blob: c05cf14ef8ff47df47a0305bf5ae5012c0df2bed [file] [log] [blame]
/*
* linux/fs/ufs/inode.c
*
* Copyright (C) 1998
* Daniel Pirkl <daniel.pirkl@email.cz>
* Charles University, Faculty of Mathematics and Physics
*
* from
*
* linux/fs/ext2/inode.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/inode.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
#include <asm/uaccess.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/time.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include "ufs_fs.h"
#include "ufs.h"
#include "swab.h"
#include "util.h"
static int ufs_block_to_path(struct inode *inode, sector_t i_block, unsigned offsets[4])
{
struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
int ptrs = uspi->s_apb;
int ptrs_bits = uspi->s_apbshift;
const long direct_blocks = UFS_NDADDR,
indirect_blocks = ptrs,
double_blocks = (1 << (ptrs_bits * 2));
int n = 0;
UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
if (i_block < direct_blocks) {
offsets[n++] = i_block;
} else if ((i_block -= direct_blocks) < indirect_blocks) {
offsets[n++] = UFS_IND_BLOCK;
offsets[n++] = i_block;
} else if ((i_block -= indirect_blocks) < double_blocks) {
offsets[n++] = UFS_DIND_BLOCK;
offsets[n++] = i_block >> ptrs_bits;
offsets[n++] = i_block & (ptrs - 1);
} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
offsets[n++] = UFS_TIND_BLOCK;
offsets[n++] = i_block >> (ptrs_bits * 2);
offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
offsets[n++] = i_block & (ptrs - 1);
} else {
ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
}
return n;
}
typedef struct {
void *p;
union {
__fs32 key32;
__fs64 key64;
};
struct buffer_head *bh;
} Indirect;
static inline int grow_chain32(struct ufs_inode_info *ufsi,
struct buffer_head *bh, __fs32 *v,
Indirect *from, Indirect *to)
{
Indirect *p;
unsigned seq;
to->bh = bh;
do {
seq = read_seqbegin(&ufsi->meta_lock);
to->key32 = *(__fs32 *)(to->p = v);
for (p = from; p <= to && p->key32 == *(__fs32 *)p->p; p++)
;
} while (read_seqretry(&ufsi->meta_lock, seq));
return (p > to);
}
static inline int grow_chain64(struct ufs_inode_info *ufsi,
struct buffer_head *bh, __fs64 *v,
Indirect *from, Indirect *to)
{
Indirect *p;
unsigned seq;
to->bh = bh;
do {
seq = read_seqbegin(&ufsi->meta_lock);
to->key64 = *(__fs64 *)(to->p = v);
for (p = from; p <= to && p->key64 == *(__fs64 *)p->p; p++)
;
} while (read_seqretry(&ufsi->meta_lock, seq));
return (p > to);
}
/*
* Returns the location of the fragment from
* the beginning of the filesystem.
*/
static u64 ufs_frag_map(struct inode *inode, unsigned offsets[4], int depth)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
int shift = uspi->s_apbshift-uspi->s_fpbshift;
Indirect chain[4], *q = chain;
unsigned *p;
unsigned flags = UFS_SB(sb)->s_flags;
u64 res = 0;
UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
uspi->s_fpbshift, uspi->s_apbmask,
(unsigned long long)mask);
if (depth == 0)
goto no_block;
again:
p = offsets;
if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
goto ufs2;
if (!grow_chain32(ufsi, NULL, &ufsi->i_u1.i_data[*p++], chain, q))
goto changed;
if (!q->key32)
goto no_block;
while (--depth) {
__fs32 *ptr;
struct buffer_head *bh;
unsigned n = *p++;
bh = sb_bread(sb, uspi->s_sbbase +
fs32_to_cpu(sb, q->key32) + (n>>shift));
if (!bh)
goto no_block;
ptr = (__fs32 *)bh->b_data + (n & mask);
if (!grow_chain32(ufsi, bh, ptr, chain, ++q))
goto changed;
if (!q->key32)
goto no_block;
}
res = fs32_to_cpu(sb, q->key32);
goto found;
ufs2:
if (!grow_chain64(ufsi, NULL, &ufsi->i_u1.u2_i_data[*p++], chain, q))
goto changed;
if (!q->key64)
goto no_block;
while (--depth) {
__fs64 *ptr;
struct buffer_head *bh;
unsigned n = *p++;
bh = sb_bread(sb, uspi->s_sbbase +
fs64_to_cpu(sb, q->key64) + (n>>shift));
if (!bh)
goto no_block;
ptr = (__fs64 *)bh->b_data + (n & mask);
if (!grow_chain64(ufsi, bh, ptr, chain, ++q))
goto changed;
if (!q->key64)
goto no_block;
}
res = fs64_to_cpu(sb, q->key64);
found:
res += uspi->s_sbbase;
no_block:
while (q > chain) {
brelse(q->bh);
q--;
}
return res;
changed:
while (q > chain) {
brelse(q->bh);
q--;
}
goto again;
}
/*
* Unpacking tails: we have a file with partial final block and
* we had been asked to extend it. If the fragment being written
* is within the same block, we need to extend the tail just to cover
* that fragment. Otherwise the tail is extended to full block.
*
* Note that we might need to create a _new_ tail, but that will
* be handled elsewhere; this is strictly for resizing old
* ones.
*/
static bool
ufs_extend_tail(struct inode *inode, u64 writes_to,
int *err, struct page *locked_page)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
unsigned lastfrag = ufsi->i_lastfrag; /* it's a short file, so unsigned is enough */
unsigned block = ufs_fragstoblks(lastfrag);
unsigned new_size;
void *p;
u64 tmp;
if (writes_to < (lastfrag | uspi->s_fpbmask))
new_size = (writes_to & uspi->s_fpbmask) + 1;
else
new_size = uspi->s_fpb;
p = ufs_get_direct_data_ptr(uspi, ufsi, block);
tmp = ufs_new_fragments(inode, p, lastfrag, ufs_data_ptr_to_cpu(sb, p),
new_size, err, locked_page);
return tmp != 0;
}
/**
* ufs_inode_getfrag() - allocate new fragment(s)
* @inode: pointer to inode
* @index: number of block pointer within the inode's array.
* @new_fragment: number of new allocated fragment(s)
* @err: we set it if something wrong
* @phys: pointer to where we save physical number of new allocated fragments,
* NULL if we allocate not data(indirect blocks for example).
* @new: we set it if we allocate new block
* @locked_page: for ufs_new_fragments()
*/
static u64
ufs_inode_getfrag(struct inode *inode, unsigned index,
sector_t new_fragment, int *err,
long *phys, int *new, struct page *locked_page)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
u64 tmp, goal, lastfrag;
unsigned nfrags = uspi->s_fpb;
void *p;
/* TODO : to be done for write support
if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
goto ufs2;
*/
p = ufs_get_direct_data_ptr(uspi, ufsi, index);
tmp = ufs_data_ptr_to_cpu(sb, p);
if (tmp)
goto out;
lastfrag = ufsi->i_lastfrag;
/* will that be a new tail? */
if (new_fragment < UFS_NDIR_FRAGMENT && new_fragment >= lastfrag)
nfrags = (new_fragment & uspi->s_fpbmask) + 1;
goal = 0;
if (index) {
goal = ufs_data_ptr_to_cpu(sb,
ufs_get_direct_data_ptr(uspi, ufsi, index - 1));
if (goal)
goal += uspi->s_fpb;
}
tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment),
goal, uspi->s_fpb, err,
phys != NULL ? locked_page : NULL);
if (!tmp) {
*err = -ENOSPC;
return 0;
}
if (phys) {
*err = 0;
*new = 1;
}
inode->i_ctime = CURRENT_TIME_SEC;
if (IS_SYNC(inode))
ufs_sync_inode (inode);
mark_inode_dirty(inode);
out:
return tmp + uspi->s_sbbase;
/* This part : To be implemented ....
Required only for writing, not required for READ-ONLY.
ufs2:
u2_block = ufs_fragstoblks(fragment);
u2_blockoff = ufs_fragnum(fragment);
p = ufsi->i_u1.u2_i_data + block;
goal = 0;
repeat2:
tmp = fs32_to_cpu(sb, *p);
lastfrag = ufsi->i_lastfrag;
*/
}
/**
* ufs_inode_getblock() - allocate new block
* @inode: pointer to inode
* @ind_block: block number of the indirect block
* @index: number of pointer within the indirect block
* @new_fragment: number of new allocated fragment
* (block will hold this fragment and also uspi->s_fpb-1)
* @err: see ufs_inode_getfrag()
* @phys: see ufs_inode_getfrag()
* @new: see ufs_inode_getfrag()
* @locked_page: see ufs_inode_getfrag()
*/
static u64
ufs_inode_getblock(struct inode *inode, u64 ind_block,
unsigned index, sector_t new_fragment, int *err,
long *phys, int *new, struct page *locked_page)
{
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
int shift = uspi->s_apbshift - uspi->s_fpbshift;
u64 tmp = 0, goal;
struct buffer_head *bh;
void *p;
if (!ind_block)
return 0;
bh = sb_bread(sb, ind_block + (index >> shift));
if (unlikely(!bh))
return 0;
index &= uspi->s_apbmask >> uspi->s_fpbshift;
if (uspi->fs_magic == UFS2_MAGIC)
p = (__fs64 *)bh->b_data + index;
else
p = (__fs32 *)bh->b_data + index;
tmp = ufs_data_ptr_to_cpu(sb, p);
if (tmp)
goto out;
if (index && (uspi->fs_magic == UFS2_MAGIC ?
(tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[index-1])) :
(tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[index-1]))))
goal = tmp + uspi->s_fpb;
else
goal = bh->b_blocknr + uspi->s_fpb;
tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
uspi->s_fpb, err, locked_page);
if (!tmp)
goto out;
if (new)
*new = 1;
mark_buffer_dirty(bh);
if (IS_SYNC(inode))
sync_dirty_buffer(bh);
inode->i_ctime = CURRENT_TIME_SEC;
mark_inode_dirty(inode);
out:
brelse (bh);
UFSD("EXIT\n");
if (tmp)
tmp += uspi->s_sbbase;
return tmp;
}
/**
* ufs_getfrag_block() - `get_block_t' function, interface between UFS and
* readpage, writepage and so on
*/
static int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
{
struct super_block * sb = inode->i_sb;
struct ufs_sb_info * sbi = UFS_SB(sb);
struct ufs_sb_private_info * uspi = sbi->s_uspi;
struct buffer_head * bh;
int ret, err, new;
unsigned offsets[4];
int depth = ufs_block_to_path(inode, fragment >> uspi->s_fpbshift, offsets);
unsigned long phys;
u64 phys64 = 0;
unsigned frag = fragment & uspi->s_fpbmask;
if (!create) {
phys64 = ufs_frag_map(inode, offsets, depth);
if (phys64) {
phys64 += frag;
map_bh(bh_result, sb, phys64);
}
return 0;
}
/* This code entered only while writing ....? */
err = -EIO;
new = 0;
ret = 0;
bh = NULL;
mutex_lock(&UFS_I(inode)->truncate_mutex);
UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
if (!depth)
goto abort_too_big;
err = 0;
if (UFS_I(inode)->i_lastfrag < UFS_NDIR_FRAGMENT) {
unsigned lastfrag = UFS_I(inode)->i_lastfrag;
unsigned tailfrags = lastfrag & uspi->s_fpbmask;
if (tailfrags && fragment >= lastfrag) {
if (!ufs_extend_tail(inode, fragment,
&err, bh_result->b_page))
goto abort;
}
}
if (depth == 1) {
phys64 = ufs_inode_getfrag(inode, offsets[0], fragment,
&err, &phys, &new, bh_result->b_page);
if (phys64) {
phys64 += frag;
phys = phys64;
}
goto out;
}
if (depth == 2) {
phys64 = ufs_inode_getfrag(inode, offsets[0], fragment,
&err, NULL, NULL, bh_result->b_page);
goto get_indirect;
}
if (depth == 3) {
phys64 = ufs_inode_getfrag(inode, offsets[0], fragment,
&err, NULL, NULL, bh_result->b_page);
goto get_double;
}
phys64 = ufs_inode_getfrag(inode, offsets[0], fragment,
&err, NULL, NULL, bh_result->b_page);
phys64 = ufs_inode_getblock(inode, phys64, offsets[1],
fragment, &err, NULL, NULL, NULL);
get_double:
phys64 = ufs_inode_getblock(inode, phys64, offsets[depth - 2],
fragment, &err, NULL, NULL, NULL);
get_indirect:
phys64 = ufs_inode_getblock(inode, phys64, offsets[depth - 1],
fragment, &err, &phys, &new, bh_result->b_page);
if (phys64) {
phys64 += frag;
phys = phys64;
}
out:
if (err)
goto abort;
if (new)
set_buffer_new(bh_result);
map_bh(bh_result, sb, phys);
abort:
mutex_unlock(&UFS_I(inode)->truncate_mutex);
return err;
abort_too_big:
ufs_warning(sb, "ufs_get_block", "block > big");
goto abort;
}
static int ufs_writepage(struct page *page, struct writeback_control *wbc)
{
return block_write_full_page(page,ufs_getfrag_block,wbc);
}
static int ufs_readpage(struct file *file, struct page *page)
{
return block_read_full_page(page,ufs_getfrag_block);
}
int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len)
{
return __block_write_begin(page, pos, len, ufs_getfrag_block);
}
static void ufs_truncate_blocks(struct inode *);
static void ufs_write_failed(struct address_space *mapping, loff_t to)
{
struct inode *inode = mapping->host;
if (to > inode->i_size) {
truncate_pagecache(inode, inode->i_size);
ufs_truncate_blocks(inode);
}
}
static int ufs_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
int ret;
ret = block_write_begin(mapping, pos, len, flags, pagep,
ufs_getfrag_block);
if (unlikely(ret))
ufs_write_failed(mapping, pos + len);
return ret;
}
static int ufs_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
int ret;
ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
if (ret < len)
ufs_write_failed(mapping, pos + len);
return ret;
}
static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
{
return generic_block_bmap(mapping,block,ufs_getfrag_block);
}
const struct address_space_operations ufs_aops = {
.readpage = ufs_readpage,
.writepage = ufs_writepage,
.write_begin = ufs_write_begin,
.write_end = ufs_write_end,
.bmap = ufs_bmap
};
static void ufs_set_inode_ops(struct inode *inode)
{
if (S_ISREG(inode->i_mode)) {
inode->i_op = &ufs_file_inode_operations;
inode->i_fop = &ufs_file_operations;
inode->i_mapping->a_ops = &ufs_aops;
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &ufs_dir_inode_operations;
inode->i_fop = &ufs_dir_operations;
inode->i_mapping->a_ops = &ufs_aops;
} else if (S_ISLNK(inode->i_mode)) {
if (!inode->i_blocks) {
inode->i_op = &ufs_fast_symlink_inode_operations;
inode->i_link = (char *)UFS_I(inode)->i_u1.i_symlink;
} else {
inode->i_op = &ufs_symlink_inode_operations;
inode->i_mapping->a_ops = &ufs_aops;
}
} else
init_special_inode(inode, inode->i_mode,
ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
}
static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
umode_t mode;
/*
* Copy data to the in-core inode.
*/
inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
set_nlink(inode, fs16_to_cpu(sb, ufs_inode->ui_nlink));
if (inode->i_nlink == 0) {
ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
return -1;
}
/*
* Linux now has 32-bit uid and gid, so we can support EFT.
*/
i_uid_write(inode, ufs_get_inode_uid(sb, ufs_inode));
i_gid_write(inode, ufs_get_inode_gid(sb, ufs_inode));
inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
inode->i_mtime.tv_nsec = 0;
inode->i_atime.tv_nsec = 0;
inode->i_ctime.tv_nsec = 0;
inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen);
ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr,
sizeof(ufs_inode->ui_u2.ui_addr));
} else {
memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink,
sizeof(ufs_inode->ui_u2.ui_symlink) - 1);
ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0;
}
return 0;
}
static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
umode_t mode;
UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
/*
* Copy data to the in-core inode.
*/
inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
set_nlink(inode, fs16_to_cpu(sb, ufs2_inode->ui_nlink));
if (inode->i_nlink == 0) {
ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
return -1;
}
/*
* Linux now has 32-bit uid and gid, so we can support EFT.
*/
i_uid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_uid));
i_gid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_gid));
inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime);
inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime);
inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime);
inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec);
inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec);
inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec);
inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen);
ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
/*
ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
*/
if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr,
sizeof(ufs2_inode->ui_u2.ui_addr));
} else {
memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink,
sizeof(ufs2_inode->ui_u2.ui_symlink) - 1);
ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0;
}
return 0;
}
struct inode *ufs_iget(struct super_block *sb, unsigned long ino)
{
struct ufs_inode_info *ufsi;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
struct buffer_head * bh;
struct inode *inode;
int err;
UFSD("ENTER, ino %lu\n", ino);
if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) {
ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
ino);
return ERR_PTR(-EIO);
}
inode = iget_locked(sb, ino);
if (!inode)
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW))
return inode;
ufsi = UFS_I(inode);
bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
if (!bh) {
ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
inode->i_ino);
goto bad_inode;
}
if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
err = ufs2_read_inode(inode,
ufs2_inode + ufs_inotofsbo(inode->i_ino));
} else {
struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
err = ufs1_read_inode(inode,
ufs_inode + ufs_inotofsbo(inode->i_ino));
}
if (err)
goto bad_inode;
inode->i_version++;
ufsi->i_lastfrag =
(inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
ufsi->i_dir_start_lookup = 0;
ufsi->i_osync = 0;
ufs_set_inode_ops(inode);
brelse(bh);
UFSD("EXIT\n");
unlock_new_inode(inode);
return inode;
bad_inode:
iget_failed(inode);
return ERR_PTR(-EIO);
}
static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode)
{
struct super_block *sb = inode->i_sb;
struct ufs_inode_info *ufsi = UFS_I(inode);
ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
ufs_set_inode_uid(sb, ufs_inode, i_uid_read(inode));
ufs_set_inode_gid(sb, ufs_inode, i_gid_read(inode));
ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
ufs_inode->ui_atime.tv_usec = 0;
ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
ufs_inode->ui_ctime.tv_usec = 0;
ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
ufs_inode->ui_mtime.tv_usec = 0;
ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) {
ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
}
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
/* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
} else if (inode->i_blocks) {
memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data,
sizeof(ufs_inode->ui_u2.ui_addr));
}
else {
memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
sizeof(ufs_inode->ui_u2.ui_symlink));
}
if (!inode->i_nlink)
memset (ufs_inode, 0, sizeof(struct ufs_inode));
}
static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode)
{
struct super_block *sb = inode->i_sb;
struct ufs_inode_info *ufsi = UFS_I(inode);
UFSD("ENTER\n");
ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
ufs_inode->ui_uid = cpu_to_fs32(sb, i_uid_read(inode));
ufs_inode->ui_gid = cpu_to_fs32(sb, i_gid_read(inode));
ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec);
ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec);
ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec);
ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec);
ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec);
ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec);
ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks);
ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
/* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0];
} else if (inode->i_blocks) {
memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data,
sizeof(ufs_inode->ui_u2.ui_addr));
} else {
memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
sizeof(ufs_inode->ui_u2.ui_symlink));
}
if (!inode->i_nlink)
memset (ufs_inode, 0, sizeof(struct ufs2_inode));
UFSD("EXIT\n");
}
static int ufs_update_inode(struct inode * inode, int do_sync)
{
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
struct buffer_head * bh;
UFSD("ENTER, ino %lu\n", inode->i_ino);
if (inode->i_ino < UFS_ROOTINO ||
inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
return -1;
}
bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
if (!bh) {
ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
return -1;
}
if (uspi->fs_magic == UFS2_MAGIC) {
struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
ufs2_update_inode(inode,
ufs2_inode + ufs_inotofsbo(inode->i_ino));
} else {
struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data;
ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
}
mark_buffer_dirty(bh);
if (do_sync)
sync_dirty_buffer(bh);
brelse (bh);
UFSD("EXIT\n");
return 0;
}
int ufs_write_inode(struct inode *inode, struct writeback_control *wbc)
{
return ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
}
int ufs_sync_inode (struct inode *inode)
{
return ufs_update_inode (inode, 1);
}
void ufs_evict_inode(struct inode * inode)
{
int want_delete = 0;
if (!inode->i_nlink && !is_bad_inode(inode))
want_delete = 1;
truncate_inode_pages_final(&inode->i_data);
if (want_delete) {
inode->i_size = 0;
if (inode->i_blocks)
ufs_truncate_blocks(inode);
}
invalidate_inode_buffers(inode);
clear_inode(inode);
if (want_delete)
ufs_free_inode(inode);
}
struct to_free {
struct inode *inode;
u64 to;
unsigned count;
};
static inline void free_data(struct to_free *ctx, u64 from, unsigned count)
{
if (ctx->count && ctx->to != from) {
ufs_free_blocks(ctx->inode, ctx->to - ctx->count, ctx->count);
ctx->count = 0;
}
ctx->count += count;
ctx->to = from + count;
}
#define DIRECT_BLOCK ((inode->i_size + uspi->s_bsize - 1) >> uspi->s_bshift)
#define DIRECT_FRAGMENT ((inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift)
static void ufs_trunc_direct(struct inode *inode)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block * sb;
struct ufs_sb_private_info * uspi;
void *p;
u64 frag1, frag2, frag3, frag4, block1, block2;
struct to_free ctx = {.inode = inode};
unsigned i, tmp;
UFSD("ENTER: ino %lu\n", inode->i_ino);
sb = inode->i_sb;
uspi = UFS_SB(sb)->s_uspi;
frag1 = DIRECT_FRAGMENT;
frag4 = min_t(u64, UFS_NDIR_FRAGMENT, ufsi->i_lastfrag);
frag2 = ((frag1 & uspi->s_fpbmask) ? ((frag1 | uspi->s_fpbmask) + 1) : frag1);
frag3 = frag4 & ~uspi->s_fpbmask;
block1 = block2 = 0;
if (frag2 > frag3) {
frag2 = frag4;
frag3 = frag4 = 0;
} else if (frag2 < frag3) {
block1 = ufs_fragstoblks (frag2);
block2 = ufs_fragstoblks (frag3);
}
UFSD("ino %lu, frag1 %llu, frag2 %llu, block1 %llu, block2 %llu,"
" frag3 %llu, frag4 %llu\n", inode->i_ino,
(unsigned long long)frag1, (unsigned long long)frag2,
(unsigned long long)block1, (unsigned long long)block2,
(unsigned long long)frag3, (unsigned long long)frag4);
if (frag1 >= frag2)
goto next1;
/*
* Free first free fragments
*/
p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag1));
tmp = ufs_data_ptr_to_cpu(sb, p);
if (!tmp )
ufs_panic (sb, "ufs_trunc_direct", "internal error");
frag2 -= frag1;
frag1 = ufs_fragnum (frag1);
ufs_free_fragments(inode, tmp + frag1, frag2);
next1:
/*
* Free whole blocks
*/
for (i = block1 ; i < block2; i++) {
p = ufs_get_direct_data_ptr(uspi, ufsi, i);
tmp = ufs_data_ptr_to_cpu(sb, p);
if (!tmp)
continue;
write_seqlock(&ufsi->meta_lock);
ufs_data_ptr_clear(uspi, p);
write_sequnlock(&ufsi->meta_lock);
free_data(&ctx, tmp, uspi->s_fpb);
}
free_data(&ctx, 0, 0);
if (frag3 >= frag4)
goto next3;
/*
* Free last free fragments
*/
p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag3));
tmp = ufs_data_ptr_to_cpu(sb, p);
if (!tmp )
ufs_panic(sb, "ufs_truncate_direct", "internal error");
frag4 = ufs_fragnum (frag4);
write_seqlock(&ufsi->meta_lock);
ufs_data_ptr_clear(uspi, p);
write_sequnlock(&ufsi->meta_lock);
ufs_free_fragments (inode, tmp, frag4);
next3:
UFSD("EXIT: ino %lu\n", inode->i_ino);
}
static void free_full_branch(struct inode *inode, u64 ind_block, int depth)
{
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
struct ufs_buffer_head *ubh = ubh_bread(sb, ind_block, uspi->s_bsize);
unsigned i;
if (!ubh)
return;
if (--depth) {
for (i = 0; i < uspi->s_apb; i++) {
void *p = ubh_get_data_ptr(uspi, ubh, i);
u64 block = ufs_data_ptr_to_cpu(sb, p);
if (block)
free_full_branch(inode, block, depth);
}
} else {
struct to_free ctx = {.inode = inode};
for (i = 0; i < uspi->s_apb; i++) {
void *p = ubh_get_data_ptr(uspi, ubh, i);
u64 block = ufs_data_ptr_to_cpu(sb, p);
if (block)
free_data(&ctx, block, uspi->s_fpb);
}
free_data(&ctx, 0, 0);
}
ubh_bforget(ubh);
ufs_free_blocks(inode, ind_block, uspi->s_fpb);
}
static void free_branch_tail(struct inode *inode, unsigned from, struct ufs_buffer_head *ubh, int depth)
{
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
unsigned i;
if (--depth) {
for (i = from; i < uspi->s_apb ; i++) {
void *p = ubh_get_data_ptr(uspi, ubh, i);
u64 block = ufs_data_ptr_to_cpu(sb, p);
if (block) {
write_seqlock(&UFS_I(inode)->meta_lock);
ufs_data_ptr_clear(uspi, p);
write_sequnlock(&UFS_I(inode)->meta_lock);
ubh_mark_buffer_dirty(ubh);
free_full_branch(inode, block, depth);
}
}
} else {
struct to_free ctx = {.inode = inode};
for (i = from; i < uspi->s_apb; i++) {
void *p = ubh_get_data_ptr(uspi, ubh, i);
u64 block = ufs_data_ptr_to_cpu(sb, p);
if (block) {
write_seqlock(&UFS_I(inode)->meta_lock);
ufs_data_ptr_clear(uspi, p);
write_sequnlock(&UFS_I(inode)->meta_lock);
ubh_mark_buffer_dirty(ubh);
free_data(&ctx, block, uspi->s_fpb);
}
}
free_data(&ctx, 0, 0);
}
if (IS_SYNC(inode) && ubh_buffer_dirty(ubh))
ubh_sync_block(ubh);
ubh_brelse(ubh);
}
static int ufs_alloc_lastblock(struct inode *inode, loff_t size)
{
int err = 0;
struct super_block *sb = inode->i_sb;
struct address_space *mapping = inode->i_mapping;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
unsigned i, end;
sector_t lastfrag;
struct page *lastpage;
struct buffer_head *bh;
u64 phys64;
lastfrag = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
if (!lastfrag)
goto out;
lastfrag--;
lastpage = ufs_get_locked_page(mapping, lastfrag >>
(PAGE_CACHE_SHIFT - inode->i_blkbits));
if (IS_ERR(lastpage)) {
err = -EIO;
goto out;
}
end = lastfrag & ((1 << (PAGE_CACHE_SHIFT - inode->i_blkbits)) - 1);
bh = page_buffers(lastpage);
for (i = 0; i < end; ++i)
bh = bh->b_this_page;
err = ufs_getfrag_block(inode, lastfrag, bh, 1);
if (unlikely(err))
goto out_unlock;
if (buffer_new(bh)) {
clear_buffer_new(bh);
unmap_underlying_metadata(bh->b_bdev,
bh->b_blocknr);
/*
* we do not zeroize fragment, because of
* if it maped to hole, it already contains zeroes
*/
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
set_page_dirty(lastpage);
}
if (lastfrag >= UFS_IND_FRAGMENT) {
end = uspi->s_fpb - ufs_fragnum(lastfrag) - 1;
phys64 = bh->b_blocknr + 1;
for (i = 0; i < end; ++i) {
bh = sb_getblk(sb, i + phys64);
lock_buffer(bh);
memset(bh->b_data, 0, sb->s_blocksize);
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
unlock_buffer(bh);
sync_dirty_buffer(bh);
brelse(bh);
}
}
out_unlock:
ufs_put_locked_page(lastpage);
out:
return err;
}
static void __ufs_truncate_blocks(struct inode *inode)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
unsigned offsets[4];
int depth = ufs_block_to_path(inode, DIRECT_BLOCK, offsets);
int depth2;
unsigned i;
struct ufs_buffer_head *ubh[3];
void *p;
u64 block;
if (!depth)
return;
/* find the last non-zero in offsets[] */
for (depth2 = depth - 1; depth2; depth2--)
if (offsets[depth2])
break;
mutex_lock(&ufsi->truncate_mutex);
if (depth == 1) {
ufs_trunc_direct(inode);
offsets[0] = UFS_IND_BLOCK;
} else {
/* get the blocks that should be partially emptied */
p = ufs_get_direct_data_ptr(uspi, ufsi, offsets[0]);
for (i = 0; i < depth2; i++) {
offsets[i]++; /* next branch is fully freed */
block = ufs_data_ptr_to_cpu(sb, p);
if (!block)
break;
ubh[i] = ubh_bread(sb, block, uspi->s_bsize);
if (!ubh[i]) {
write_seqlock(&ufsi->meta_lock);
ufs_data_ptr_clear(uspi, p);
write_sequnlock(&ufsi->meta_lock);
break;
}
p = ubh_get_data_ptr(uspi, ubh[i], offsets[i + 1]);
}
while (i--)
free_branch_tail(inode, offsets[i + 1], ubh[i], depth - i - 1);
}
for (i = offsets[0]; i <= UFS_TIND_BLOCK; i++) {
p = ufs_get_direct_data_ptr(uspi, ufsi, i);
block = ufs_data_ptr_to_cpu(sb, p);
if (block) {
write_seqlock(&ufsi->meta_lock);
ufs_data_ptr_clear(uspi, p);
write_sequnlock(&ufsi->meta_lock);
free_full_branch(inode, block, i - UFS_IND_BLOCK + 1);
}
}
ufsi->i_lastfrag = DIRECT_FRAGMENT;
mark_inode_dirty(inode);
mutex_unlock(&ufsi->truncate_mutex);
}
static int ufs_truncate(struct inode *inode, loff_t size)
{
int err = 0;
UFSD("ENTER: ino %lu, i_size: %llu, old_i_size: %llu\n",
inode->i_ino, (unsigned long long)size,
(unsigned long long)i_size_read(inode));
if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
S_ISLNK(inode->i_mode)))
return -EINVAL;
if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
return -EPERM;
err = ufs_alloc_lastblock(inode, size);
if (err)
goto out;
block_truncate_page(inode->i_mapping, size, ufs_getfrag_block);
truncate_setsize(inode, size);
__ufs_truncate_blocks(inode);
inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
mark_inode_dirty(inode);
out:
UFSD("EXIT: err %d\n", err);
return err;
}
void ufs_truncate_blocks(struct inode *inode)
{
if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
S_ISLNK(inode->i_mode)))
return;
if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
return;
__ufs_truncate_blocks(inode);
}
int ufs_setattr(struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = d_inode(dentry);
unsigned int ia_valid = attr->ia_valid;
int error;
error = inode_change_ok(inode, attr);
if (error)
return error;
if (ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
error = ufs_truncate(inode, attr->ia_size);
if (error)
return error;
}
setattr_copy(inode, attr);
mark_inode_dirty(inode);
return 0;
}
const struct inode_operations ufs_file_inode_operations = {
.setattr = ufs_setattr,
};