMITS to a MODE_SENSE |
| as ATAPI tape drives don't get this right otherwise */ |
| return 0; |
| } |
| |
| static struct ata_device *ata_find_dev(struct ata_port *ap, int devno) |
| { |
| if (!sata_pmp_attached(ap)) { |
| if (likely(devno < ata_link_max_devices(&ap->link))) |
| return &ap->link.device[devno]; |
| } else { |
| if (likely(devno < ap->nr_pmp_links)) |
| return &ap->pmp_link[devno].device[0]; |
| } |
| |
| return NULL; |
| } |
| |
| static struct ata_device *__ata_scsi_find_dev(struct ata_port *ap, |
| const struct scsi_device *scsidev) |
| { |
| int devno; |
| |
| /* skip commands not addressed to targets we simulate */ |
| if (!sata_pmp_attached(ap)) { |
| if (unlikely(scsidev->channel || scsidev->lun)) |
| return NULL; |
| devno = scsidev->id; |
| } else { |
| if (unlikely(scsidev->id || scsidev->lun)) |
| return NULL; |
| devno = scsidev->channel; |
| } |
| |
| return ata_find_dev(ap, devno); |
| } |
| |
| /** |
| * ata_scsi_find_dev - lookup ata_device from scsi_cmnd |
| * @ap: ATA port to which the device is attached |
| * @scsidev: SCSI device from which we derive the ATA device |
| * |
| * Given various information provided in struct scsi_cmnd, |
| * map that onto an ATA bus, and using that mapping |
| * determine which ata_device is associated with the |
| * SCSI command to be sent. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * Associated ATA device, or %NULL if not found. |
| */ |
| static struct ata_device * |
| ata_scsi_find_dev(struct ata_port *ap, const struct scsi_device *scsidev) |
| { |
| struct ata_device *dev = __ata_scsi_find_dev(ap, scsidev); |
| |
| if (unlikely(!dev || !ata_dev_enabled(dev))) |
| return NULL; |
| |
| return dev; |
| } |
| |
| /* |
| * ata_scsi_map_proto - Map pass-thru protocol value to taskfile value. |
| * @byte1: Byte 1 from pass-thru CDB. |
| * |
| * RETURNS: |
| * ATA_PROT_UNKNOWN if mapping failed/unimplemented, protocol otherwise. |
| */ |
| static u8 |
| ata_scsi_map_proto(u8 byte1) |
| { |
| switch((byte1 & 0x1e) >> 1) { |
| case 3: /* Non-data */ |
| return ATA_PROT_NODATA; |
| |
| case 6: /* DMA */ |
| case 10: /* UDMA Data-in */ |
| case 11: /* UDMA Data-Out */ |
| return ATA_PROT_DMA; |
| |
| case 4: /* PIO Data-in */ |
| case 5: /* PIO Data-out */ |
| return ATA_PROT_PIO; |
| |
| case 0: /* Hard Reset */ |
| case 1: /* SRST */ |
| case 8: /* Device Diagnostic */ |
| case 9: /* Device Reset */ |
| case 7: /* DMA Queued */ |
| case 12: /* FPDMA */ |
| case 15: /* Return Response Info */ |
| default: /* Reserved */ |
| break; |
| } |
| |
| return ATA_PROT_UNKNOWN; |
| } |
| |
| /** |
| * ata_scsi_pass_thru - convert ATA pass-thru CDB to taskfile |
| * @qc: command structure to be initialized |
| * |
| * Handles either 12 or 16-byte versions of the CDB. |
| * |
| * RETURNS: |
| * Zero on success, non-zero on failure. |
| */ |
| static unsigned int ata_scsi_pass_thru(struct ata_queued_cmd *qc) |
| { |
| struct ata_taskfile *tf = &(qc->tf); |
| struct scsi_cmnd *scmd = qc->scsicmd; |
| struct ata_device *dev = qc->dev; |
| const u8 *cdb = scmd->cmnd; |
| |
| if ((tf->protocol = ata_scsi_map_proto(cdb[1])) == ATA_PROT_UNKNOWN) |
| goto invalid_fld; |
| |
| /* |
| * 12 and 16 byte CDBs use different offsets to |
| * provide the various register values. |
| */ |
| if (cdb[0] == ATA_16) { |
| /* |
| * 16-byte CDB - may contain extended commands. |
| * |
| * If that is the case, copy the upper byte register values. |
| */ |
| if (cdb[1] & 0x01) { |
| tf->hob_feature = cdb[3]; |
| tf->hob_nsect = cdb[5]; |
| tf->hob_lbal = cdb[7]; |
| tf->hob_lbam = cdb[9]; |
| tf->hob_lbah = cdb[11]; |
| tf->flags |= ATA_TFLAG_LBA48; |
| } else |
| tf->flags &= ~ATA_TFLAG_LBA48; |
| |
| /* |
| * Always copy low byte, device and command registers. |
| */ |
| tf->feature = cdb[4]; |
| tf->nsect = cdb[6]; |
| tf->lbal = cdb[8]; |
| tf->lbam = cdb[10]; |
| tf->lbah = cdb[12]; |
| tf->device = cdb[13]; |
| tf->command = cdb[14]; |
| } else { |
| /* |
| * 12-byte CDB - incapable of extended commands. |
| */ |
| tf->flags &= ~ATA_TFLAG_LBA48; |
| |
| tf->feature = cdb[3]; |
| tf->nsect = cdb[4]; |
| tf->lbal = cdb[5]; |
| tf->lbam = cdb[6]; |
| tf->lbah = cdb[7]; |
| tf->device = cdb[8]; |
| tf->command = cdb[9]; |
| } |
| |
| /* enforce correct master/slave bit */ |
| tf->device = dev->devno ? |
| tf->device | ATA_DEV1 : tf->device & ~ATA_DEV1; |
| |
| switch (tf->command) { |
| /* READ/WRITE LONG use a non-standard sect_size */ |
| case ATA_CMD_READ_LONG: |
| case ATA_CMD_READ_LONG_ONCE: |
| case ATA_CMD_WRITE_LONG: |
| case ATA_CMD_WRITE_LONG_ONCE: |
| if (tf->protocol != ATA_PROT_PIO || tf->nsect != 1) |
| goto invalid_fld; |
| qc->sect_size = scsi_bufflen(scmd); |
| break; |
| |
| /* commands using reported Logical Block size (e.g. 512 or 4K) */ |
| case ATA_CMD_CFA_WRITE_NE: |
| case ATA_CMD_CFA_TRANS_SECT: |
| case ATA_CMD_CFA_WRITE_MULT_NE: |
| /* XXX: case ATA_CMD_CFA_WRITE_SECTORS_WITHOUT_ERASE: */ |
| case ATA_CMD_READ: |
| case ATA_CMD_READ_EXT: |
| case ATA_CMD_READ_QUEUED: |
| /* XXX: case ATA_CMD_READ_QUEUED_EXT: */ |
| case ATA_CMD_FPDMA_READ: |
| case ATA_CMD_READ_MULTI: |
| case ATA_CMD_READ_MULTI_EXT: |
| case ATA_CMD_PIO_READ: |
| case ATA_CMD_PIO_READ_EXT: |
| case ATA_CMD_READ_STREAM_DMA_EXT: |
| case ATA_CMD_READ_STREAM_EXT: |
| case ATA_CMD_VERIFY: |
| case ATA_CMD_VERIFY_EXT: |
| case ATA_CMD_WRITE: |
| case ATA_CMD_WRITE_EXT: |
| case ATA_CMD_WRITE_FUA_EXT: |
| case ATA_CMD_WRITE_QUEUED: |
| case ATA_CMD_WRITE_QUEUED_FUA_EXT: |
| case ATA_CMD_FPDMA_WRITE: |
| case ATA_CMD_WRITE_MULTI: |
| case ATA_CMD_WRITE_MULTI_EXT: |
| case ATA_CMD_WRITE_MULTI_FUA_EXT: |
| case ATA_CMD_PIO_WRITE: |
| case ATA_CMD_PIO_WRITE_EXT: |
| case ATA_CMD_WRITE_STREAM_DMA_EXT: |
| case ATA_CMD_WRITE_STREAM_EXT: |
| qc->sect_size = scmd->device->sector_size; |
| break; |
| |
| /* Everything else uses 512 byte "sectors" */ |
| default: |
| qc->sect_size = ATA_SECT_SIZE; |
| } |
| |
| /* |
| * Set flags so that all registers will be written, pass on |
| * write indication (used for PIO/DMA setup), result TF is |
| * copied back and we don't whine too much about its failure. |
| */ |
| tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; |
| if (scmd->sc_data_direction == DMA_TO_DEVICE) |
| tf->flags |= ATA_TFLAG_WRITE; |
| |
| qc->flags |= ATA_QCFLAG_RESULT_TF | ATA_QCFLAG_QUIET; |
| |
| /* |
| * Set transfer length. |
| * |
| * TODO: find out if we need to do more here to |
| * cover scatter/gather case. |
| */ |
| ata_qc_set_pc_nbytes(qc); |
| |
| /* We may not issue DMA commands if no DMA mode is set */ |
| if (tf->protocol == ATA_PROT_DMA && dev->dma_mode == 0) |
| goto invalid_fld; |
| |
| /* sanity check for pio multi commands */ |
| if ((cdb[1] & 0xe0) && !is_multi_taskfile(tf)) |
| goto invalid_fld; |
| |
| if (is_multi_taskfile(tf)) { |
| unsigned int multi_count = 1 << (cdb[1] >> 5); |
| |
| /* compare the passed through multi_count |
| * with the cached multi_count of libata |
| */ |
| if (multi_count != dev->multi_count) |
| ata_dev_warn(dev, "invalid multi_count %u ignored\n", |
| multi_count); |
| } |
| |
| /* |
| * Filter SET_FEATURES - XFER MODE command -- otherwise, |
| * SET_FEATURES - XFER MODE must be preceded/succeeded |
| * by an update to hardware-specific registers for each |
| * controller (i.e. the reason for ->set_piomode(), |
| * ->set_dmamode(), and ->post_set_mode() hooks). |
| */ |
| if (tf->command == ATA_CMD_SET_FEATURES && |
| tf->feature == SETFEATURES_XFER) |
| goto invalid_fld; |
| |
| /* |
| * Filter TPM commands by default. These provide an |
| * essentially uncontrolled encrypted "back door" between |
| * applications and the disk. Set libata.allow_tpm=1 if you |
| * have a real reason for wanting to use them. This ensures |
| * that installed software cannot easily mess stuff up without |
| * user intent. DVR type users will probably ship with this enabled |
| * for movie content management. |
| * |
| * Note that for ATA8 we can issue a DCS change and DCS freeze lock |
| * for this and should do in future but that it is not sufficient as |
| * DCS is an optional feature set. Thus we also do the software filter |
| * so that we comply with the TC consortium stated goal that the user |
| * can turn off TC features of their system. |
| */ |
| if (tf->command >= 0x5C && tf->command <= 0x5F && !libata_allow_tpm) |
| goto invalid_fld; |
| |
| return 0; |
| |
| invalid_fld: |
| ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x24, 0x00); |
| /* "Invalid field in cdb" */ |
| return 1; |
| } |
| |
| static unsigned int ata_scsi_write_same_xlat(struct ata_queued_cmd *qc) |
| { |
| struct ata_taskfile *tf = &qc->tf; |
| struct scsi_cmnd *scmd = qc->scsicmd; |
| struct ata_device *dev = qc->dev; |
| const u8 *cdb = scmd->cmnd; |
| u64 block; |
| u32 n_block; |
| u32 size; |
| void *buf; |
| |
| /* we may not issue DMA commands if no DMA mode is set */ |
| if (unlikely(!dev->dma_mode)) |
| goto invalid_fld; |
| |
| if (unlikely(scmd->cmd_len < 16)) |
| goto invalid_fld; |
| scsi_16_lba_len(cdb, &block, &n_block); |
| |
| /* for now we only support WRITE SAME with the unmap bit set */ |
| if (unlikely(!(cdb[1] & 0x8))) |
| goto invalid_fld; |
| |
| /* |
| * WRITE SAME always has a sector sized buffer as payload, this |
| * should never be a multiple entry S/G list. |
| */ |
| if (!scsi_sg_count(scmd)) |
| goto invalid_fld; |
| |
| buf = page_address(sg_page(scsi_sglist(scmd))); |
| size = ata_set_lba_range_entries(buf, 512, block, n_block); |
| |
| tf->protocol = ATA_PROT_DMA; |
| tf->hob_feature = 0; |
| tf->feature = ATA_DSM_TRIM; |
| tf->hob_nsect = (size / 512) >> 8; |
| tf->nsect = size / 512; |
| tf->command = ATA_CMD_DSM; |
| tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | |
| ATA_TFLAG_WRITE; |
| |
| ata_qc_set_pc_nbytes(qc); |
| |
| return 0; |
| |
| invalid_fld: |
| ata_scsi_set_sense(scmd, ILLEGAL_REQUEST, 0x24, 0x00); |
| /* "Invalid field in cdb" */ |
| return 1; |
| } |
| |
| /** |
| * ata_get_xlat_func - check if SCSI to ATA translation is possible |
| * @dev: ATA device |
| * @cmd: SCSI command opcode to consider |
| * |
| * Look up the SCSI command given, and determine whether the |
| * SCSI command is to be translated or simulated. |
| * |
| * RETURNS: |
| * Pointer to translation function if possible, %NULL if not. |
| */ |
| |
| static inline ata_xlat_func_t ata_get_xlat_func(struct ata_device *dev, u8 cmd) |
| { |
| switch (cmd) { |
| case READ_6: |
| case READ_10: |
| case READ_16: |
| |
| case WRITE_6: |
| case WRITE_10: |
| case WRITE_16: |
| return ata_scsi_rw_xlat; |
| |
| case WRITE_SAME_16: |
| return ata_scsi_write_same_xlat; |
| |
| case SYNCHRONIZE_CACHE: |
| if (ata_try_flush_cache(dev)) |
| return ata_scsi_flush_xlat; |
| break; |
| |
| case VERIFY: |
| case VERIFY_16: |
| return ata_scsi_verify_xlat; |
| |
| case ATA_12: |
| case ATA_16: |
| return ata_scsi_pass_thru; |
| |
| case START_STOP: |
| return ata_scsi_start_stop_xlat; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * ata_scsi_dump_cdb - dump SCSI command contents to dmesg |
| * @ap: ATA port to which the command was being sent |
| * @cmd: SCSI command to dump |
| * |
| * Prints the contents of a SCSI command via printk(). |
| */ |
| |
| static inline void ata_scsi_dump_cdb(struct ata_port *ap, |
| struct scsi_cmnd *cmd) |
| { |
| #ifdef ATA_DEBUG |
| struct scsi_device *scsidev = cmd->device; |
| u8 *scsicmd = cmd->cmnd; |
| |
| DPRINTK("CDB (%u:%d,%d,%d) %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", |
| ap->print_id, |
| scsidev->channel, scsidev->id, scsidev->lun, |
| scsicmd[0], scsicmd[1], scsicmd[2], scsicmd[3], |
| scsicmd[4], scsicmd[5], scsicmd[6], scsicmd[7], |
| scsicmd[8]); |
| #endif |
| } |
| |
| static inline int __ata_scsi_queuecmd(struct scsi_cmnd *scmd, |
| struct ata_device *dev) |
| { |
| u8 scsi_op = scmd->cmnd[0]; |
| ata_xlat_func_t xlat_func; |
| int rc = 0; |
| |
| if (dev->class == ATA_DEV_ATA) { |
| if (unlikely(!scmd->cmd_len || scmd->cmd_len > dev->cdb_len)) |
| goto bad_cdb_len; |
| |
| xlat_func = ata_get_xlat_func(dev, scsi_op); |
| } else { |
| if (unlikely(!scmd->cmd_len)) |
| goto bad_cdb_len; |
| |
| xlat_func = NULL; |
| if (likely((scsi_op != ATA_16) || !atapi_passthru16)) { |
| /* relay SCSI command to ATAPI device */ |
| int len = COMMAND_SIZE(scsi_op); |
| if (unlikely(len > scmd->cmd_len || len > dev->cdb_len)) |
| goto bad_cdb_len; |
| |
| xlat_func = atapi_xlat; |
| } else { |
| /* ATA_16 passthru, treat as an ATA command */ |
| if (unlikely(scmd->cmd_len > 16)) |
| goto bad_cdb_len; |
| |
| xlat_func = ata_get_xlat_func(dev, scsi_op); |
| } |
| } |
| |
| if (xlat_func) |
| rc = ata_scsi_translate(dev, scmd, xlat_func); |
| else |
| ata_scsi_simulate(dev, scmd); |
| |
| return rc; |
| |
| bad_cdb_len: |
| DPRINTK("bad CDB len=%u, scsi_op=0x%02x, max=%u\n", |
| scmd->cmd_len, scsi_op, dev->cdb_len); |
| scmd->result = DID_ERROR << 16; |
| scmd->scsi_done(scmd); |
| return 0; |
| } |
| |
| /** |
| * ata_scsi_queuecmd - Issue SCSI cdb to libata-managed device |
| * @shost: SCSI host of command to be sent |
| * @cmd: SCSI command to be sent |
| * |
| * In some cases, this function translates SCSI commands into |
| * ATA taskfiles, and queues the taskfiles to be sent to |
| * hardware. In other cases, this function simulates a |
| * SCSI device by evaluating and responding to certain |
| * SCSI commands. This creates the overall effect of |
| * ATA and ATAPI devices appearing as SCSI devices. |
| * |
| * LOCKING: |
| * ATA host lock |
| * |
| * RETURNS: |
| * Return value from __ata_scsi_queuecmd() if @cmd can be queued, |
| * 0 otherwise. |
| */ |
| int ata_scsi_queuecmd(struct Scsi_Host *shost, struct scsi_cmnd *cmd) |
| { |
| struct ata_port *ap; |
| struct ata_device *dev; |
| struct scsi_device *scsidev = cmd->device; |
| int rc = 0; |
| unsigned long irq_flags; |
| |
| ap = ata_shost_to_port(shost); |
| |
| spin_lock_irqsave(ap->lock, irq_flags); |
| |
| ata_scsi_dump_cdb(ap, cmd); |
| |
| dev = ata_scsi_find_dev(ap, scsidev); |
| if (likely(dev)) |
| rc = __ata_scsi_queuecmd(cmd, dev); |
| else { |
| cmd->result = (DID_BAD_TARGET << 16); |
| cmd->scsi_done(cmd); |
| } |
| |
| spin_unlock_irqrestore(ap->lock, irq_flags); |
| |
| return rc; |
| } |
| |
| /** |
| * ata_scsi_simulate - simulate SCSI command on ATA device |
| * @dev: the target device |
| * @cmd: SCSI command being sent to device. |
| * |
| * Interprets and directly executes a select list of SCSI commands |
| * that can be handled internally. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| |
| void ata_scsi_simulate(struct ata_device *dev, struct scsi_cmnd *cmd) |
| { |
| struct ata_scsi_args args; |
| const u8 *scsicmd = cmd->cmnd; |
| u8 tmp8; |
| |
| args.dev = dev; |
| args.id = dev->id; |
| args.cmd = cmd; |
| args.done = cmd->scsi_done; |
| |
| switch(scsicmd[0]) { |
| /* TODO: worth improving? */ |
| case FORMAT_UNIT: |
| ata_scsi_invalid_field(cmd); |
| break; |
| |
| case INQUIRY: |
| if (scsicmd[1] & 2) /* is CmdDt set? */ |
| ata_scsi_invalid_field(cmd); |
| else if ((scsicmd[1] & 1) == 0) /* is EVPD clear? */ |
| ata_scsi_rbuf_fill(&args, ata_scsiop_inq_std); |
| else switch (scsicmd[2]) { |
| case 0x00: |
| ata_scsi_rbuf_fill(&args, ata_scsiop_inq_00); |
| break; |
| case 0x80: |
| ata_scsi_rbuf_fill(&args, ata_scsiop_inq_80); |
| break; |
| case 0x83: |
| ata_scsi_rbuf_fill(&args, ata_scsiop_inq_83); |
| break; |
| case 0x89: |
| ata_scsi_rbuf_fill(&args, ata_scsiop_inq_89); |
| break; |
| case 0xb0: |
| ata_scsi_rbuf_fill(&args, ata_scsiop_inq_b0); |
| break; |
| case 0xb1: |
| ata_scsi_rbuf_fill(&args, ata_scsiop_inq_b1); |
| break; |
| case 0xb2: |
| ata_scsi_rbuf_fill(&args, ata_scsiop_inq_b2); |
| break; |
| default: |
| ata_scsi_invalid_field(cmd); |
| break; |
| } |
| break; |
| |
| case MODE_SENSE: |
| case MODE_SENSE_10: |
| ata_scsi_rbuf_fill(&args, ata_scsiop_mode_sense); |
| break; |
| |
| case MODE_SELECT: /* unconditionally return */ |
| case MODE_SELECT_10: /* bad-field-in-cdb */ |
| ata_scsi_invalid_field(cmd); |
| break; |
| |
| case READ_CAPACITY: |
| ata_scsi_rbuf_fill(&args, ata_scsiop_read_cap); |
| break; |
| |
| case SERVICE_ACTION_IN: |
| if ((scsicmd[1] & 0x1f) == SAI_READ_CAPACITY_16) |
| ata_scsi_rbuf_fill(&args, ata_scsiop_read_cap); |
| else |
| ata_scsi_invalid_field(cmd); |
| break; |
| |
| case REPORT_LUNS: |
| ata_scsi_rbuf_fill(&args, ata_scsiop_report_luns); |
| break; |
| |
| case REQUEST_SENSE: |
| ata_scsi_set_sense(cmd, 0, 0, 0); |
| cmd->result = (DRIVER_SENSE << 24); |
| cmd->scsi_done(cmd); |
| break; |
| |
| /* if we reach this, then writeback caching is disabled, |
| * turning this into a no-op. |
| */ |
| case SYNCHRONIZE_CACHE: |
| /* fall through */ |
| |
| /* no-op's, complete with success */ |
| case REZERO_UNIT: |
| case SEEK_6: |
| case SEEK_10: |
| case TEST_UNIT_READY: |
| ata_scsi_rbuf_fill(&args, ata_scsiop_noop); |
| break; |
| |
| case SEND_DIAGNOSTIC: |
| tmp8 = scsicmd[1] & ~(1 << 3); |
| if ((tmp8 == 0x4) && (!scsicmd[3]) && (!scsicmd[4])) |
| ata_scsi_rbuf_fill(&args, ata_scsiop_noop); |
| else |
| ata_scsi_invalid_field(cmd); |
| break; |
| |
| /* all other commands */ |
| default: |
| ata_scsi_set_sense(cmd, ILLEGAL_REQUEST, 0x20, 0x0); |
| /* "Invalid command operation code" */ |
| cmd->scsi_done(cmd); |
| break; |
| } |
| } |
| |
| int ata_scsi_add_hosts(struct ata_host *host, struct scsi_host_template *sht) |
| { |
| int i, rc; |
| |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| struct Scsi_Host *shost; |
| |
| rc = -ENOMEM; |
| shost = scsi_host_alloc(sht, sizeof(struct ata_port *)); |
| if (!shost) |
| goto err_alloc; |
| |
| shost->eh_noresume = 1; |
| *(struct ata_port **)&shost->hostdata[0] = ap; |
| ap->scsi_host = shost; |
| |
| shost->transportt = ata_scsi_transport_template; |
| shost->unique_id = ap->print_id; |
| shost->max_id = 16; |
| shost->max_lun = 1; |
| shost->max_channel = 1; |
| shost->max_cmd_len = 16; |
| |
| /* Schedule policy is determined by ->qc_defer() |
| * callback and it needs to see every deferred qc. |
| * Set host_blocked to 1 to prevent SCSI midlayer from |
| * automatically deferring requests. |
| */ |
| shost->max_host_blocked = 1; |
| |
| rc = scsi_add_host(ap->scsi_host, &ap->tdev); |
| if (rc) |
| goto err_add; |
| } |
| |
| return 0; |
| |
| err_add: |
| scsi_host_put(host->ports[i]->scsi_host); |
| err_alloc: |
| while (--i >= 0) { |
| struct Scsi_Host *shost = host->ports[i]->scsi_host; |
| |
| scsi_remove_host(shost); |
| scsi_host_put(shost); |
| } |
| return rc; |
| } |
| |
| void ata_scsi_scan_host(struct ata_port *ap, int sync) |
| { |
| int tries = 5; |
| struct ata_device *last_failed_dev = NULL; |
| struct ata_link *link; |
| struct ata_device *dev; |
| |
| repeat: |
| ata_for_each_link(link, ap, EDGE) { |
| ata_for_each_dev(dev, link, ENABLED) { |
| struct scsi_device *sdev; |
| int channel = 0, id = 0; |
| |
| if (dev->sdev) |
| continue; |
| |
| if (ata_is_host_link(link)) |
| id = dev->devno; |
| else |
| channel = link->pmp; |
| |
| sdev = __scsi_add_device(ap->scsi_host, channel, id, 0, |
| NULL); |
| if (!IS_ERR(sdev)) { |
| dev->sdev = sdev; |
| scsi_device_put(sdev); |
| } else { |
| dev->sdev = NULL; |
| } |
| } |
| } |
| |
| /* If we scanned while EH was in progress or allocation |
| * failure occurred, scan would have failed silently. Check |
| * whether all devices are attached. |
| */ |
| ata_for_each_link(link, ap, EDGE) { |
| ata_for_each_dev(dev, link, ENABLED) { |
| if (!dev->sdev) |
| goto exit_loop; |
| } |
| } |
| exit_loop: |
| if (!link) |
| return; |
| |
| /* we're missing some SCSI devices */ |
| if (sync) { |
| /* If caller requested synchrnous scan && we've made |
| * any progress, sleep briefly and repeat. |
| */ |
| if (dev != last_failed_dev) { |
| msleep(100); |
| last_failed_dev = dev; |
| goto repeat; |
| } |
| |
| /* We might be failing to detect boot device, give it |
| * a few more chances. |
| */ |
| if (--tries) { |
| msleep(100); |
| goto repeat; |
| } |
| |
| ata_port_err(ap, |
| "WARNING: synchronous SCSI scan failed without making any progress, switching to async\n"); |
| } |
| |
| queue_delayed_work(system_long_wq, &ap->hotplug_task, |
| round_jiffies_relative(HZ)); |
| } |
| |
| /** |
| * ata_scsi_offline_dev - offline attached SCSI device |
| * @dev: ATA device to offline attached SCSI device for |
| * |
| * This function is called from ata_eh_hotplug() and responsible |
| * for taking the SCSI device attached to @dev offline. This |
| * function is called with host lock which protects dev->sdev |
| * against clearing. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * 1 if attached SCSI device exists, 0 otherwise. |
| */ |
| int ata_scsi_offline_dev(struct ata_device *dev) |
| { |
| if (dev->sdev) { |
| scsi_device_set_state(dev->sdev, SDEV_OFFLINE); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /** |
| * ata_scsi_remove_dev - remove attached SCSI device |
| * @dev: ATA device to remove attached SCSI device for |
| * |
| * This function is called from ata_eh_scsi_hotplug() and |
| * responsible for removing the SCSI device attached to @dev. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep). |
| */ |
| static void ata_scsi_remove_dev(struct ata_device *dev) |
| { |
| struct ata_port *ap = dev->link->ap; |
| struct scsi_device *sdev; |
| unsigned long flags; |
| |
| /* Alas, we need to grab scan_mutex to ensure SCSI device |
| * state doesn't change underneath us and thus |
| * scsi_device_get() always succeeds. The mutex locking can |
| * be removed if there is __scsi_device_get() interface which |
| * increments reference counts regardless of device state. |
| */ |
| mutex_lock(&ap->scsi_host->scan_mutex); |
| spin_lock_irqsave(ap->lock, flags); |
| |
| /* clearing dev->sdev is protected by host lock */ |
| sdev = dev->sdev; |
| dev->sdev = NULL; |
| |
| if (sdev) { |
| /* If user initiated unplug races with us, sdev can go |
| * away underneath us after the host lock and |
| * scan_mutex are released. Hold onto it. |
| */ |
| if (scsi_device_get(sdev) == 0) { |
| /* The following ensures the attached sdev is |
| * offline on return from ata_scsi_offline_dev() |
| * regardless it wins or loses the race |
| * against this function. |
| */ |
| scsi_device_set_state(sdev, SDEV_OFFLINE); |
| } else { |
| WARN_ON(1); |
| sdev = NULL; |
| } |
| } |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| mutex_unlock(&ap->scsi_host->scan_mutex); |
| |
| if (sdev) { |
| ata_dev_info(dev, "detaching (SCSI %s)\n", |
| dev_name(&sdev->sdev_gendev)); |
| |
| scsi_remove_device(sdev); |
| scsi_device_put(sdev); |
| } |
| } |
| |
| static void ata_scsi_handle_link_detach(struct ata_link *link) |
| { |
| struct ata_port *ap = link->ap; |
| struct ata_device *dev; |
| |
| ata_for_each_dev(dev, link, ALL) { |
| unsigned long flags; |
| |
| if (!(dev->flags & ATA_DFLAG_DETACHED)) |
| continue; |
| |
| spin_lock_irqsave(ap->lock, flags); |
| dev->flags &= ~ATA_DFLAG_DETACHED; |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| ata_scsi_remove_dev(dev); |
| } |
| } |
| |
| /** |
| * ata_scsi_media_change_notify - send media change event |
| * @dev: Pointer to the disk device with media change event |
| * |
| * Tell the block layer to send a media change notification |
| * event. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_scsi_media_change_notify(struct ata_device *dev) |
| { |
| if (dev->sdev) |
| sdev_evt_send_simple(dev->sdev, SDEV_EVT_MEDIA_CHANGE, |
| GFP_ATOMIC); |
| } |
| |
| /** |
| * ata_scsi_hotplug - SCSI part of hotplug |
| * @work: Pointer to ATA port to perform SCSI hotplug on |
| * |
| * Perform SCSI part of hotplug. It's executed from a separate |
| * workqueue after EH completes. This is necessary because SCSI |
| * hot plugging requires working EH and hot unplugging is |
| * synchronized with hot plugging with a mutex. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep). |
| */ |
| void ata_scsi_hotplug(struct work_struct *work) |
| { |
| struct ata_port *ap = |
| container_of(work, struct ata_port, hotplug_task.work); |
| int i; |
| |
| if (ap->pflags & ATA_PFLAG_UNLOADING) { |
| DPRINTK("ENTER/EXIT - unloading\n"); |
| return; |
| } |
| |
| DPRINTK("ENTER\n"); |
| mutex_lock(&ap->scsi_scan_mutex); |
| |
| /* Unplug detached devices. We cannot use link iterator here |
| * because PMP links have to be scanned even if PMP is |
| * currently not attached. Iterate manually. |
| */ |
| ata_scsi_handle_link_detach(&ap->link); |
| if (ap->pmp_link) |
| for (i = 0; i < SATA_PMP_MAX_PORTS; i++) |
| ata_scsi_handle_link_detach(&ap->pmp_link[i]); |
| |
| /* scan for new ones */ |
| ata_scsi_scan_host(ap, 0); |
| |
| mutex_unlock(&ap->scsi_scan_mutex); |
| DPRINTK("EXIT\n"); |
| } |
| |
| /** |
| * ata_scsi_user_scan - indication for user-initiated bus scan |
| * @shost: SCSI host to scan |
| * @channel: Channel to scan |
| * @id: ID to scan |
| * @lun: LUN to scan |
| * |
| * This function is called when user explicitly requests bus |
| * scan. Set probe pending flag and invoke EH. |
| * |
| * LOCKING: |
| * SCSI layer (we don't care) |
| * |
| * RETURNS: |
| * Zero. |
| */ |
| int ata_scsi_user_scan(struct Scsi_Host *shost, unsigned int channel, |
| unsigned int id, unsigned int lun) |
| { |
| struct ata_port *ap = ata_shost_to_port(shost); |
| unsigned long flags; |
| int devno, rc = 0; |
| |
| if (!ap->ops->error_handler) |
| return -EOPNOTSUPP; |
| |
| if (lun != SCAN_WILD_CARD && lun) |
| return -EINVAL; |
| |
| if (!sata_pmp_attached(ap)) { |
| if (channel != SCAN_WILD_CARD && channel) |
| return -EINVAL; |
| devno = id; |
| } else { |
| if (id != SCAN_WILD_CARD && id) |
| return -EINVAL; |
| devno = channel; |
| } |
| |
| spin_lock_irqsave(ap->lock, flags); |
| |
| if (devno == SCAN_WILD_CARD) { |
| struct ata_link *link; |
| |
| ata_for_each_link(link, ap, EDGE) { |
| struct ata_eh_info *ehi = &link->eh_info; |
| ehi->probe_mask |= ATA_ALL_DEVICES; |
| ehi->action |= ATA_EH_RESET; |
| } |
| } else { |
| struct ata_device *dev = ata_find_dev(ap, devno); |
| |
| if (dev) { |
| struct ata_eh_info *ehi = &dev->link->eh_info; |
| ehi->probe_mask |= 1 << dev->devno; |
| ehi->action |= ATA_EH_RESET; |
| } else |
| rc = -EINVAL; |
| } |
| |
| if (rc == 0) { |
| ata_port_schedule_eh(ap); |
| spin_unlock_irqrestore(ap->lock, flags); |
| ata_port_wait_eh(ap); |
| } else |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| return rc; |
| } |
| |
| /** |
| * ata_scsi_dev_rescan - initiate scsi_rescan_device() |
| * @work: Pointer to ATA port to perform scsi_rescan_device() |
| * |
| * After ATA pass thru (SAT) commands are executed successfully, |
| * libata need to propagate the changes to SCSI layer. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep). |
| */ |
| void ata_scsi_dev_rescan(struct work_struct *work) |
| { |
| struct ata_port *ap = |
| container_of(work, struct ata_port, scsi_rescan_task); |
| struct ata_link *link; |
| struct ata_device *dev; |
| unsigned long flags; |
| |
| mutex_lock(&ap->scsi_scan_mutex); |
| spin_lock_irqsave(ap->lock, flags); |
| |
| ata_for_each_link(link, ap, EDGE) { |
| ata_for_each_dev(dev, link, ENABLED) { |
| struct scsi_device *sdev = dev->sdev; |
| |
| if (!sdev) |
| continue; |
| if (scsi_device_get(sdev)) |
| continue; |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| scsi_rescan_device(&(sdev->sdev_gendev)); |
| scsi_device_put(sdev); |
| spin_lock_irqsave(ap->lock, flags); |
| } |
| } |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| mutex_unlock(&ap->scsi_scan_mutex); |
| } |
| |
| /** |
| * ata_sas_port_alloc - Allocate port for a SAS attached SATA device |
| * @host: ATA host container for all SAS ports |
| * @port_info: Information from low-level host driver |
| * @shost: SCSI host that the scsi device is attached to |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| * RETURNS: |
| * ata_port pointer on success / NULL on failure. |
| */ |
| |
| struct ata_port *ata_sas_port_alloc(struct ata_host *host, |
| struct ata_port_info *port_info, |
| struct Scsi_Host *shost) |
| { |
| struct ata_port *ap; |
| |
| ap = ata_port_alloc(host); |
| if (!ap) |
| return NULL; |
| |
| ap->port_no = 0; |
| ap->lock = &host->lock; |
| ap->pio_mask = port_info->pio_mask; |
| ap->mwdma_mask = port_info->mwdma_mask; |
| ap->udma_mask = port_info->udma_mask; |
| ap->flags |= port_info->flags; |
| ap->ops = port_info->port_ops; |
| ap->cbl = ATA_CBL_SATA; |
| |
| return ap; |
| } |
| EXPORT_SYMBOL_GPL(ata_sas_port_alloc); |
| |
| /** |
| * ata_sas_port_start - Set port up for dma. |
| * @ap: Port to initialize |
| * |
| * Called just after data structures for each port are |
| * initialized. |
| * |
| * May be used as the port_start() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| int ata_sas_port_start(struct ata_port *ap) |
| { |
| /* |
| * the port is marked as frozen at allocation time, but if we don't |
| * have new eh, we won't thaw it |
| */ |
| if (!ap->ops->error_handler) |
| ap->pflags &= ~ATA_PFLAG_FROZEN; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ata_sas_port_start); |
| |
| /** |
| * ata_port_stop - Undo ata_sas_port_start() |
| * @ap: Port to shut down |
| * |
| * May be used as the port_stop() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| void ata_sas_port_stop(struct ata_port *ap) |
| { |
| } |
| EXPORT_SYMBOL_GPL(ata_sas_port_stop); |
| |
| int ata_sas_async_port_init(struct ata_port *ap) |
| { |
| int rc = ap->ops->port_start(ap); |
| |
| if (!rc) { |
| ap->print_id = atomic_inc_return(&ata_print_id); |
| __ata_port_probe(ap); |
| } |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(ata_sas_async_port_init); |
| |
| /** |
| * ata_sas_port_init - Initialize a SATA device |
| * @ap: SATA port to initialize |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| * RETURNS: |
| * Zero on success, non-zero on error. |
| */ |
| |
| int ata_sas_port_init(struct ata_port *ap) |
| { |
| int rc = ap->ops->port_start(ap); |
| |
| if (!rc) { |
| ap->print_id = atomic_inc_return(&ata_print_id); |
| rc = ata_port_probe(ap); |
| } |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(ata_sas_port_init); |
| |
| /** |
| * ata_sas_port_destroy - Destroy a SATA port allocated by ata_sas_port_alloc |
| * @ap: SATA port to destroy |
| * |
| */ |
| |
| void ata_sas_port_destroy(struct ata_port *ap) |
| { |
| if (ap->ops->port_stop) |
| ap->ops->port_stop(ap); |
| kfree(ap); |
| } |
| EXPORT_SYMBOL_GPL(ata_sas_port_destroy); |
| |
| /** |
| * ata_sas_slave_configure - Default slave_config routine for libata devices |
| * @sdev: SCSI device to configure |
| * @ap: ATA port to which SCSI device is attached |
| * |
| * RETURNS: |
| * Zero. |
| */ |
| |
| int ata_sas_slave_configure(struct scsi_device *sdev, struct ata_port *ap) |
| { |
| ata_scsi_sdev_config(sdev); |
| ata_scsi_dev_config(sdev, ap->link.device); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ata_sas_slave_configure); |
| |
| /** |
| * ata_sas_queuecmd - Issue SCSI cdb to libata-managed device |
| * @cmd: SCSI command to be sent |
| * @ap: ATA port to which the command is being sent |
| * |
| * RETURNS: |
| * Return value from __ata_scsi_queuecmd() if @cmd can be queued, |
| * 0 otherwise. |
| */ |
| |
| int ata_sas_queuecmd(struct scsi_cmnd *cmd, struct ata_port *ap) |
| { |
| int rc = 0; |
| |
| ata_scsi_dump_cdb(ap, cmd); |
| |
| if (likely(ata_dev_enabled(ap->link.device))) |
| rc = __ata_scsi_queuecmd(cmd, ap->link.device); |
| else { |
| cmd->result = (DID_BAD_TARGET << 16); |
| cmd->scsi_done(cmd); |
| } |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(ata_sas_queuecmd); |