| /* |
| * Copyright (C) 1995 Linus Torvalds |
| * |
| * Pentium III FXSR, SSE support |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| */ |
| |
| /* |
| * This file handles the architecture-dependent parts of process handling.. |
| */ |
| |
| #include <linux/stackprotector.h> |
| #include <linux/cpu.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/fs.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/elfcore.h> |
| #include <linux/smp.h> |
| #include <linux/stddef.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/user.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/reboot.h> |
| #include <linux/init.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/module.h> |
| #include <linux/kallsyms.h> |
| #include <linux/ptrace.h> |
| #include <linux/personality.h> |
| #include <linux/tick.h> |
| #include <linux/percpu.h> |
| #include <linux/prctl.h> |
| #include <linux/ftrace.h> |
| #include <linux/uaccess.h> |
| #include <linux/io.h> |
| #include <linux/kdebug.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/system.h> |
| #include <asm/ldt.h> |
| #include <asm/processor.h> |
| #include <asm/i387.h> |
| #include <asm/desc.h> |
| #ifdef CONFIG_MATH_EMULATION |
| #include <asm/math_emu.h> |
| #endif |
| |
| #include <linux/err.h> |
| |
| #include <asm/tlbflush.h> |
| #include <asm/cpu.h> |
| #include <asm/idle.h> |
| #include <asm/syscalls.h> |
| #include <asm/ds.h> |
| #include <asm/debugreg.h> |
| |
| asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); |
| |
| /* |
| * Return saved PC of a blocked thread. |
| */ |
| unsigned long thread_saved_pc(struct task_struct *tsk) |
| { |
| return ((unsigned long *)tsk->thread.sp)[3]; |
| } |
| |
| #ifndef CONFIG_SMP |
| static inline void play_dead(void) |
| { |
| BUG(); |
| } |
| #endif |
| |
| /* |
| * The idle thread. There's no useful work to be |
| * done, so just try to conserve power and have a |
| * low exit latency (ie sit in a loop waiting for |
| * somebody to say that they'd like to reschedule) |
| */ |
| void cpu_idle(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| /* |
| * If we're the non-boot CPU, nothing set the stack canary up |
| * for us. CPU0 already has it initialized but no harm in |
| * doing it again. This is a good place for updating it, as |
| * we wont ever return from this function (so the invalid |
| * canaries already on the stack wont ever trigger). |
| */ |
| boot_init_stack_canary(); |
| |
| current_thread_info()->status |= TS_POLLING; |
| |
| /* endless idle loop with no priority at all */ |
| while (1) { |
| tick_nohz_stop_sched_tick(1); |
| while (!need_resched()) { |
| |
| check_pgt_cache(); |
| rmb(); |
| |
| if (cpu_is_offline(cpu)) |
| play_dead(); |
| |
| local_irq_disable(); |
| /* Don't trace irqs off for idle */ |
| stop_critical_timings(); |
| pm_idle(); |
| start_critical_timings(); |
| } |
| tick_nohz_restart_sched_tick(); |
| preempt_enable_no_resched(); |
| schedule(); |
| preempt_disable(); |
| } |
| } |
| |
| void __show_regs(struct pt_regs *regs, int all) |
| { |
| unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; |
| unsigned long d0, d1, d2, d3, d6, d7; |
| unsigned long sp; |
| unsigned short ss, gs; |
| |
| if (user_mode_vm(regs)) { |
| sp = regs->sp; |
| ss = regs->ss & 0xffff; |
| gs = get_user_gs(regs); |
| } else { |
| sp = kernel_stack_pointer(regs); |
| savesegment(ss, ss); |
| savesegment(gs, gs); |
| } |
| |
| show_regs_common(); |
| |
| printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n", |
| (u16)regs->cs, regs->ip, regs->flags, |
| smp_processor_id()); |
| print_symbol("EIP is at %s\n", regs->ip); |
| |
| printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", |
| regs->ax, regs->bx, regs->cx, regs->dx); |
| printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n", |
| regs->si, regs->di, regs->bp, sp); |
| printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n", |
| (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss); |
| |
| if (!all) |
| return; |
| |
| cr0 = read_cr0(); |
| cr2 = read_cr2(); |
| cr3 = read_cr3(); |
| cr4 = read_cr4_safe(); |
| printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", |
| cr0, cr2, cr3, cr4); |
| |
| get_debugreg(d0, 0); |
| get_debugreg(d1, 1); |
| get_debugreg(d2, 2); |
| get_debugreg(d3, 3); |
| printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", |
| d0, d1, d2, d3); |
| |
| get_debugreg(d6, 6); |
| get_debugreg(d7, 7); |
| printk("DR6: %08lx DR7: %08lx\n", |
| d6, d7); |
| } |
| |
| void show_regs(struct pt_regs *regs) |
| { |
| show_registers(regs); |
| show_trace(NULL, regs, ®s->sp, regs->bp); |
| } |
| |
| /* |
| * This gets run with %bx containing the |
| * function to call, and %dx containing |
| * the "args". |
| */ |
| extern void kernel_thread_helper(void); |
| |
| /* |
| * Create a kernel thread |
| */ |
| int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) |
| { |
| struct pt_regs regs; |
| |
| memset(®s, 0, sizeof(regs)); |
| |
| regs.bx = (unsigned long) fn; |
| regs.dx = (unsigned long) arg; |
| |
| regs.ds = __USER_DS; |
| regs.es = __USER_DS; |
| regs.fs = __KERNEL_PERCPU; |
| regs.gs = __KERNEL_STACK_CANARY; |
| regs.orig_ax = -1; |
| regs.ip = (unsigned long) kernel_thread_helper; |
| regs.cs = __KERNEL_CS | get_kernel_rpl(); |
| regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2; |
| |
| /* Ok, create the new process.. */ |
| return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); |
| } |
| EXPORT_SYMBOL(kernel_thread); |
| |
| void release_thread(struct task_struct *dead_task) |
| { |
| BUG_ON(dead_task->mm); |
| release_vm86_irqs(dead_task); |
| } |
| |
| /* |
| * This gets called before we allocate a new thread and copy |
| * the current task into it. |
| */ |
| void prepare_to_copy(struct task_struct *tsk) |
| { |
| unlazy_fpu(tsk); |
| } |
| |
| int copy_thread(unsigned long clone_flags, unsigned long sp, |
| unsigned long unused, |
| struct task_struct *p, struct pt_regs *regs) |
| { |
| struct pt_regs *childregs; |
| struct task_struct *tsk; |
| int err; |
| |
| childregs = task_pt_regs(p); |
| *childregs = *regs; |
| childregs->ax = 0; |
| childregs->sp = sp; |
| |
| p->thread.sp = (unsigned long) childregs; |
| p->thread.sp0 = (unsigned long) (childregs+1); |
| |
| p->thread.ip = (unsigned long) ret_from_fork; |
| |
| task_user_gs(p) = get_user_gs(regs); |
| |
| p->thread.io_bitmap_ptr = NULL; |
| tsk = current; |
| err = -ENOMEM; |
| |
| memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); |
| |
| if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) { |
| p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr, |
| IO_BITMAP_BYTES, GFP_KERNEL); |
| if (!p->thread.io_bitmap_ptr) { |
| p->thread.io_bitmap_max = 0; |
| return -ENOMEM; |
| } |
| set_tsk_thread_flag(p, TIF_IO_BITMAP); |
| } |
| |
| err = 0; |
| |
| /* |
| * Set a new TLS for the child thread? |
| */ |
| if (clone_flags & CLONE_SETTLS) |
| err = do_set_thread_area(p, -1, |
| (struct user_desc __user *)childregs->si, 0); |
| |
| if (err && p->thread.io_bitmap_ptr) { |
| kfree(p->thread.io_bitmap_ptr); |
| p->thread.io_bitmap_max = 0; |
| } |
| |
| clear_tsk_thread_flag(p, TIF_DS_AREA_MSR); |
| p->thread.ds_ctx = NULL; |
| |
| clear_tsk_thread_flag(p, TIF_DEBUGCTLMSR); |
| p->thread.debugctlmsr = 0; |
| |
| return err; |
| } |
| |
| void |
| start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) |
| { |
| set_user_gs(regs, 0); |
| regs->fs = 0; |
| set_fs(USER_DS); |
| regs->ds = __USER_DS; |
| regs->es = __USER_DS; |
| regs->ss = __USER_DS; |
| regs->cs = __USER_CS; |
| regs->ip = new_ip; |
| regs->sp = new_sp; |
| /* |
| * Free the old FP and other extended state |
| */ |
| free_thread_xstate(current); |
| } |
| EXPORT_SYMBOL_GPL(start_thread); |
| |
| |
| /* |
| * switch_to(x,yn) should switch tasks from x to y. |
| * |
| * We fsave/fwait so that an exception goes off at the right time |
| * (as a call from the fsave or fwait in effect) rather than to |
| * the wrong process. Lazy FP saving no longer makes any sense |
| * with modern CPU's, and this simplifies a lot of things (SMP |
| * and UP become the same). |
| * |
| * NOTE! We used to use the x86 hardware context switching. The |
| * reason for not using it any more becomes apparent when you |
| * try to recover gracefully from saved state that is no longer |
| * valid (stale segment register values in particular). With the |
| * hardware task-switch, there is no way to fix up bad state in |
| * a reasonable manner. |
| * |
| * The fact that Intel documents the hardware task-switching to |
| * be slow is a fairly red herring - this code is not noticeably |
| * faster. However, there _is_ some room for improvement here, |
| * so the performance issues may eventually be a valid point. |
| * More important, however, is the fact that this allows us much |
| * more flexibility. |
| * |
| * The return value (in %ax) will be the "prev" task after |
| * the task-switch, and shows up in ret_from_fork in entry.S, |
| * for example. |
| */ |
| __notrace_funcgraph struct task_struct * |
| __switch_to(struct task_struct *prev_p, struct task_struct *next_p) |
| { |
| struct thread_struct *prev = &prev_p->thread, |
| *next = &next_p->thread; |
| int cpu = smp_processor_id(); |
| struct tss_struct *tss = &per_cpu(init_tss, cpu); |
| bool preload_fpu; |
| |
| /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ |
| |
| /* |
| * If the task has used fpu the last 5 timeslices, just do a full |
| * restore of the math state immediately to avoid the trap; the |
| * chances of needing FPU soon are obviously high now |
| */ |
| preload_fpu = tsk_used_math(next_p) && next_p->fpu_counter > 5; |
| |
| __unlazy_fpu(prev_p); |
| |
| /* we're going to use this soon, after a few expensive things */ |
| if (preload_fpu) |
| prefetch(next->xstate); |
| |
| /* |
| * Reload esp0. |
| */ |
| load_sp0(tss, next); |
| |
| /* |
| * Save away %gs. No need to save %fs, as it was saved on the |
| * stack on entry. No need to save %es and %ds, as those are |
| * always kernel segments while inside the kernel. Doing this |
| * before setting the new TLS descriptors avoids the situation |
| * where we temporarily have non-reloadable segments in %fs |
| * and %gs. This could be an issue if the NMI handler ever |
| * used %fs or %gs (it does not today), or if the kernel is |
| * running inside of a hypervisor layer. |
| */ |
| lazy_save_gs(prev->gs); |
| |
| /* |
| * Load the per-thread Thread-Local Storage descriptor. |
| */ |
| load_TLS(next, cpu); |
| |
| /* |
| * Restore IOPL if needed. In normal use, the flags restore |
| * in the switch assembly will handle this. But if the kernel |
| * is running virtualized at a non-zero CPL, the popf will |
| * not restore flags, so it must be done in a separate step. |
| */ |
| if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) |
| set_iopl_mask(next->iopl); |
| |
| /* |
| * Now maybe handle debug registers and/or IO bitmaps |
| */ |
| if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV || |
| task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) |
| __switch_to_xtra(prev_p, next_p, tss); |
| |
| /* If we're going to preload the fpu context, make sure clts |
| is run while we're batching the cpu state updates. */ |
| if (preload_fpu) |
| clts(); |
| |
| /* |
| * Leave lazy mode, flushing any hypercalls made here. |
| * This must be done before restoring TLS segments so |
| * the GDT and LDT are properly updated, and must be |
| * done before math_state_restore, so the TS bit is up |
| * to date. |
| */ |
| arch_end_context_switch(next_p); |
| |
| if (preload_fpu) |
| __math_state_restore(); |
| |
| /* |
| * Restore %gs if needed (which is common) |
| */ |
| if (prev->gs | next->gs) |
| lazy_load_gs(next->gs); |
| |
| percpu_write(current_task, next_p); |
| |
| return prev_p; |
| } |
| |
| int sys_clone(struct pt_regs *regs) |
| { |
| unsigned long clone_flags; |
| unsigned long newsp; |
| int __user *parent_tidptr, *child_tidptr; |
| |
| clone_flags = regs->bx; |
| newsp = regs->cx; |
| parent_tidptr = (int __user *)regs->dx; |
| child_tidptr = (int __user *)regs->di; |
| if (!newsp) |
| newsp = regs->sp; |
| return do_fork(clone_flags, newsp, regs, 0, parent_tidptr, child_tidptr); |
| } |
| |
| /* |
| * sys_execve() executes a new program. |
| */ |
| int sys_execve(struct pt_regs *regs) |
| { |
| int error; |
| char *filename; |
| |
| filename = getname((char __user *) regs->bx); |
| error = PTR_ERR(filename); |
| if (IS_ERR(filename)) |
| goto out; |
| error = do_execve(filename, |
| (char __user * __user *) regs->cx, |
| (char __user * __user *) regs->dx, |
| regs); |
| if (error == 0) { |
| /* Make sure we don't return using sysenter.. */ |
| set_thread_flag(TIF_IRET); |
| } |
| putname(filename); |
| out: |
| return error; |
| } |
| |
| #define top_esp (THREAD_SIZE - sizeof(unsigned long)) |
| #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long)) |
| |
| unsigned long get_wchan(struct task_struct *p) |
| { |
| unsigned long bp, sp, ip; |
| unsigned long stack_page; |
| int count = 0; |
| if (!p || p == current || p->state == TASK_RUNNING) |
| return 0; |
| stack_page = (unsigned long)task_stack_page(p); |
| sp = p->thread.sp; |
| if (!stack_page || sp < stack_page || sp > top_esp+stack_page) |
| return 0; |
| /* include/asm-i386/system.h:switch_to() pushes bp last. */ |
| bp = *(unsigned long *) sp; |
| do { |
| if (bp < stack_page || bp > top_ebp+stack_page) |
| return 0; |
| ip = *(unsigned long *) (bp+4); |
| if (!in_sched_functions(ip)) |
| return ip; |
| bp = *(unsigned long *) bp; |
| } while (count++ < 16); |
| return 0; |
| } |
| |