blob: c76ea53c20ce7dbe41863c00930853a59ccc6cf8 [file] [log] [blame]
/*
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "ath9k.h"
#include "ar9003_mac.h"
#define SKB_CB_ATHBUF(__skb) (*((struct ath_buf **)__skb->cb))
static inline bool ath_is_alt_ant_ratio_better(int alt_ratio, int maxdelta,
int mindelta, int main_rssi_avg,
int alt_rssi_avg, int pkt_count)
{
return (((alt_ratio >= ATH_ANT_DIV_COMB_ALT_ANT_RATIO2) &&
(alt_rssi_avg > main_rssi_avg + maxdelta)) ||
(alt_rssi_avg > main_rssi_avg + mindelta)) && (pkt_count > 50);
}
static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
{
return sc->ps_enabled &&
(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
}
static struct ieee80211_hw * ath_get_virt_hw(struct ath_softc *sc,
struct ieee80211_hdr *hdr)
{
struct ieee80211_hw *hw = sc->pri_wiphy->hw;
int i;
spin_lock_bh(&sc->wiphy_lock);
for (i = 0; i < sc->num_sec_wiphy; i++) {
struct ath_wiphy *aphy = sc->sec_wiphy[i];
if (aphy == NULL)
continue;
if (compare_ether_addr(hdr->addr1, aphy->hw->wiphy->perm_addr)
== 0) {
hw = aphy->hw;
break;
}
}
spin_unlock_bh(&sc->wiphy_lock);
return hw;
}
/*
* Setup and link descriptors.
*
* 11N: we can no longer afford to self link the last descriptor.
* MAC acknowledges BA status as long as it copies frames to host
* buffer (or rx fifo). This can incorrectly acknowledge packets
* to a sender if last desc is self-linked.
*/
static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_desc *ds;
struct sk_buff *skb;
ATH_RXBUF_RESET(bf);
ds = bf->bf_desc;
ds->ds_link = 0; /* link to null */
ds->ds_data = bf->bf_buf_addr;
/* virtual addr of the beginning of the buffer. */
skb = bf->bf_mpdu;
BUG_ON(skb == NULL);
ds->ds_vdata = skb->data;
/*
* setup rx descriptors. The rx_bufsize here tells the hardware
* how much data it can DMA to us and that we are prepared
* to process
*/
ath9k_hw_setuprxdesc(ah, ds,
common->rx_bufsize,
0);
if (sc->rx.rxlink == NULL)
ath9k_hw_putrxbuf(ah, bf->bf_daddr);
else
*sc->rx.rxlink = bf->bf_daddr;
sc->rx.rxlink = &ds->ds_link;
ath9k_hw_rxena(ah);
}
static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
{
/* XXX block beacon interrupts */
ath9k_hw_setantenna(sc->sc_ah, antenna);
sc->rx.defant = antenna;
sc->rx.rxotherant = 0;
}
static void ath_opmode_init(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
u32 rfilt, mfilt[2];
/* configure rx filter */
rfilt = ath_calcrxfilter(sc);
ath9k_hw_setrxfilter(ah, rfilt);
/* configure bssid mask */
ath_hw_setbssidmask(common);
/* configure operational mode */
ath9k_hw_setopmode(ah);
/* calculate and install multicast filter */
mfilt[0] = mfilt[1] = ~0;
ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
}
static bool ath_rx_edma_buf_link(struct ath_softc *sc,
enum ath9k_rx_qtype qtype)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_rx_edma *rx_edma;
struct sk_buff *skb;
struct ath_buf *bf;
rx_edma = &sc->rx.rx_edma[qtype];
if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
return false;
bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
list_del_init(&bf->list);
skb = bf->bf_mpdu;
ATH_RXBUF_RESET(bf);
memset(skb->data, 0, ah->caps.rx_status_len);
dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
ah->caps.rx_status_len, DMA_TO_DEVICE);
SKB_CB_ATHBUF(skb) = bf;
ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
skb_queue_tail(&rx_edma->rx_fifo, skb);
return true;
}
static void ath_rx_addbuffer_edma(struct ath_softc *sc,
enum ath9k_rx_qtype qtype, int size)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
u32 nbuf = 0;
if (list_empty(&sc->rx.rxbuf)) {
ath_print(common, ATH_DBG_QUEUE, "No free rx buf available\n");
return;
}
while (!list_empty(&sc->rx.rxbuf)) {
nbuf++;
if (!ath_rx_edma_buf_link(sc, qtype))
break;
if (nbuf >= size)
break;
}
}
static void ath_rx_remove_buffer(struct ath_softc *sc,
enum ath9k_rx_qtype qtype)
{
struct ath_buf *bf;
struct ath_rx_edma *rx_edma;
struct sk_buff *skb;
rx_edma = &sc->rx.rx_edma[qtype];
while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
bf = SKB_CB_ATHBUF(skb);
BUG_ON(!bf);
list_add_tail(&bf->list, &sc->rx.rxbuf);
}
}
static void ath_rx_edma_cleanup(struct ath_softc *sc)
{
struct ath_buf *bf;
ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
list_for_each_entry(bf, &sc->rx.rxbuf, list) {
if (bf->bf_mpdu)
dev_kfree_skb_any(bf->bf_mpdu);
}
INIT_LIST_HEAD(&sc->rx.rxbuf);
kfree(sc->rx.rx_bufptr);
sc->rx.rx_bufptr = NULL;
}
static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
{
skb_queue_head_init(&rx_edma->rx_fifo);
skb_queue_head_init(&rx_edma->rx_buffers);
rx_edma->rx_fifo_hwsize = size;
}
static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_hw *ah = sc->sc_ah;
struct sk_buff *skb;
struct ath_buf *bf;
int error = 0, i;
u32 size;
common->rx_bufsize = roundup(IEEE80211_MAX_MPDU_LEN +
ah->caps.rx_status_len,
min(common->cachelsz, (u16)64));
ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
ah->caps.rx_status_len);
ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
ah->caps.rx_lp_qdepth);
ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
ah->caps.rx_hp_qdepth);
size = sizeof(struct ath_buf) * nbufs;
bf = kzalloc(size, GFP_KERNEL);
if (!bf)
return -ENOMEM;
INIT_LIST_HEAD(&sc->rx.rxbuf);
sc->rx.rx_bufptr = bf;
for (i = 0; i < nbufs; i++, bf++) {
skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
if (!skb) {
error = -ENOMEM;
goto rx_init_fail;
}
memset(skb->data, 0, common->rx_bufsize);
bf->bf_mpdu = skb;
bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
common->rx_bufsize,
DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(sc->dev,
bf->bf_buf_addr))) {
dev_kfree_skb_any(skb);
bf->bf_mpdu = NULL;
bf->bf_buf_addr = 0;
ath_print(common, ATH_DBG_FATAL,
"dma_mapping_error() on RX init\n");
error = -ENOMEM;
goto rx_init_fail;
}
list_add_tail(&bf->list, &sc->rx.rxbuf);
}
return 0;
rx_init_fail:
ath_rx_edma_cleanup(sc);
return error;
}
static void ath_edma_start_recv(struct ath_softc *sc)
{
spin_lock_bh(&sc->rx.rxbuflock);
ath9k_hw_rxena(sc->sc_ah);
ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP,
sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize);
ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP,
sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize);
ath_opmode_init(sc);
ath9k_hw_startpcureceive(sc->sc_ah, (sc->sc_flags & SC_OP_OFFCHANNEL));
spin_unlock_bh(&sc->rx.rxbuflock);
}
static void ath_edma_stop_recv(struct ath_softc *sc)
{
ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
}
int ath_rx_init(struct ath_softc *sc, int nbufs)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct sk_buff *skb;
struct ath_buf *bf;
int error = 0;
spin_lock_init(&sc->rx.pcu_lock);
sc->sc_flags &= ~SC_OP_RXFLUSH;
spin_lock_init(&sc->rx.rxbuflock);
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
return ath_rx_edma_init(sc, nbufs);
} else {
common->rx_bufsize = roundup(IEEE80211_MAX_MPDU_LEN,
min(common->cachelsz, (u16)64));
ath_print(common, ATH_DBG_CONFIG, "cachelsz %u rxbufsize %u\n",
common->cachelsz, common->rx_bufsize);
/* Initialize rx descriptors */
error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
"rx", nbufs, 1, 0);
if (error != 0) {
ath_print(common, ATH_DBG_FATAL,
"failed to allocate rx descriptors: %d\n",
error);
goto err;
}
list_for_each_entry(bf, &sc->rx.rxbuf, list) {
skb = ath_rxbuf_alloc(common, common->rx_bufsize,
GFP_KERNEL);
if (skb == NULL) {
error = -ENOMEM;
goto err;
}
bf->bf_mpdu = skb;
bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
common->rx_bufsize,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(sc->dev,
bf->bf_buf_addr))) {
dev_kfree_skb_any(skb);
bf->bf_mpdu = NULL;
bf->bf_buf_addr = 0;
ath_print(common, ATH_DBG_FATAL,
"dma_mapping_error() on RX init\n");
error = -ENOMEM;
goto err;
}
}
sc->rx.rxlink = NULL;
}
err:
if (error)
ath_rx_cleanup(sc);
return error;
}
void ath_rx_cleanup(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct sk_buff *skb;
struct ath_buf *bf;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
ath_rx_edma_cleanup(sc);
return;
} else {
list_for_each_entry(bf, &sc->rx.rxbuf, list) {
skb = bf->bf_mpdu;
if (skb) {
dma_unmap_single(sc->dev, bf->bf_buf_addr,
common->rx_bufsize,
DMA_FROM_DEVICE);
dev_kfree_skb(skb);
bf->bf_buf_addr = 0;
bf->bf_mpdu = NULL;
}
}
if (sc->rx.rxdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
}
}
/*
* Calculate the receive filter according to the
* operating mode and state:
*
* o always accept unicast, broadcast, and multicast traffic
* o maintain current state of phy error reception (the hal
* may enable phy error frames for noise immunity work)
* o probe request frames are accepted only when operating in
* hostap, adhoc, or monitor modes
* o enable promiscuous mode according to the interface state
* o accept beacons:
* - when operating in adhoc mode so the 802.11 layer creates
* node table entries for peers,
* - when operating in station mode for collecting rssi data when
* the station is otherwise quiet, or
* - when operating as a repeater so we see repeater-sta beacons
* - when scanning
*/
u32 ath_calcrxfilter(struct ath_softc *sc)
{
#define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
u32 rfilt;
rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
| ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
| ATH9K_RX_FILTER_MCAST;
if (sc->rx.rxfilter & FIF_PROBE_REQ)
rfilt |= ATH9K_RX_FILTER_PROBEREQ;
/*
* Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
* mode interface or when in monitor mode. AP mode does not need this
* since it receives all in-BSS frames anyway.
*/
if (((sc->sc_ah->opmode != NL80211_IFTYPE_AP) &&
(sc->rx.rxfilter & FIF_PROMISC_IN_BSS)) ||
(sc->sc_ah->is_monitoring))
rfilt |= ATH9K_RX_FILTER_PROM;
if (sc->rx.rxfilter & FIF_CONTROL)
rfilt |= ATH9K_RX_FILTER_CONTROL;
if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
(sc->nvifs <= 1) &&
!(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
rfilt |= ATH9K_RX_FILTER_MYBEACON;
else
rfilt |= ATH9K_RX_FILTER_BEACON;
if ((AR_SREV_9280_20_OR_LATER(sc->sc_ah) ||
AR_SREV_9285_12_OR_LATER(sc->sc_ah)) &&
(sc->sc_ah->opmode == NL80211_IFTYPE_AP) &&
(sc->rx.rxfilter & FIF_PSPOLL))
rfilt |= ATH9K_RX_FILTER_PSPOLL;
if (conf_is_ht(&sc->hw->conf))
rfilt |= ATH9K_RX_FILTER_COMP_BAR;
if (sc->sec_wiphy || (sc->nvifs > 1) ||
(sc->rx.rxfilter & FIF_OTHER_BSS)) {
/* The following may also be needed for other older chips */
if (sc->sc_ah->hw_version.macVersion == AR_SREV_VERSION_9160)
rfilt |= ATH9K_RX_FILTER_PROM;
rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
}
return rfilt;
#undef RX_FILTER_PRESERVE
}
int ath_startrecv(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_buf *bf, *tbf;
if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
ath_edma_start_recv(sc);
return 0;
}
spin_lock_bh(&sc->rx.rxbuflock);
if (list_empty(&sc->rx.rxbuf))
goto start_recv;
sc->rx.rxlink = NULL;
list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
ath_rx_buf_link(sc, bf);
}
/* We could have deleted elements so the list may be empty now */
if (list_empty(&sc->rx.rxbuf))
goto start_recv;
bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
ath9k_hw_putrxbuf(ah, bf->bf_daddr);
ath9k_hw_rxena(ah);
start_recv:
ath_opmode_init(sc);
ath9k_hw_startpcureceive(ah, (sc->sc_flags & SC_OP_OFFCHANNEL));
spin_unlock_bh(&sc->rx.rxbuflock);
return 0;
}
bool ath_stoprecv(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
bool stopped;
spin_lock_bh(&sc->rx.rxbuflock);
ath9k_hw_stoppcurecv(ah);
ath9k_hw_setrxfilter(ah, 0);
stopped = ath9k_hw_stopdmarecv(ah);
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
ath_edma_stop_recv(sc);
else
sc->rx.rxlink = NULL;
spin_unlock_bh(&sc->rx.rxbuflock);
return stopped;
}
void ath_flushrecv(struct ath_softc *sc)
{
sc->sc_flags |= SC_OP_RXFLUSH;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
ath_rx_tasklet(sc, 1, true);
ath_rx_tasklet(sc, 1, false);
sc->sc_flags &= ~SC_OP_RXFLUSH;
}
static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
{
/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
struct ieee80211_mgmt *mgmt;
u8 *pos, *end, id, elen;
struct ieee80211_tim_ie *tim;
mgmt = (struct ieee80211_mgmt *)skb->data;
pos = mgmt->u.beacon.variable;
end = skb->data + skb->len;
while (pos + 2 < end) {
id = *pos++;
elen = *pos++;
if (pos + elen > end)
break;
if (id == WLAN_EID_TIM) {
if (elen < sizeof(*tim))
break;
tim = (struct ieee80211_tim_ie *) pos;
if (tim->dtim_count != 0)
break;
return tim->bitmap_ctrl & 0x01;
}
pos += elen;
}
return false;
}
static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
{
struct ieee80211_mgmt *mgmt;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
if (skb->len < 24 + 8 + 2 + 2)
return;
mgmt = (struct ieee80211_mgmt *)skb->data;
if (memcmp(common->curbssid, mgmt->bssid, ETH_ALEN) != 0)
return; /* not from our current AP */
sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
if (sc->ps_flags & PS_BEACON_SYNC) {
sc->ps_flags &= ~PS_BEACON_SYNC;
ath_print(common, ATH_DBG_PS,
"Reconfigure Beacon timers based on "
"timestamp from the AP\n");
ath_beacon_config(sc, NULL);
}
if (ath_beacon_dtim_pending_cab(skb)) {
/*
* Remain awake waiting for buffered broadcast/multicast
* frames. If the last broadcast/multicast frame is not
* received properly, the next beacon frame will work as
* a backup trigger for returning into NETWORK SLEEP state,
* so we are waiting for it as well.
*/
ath_print(common, ATH_DBG_PS, "Received DTIM beacon indicating "
"buffered broadcast/multicast frame(s)\n");
sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
return;
}
if (sc->ps_flags & PS_WAIT_FOR_CAB) {
/*
* This can happen if a broadcast frame is dropped or the AP
* fails to send a frame indicating that all CAB frames have
* been delivered.
*/
sc->ps_flags &= ~PS_WAIT_FOR_CAB;
ath_print(common, ATH_DBG_PS,
"PS wait for CAB frames timed out\n");
}
}
static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb)
{
struct ieee80211_hdr *hdr;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
hdr = (struct ieee80211_hdr *)skb->data;
/* Process Beacon and CAB receive in PS state */
if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
&& ieee80211_is_beacon(hdr->frame_control))
ath_rx_ps_beacon(sc, skb);
else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
(ieee80211_is_data(hdr->frame_control) ||
ieee80211_is_action(hdr->frame_control)) &&
is_multicast_ether_addr(hdr->addr1) &&
!ieee80211_has_moredata(hdr->frame_control)) {
/*
* No more broadcast/multicast frames to be received at this
* point.
*/
sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
ath_print(common, ATH_DBG_PS,
"All PS CAB frames received, back to sleep\n");
} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
!is_multicast_ether_addr(hdr->addr1) &&
!ieee80211_has_morefrags(hdr->frame_control)) {
sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
ath_print(common, ATH_DBG_PS,
"Going back to sleep after having received "
"PS-Poll data (0x%lx)\n",
sc->ps_flags & (PS_WAIT_FOR_BEACON |
PS_WAIT_FOR_CAB |
PS_WAIT_FOR_PSPOLL_DATA |
PS_WAIT_FOR_TX_ACK));
}
}
static void ath_rx_send_to_mac80211(struct ieee80211_hw *hw,
struct ath_softc *sc, struct sk_buff *skb,
struct ieee80211_rx_status *rxs)
{
struct ieee80211_hdr *hdr;
hdr = (struct ieee80211_hdr *)skb->data;
/* Send the frame to mac80211 */
if (is_multicast_ether_addr(hdr->addr1)) {
int i;
/*
* Deliver broadcast/multicast frames to all suitable
* virtual wiphys.
*/
/* TODO: filter based on channel configuration */
for (i = 0; i < sc->num_sec_wiphy; i++) {
struct ath_wiphy *aphy = sc->sec_wiphy[i];
struct sk_buff *nskb;
if (aphy == NULL)
continue;
nskb = skb_copy(skb, GFP_ATOMIC);
if (!nskb)
continue;
ieee80211_rx(aphy->hw, nskb);
}
ieee80211_rx(sc->hw, skb);
} else
/* Deliver unicast frames based on receiver address */
ieee80211_rx(hw, skb);
}
static bool ath_edma_get_buffers(struct ath_softc *sc,
enum ath9k_rx_qtype qtype)
{
struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct sk_buff *skb;
struct ath_buf *bf;
int ret;
skb = skb_peek(&rx_edma->rx_fifo);
if (!skb)
return false;
bf = SKB_CB_ATHBUF(skb);
BUG_ON(!bf);
dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
common->rx_bufsize, DMA_FROM_DEVICE);
ret = ath9k_hw_process_rxdesc_edma(ah, NULL, skb->data);
if (ret == -EINPROGRESS) {
/*let device gain the buffer again*/
dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
common->rx_bufsize, DMA_FROM_DEVICE);
return false;
}
__skb_unlink(skb, &rx_edma->rx_fifo);
if (ret == -EINVAL) {
/* corrupt descriptor, skip this one and the following one */
list_add_tail(&bf->list, &sc->rx.rxbuf);
ath_rx_edma_buf_link(sc, qtype);
skb = skb_peek(&rx_edma->rx_fifo);
if (!skb)
return true;
bf = SKB_CB_ATHBUF(skb);
BUG_ON(!bf);
__skb_unlink(skb, &rx_edma->rx_fifo);
list_add_tail(&bf->list, &sc->rx.rxbuf);
ath_rx_edma_buf_link(sc, qtype);
return true;
}
skb_queue_tail(&rx_edma->rx_buffers, skb);
return true;
}
static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
struct ath_rx_status *rs,
enum ath9k_rx_qtype qtype)
{
struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
struct sk_buff *skb;
struct ath_buf *bf;
while (ath_edma_get_buffers(sc, qtype));
skb = __skb_dequeue(&rx_edma->rx_buffers);
if (!skb)
return NULL;
bf = SKB_CB_ATHBUF(skb);
ath9k_hw_process_rxdesc_edma(sc->sc_ah, rs, skb->data);
return bf;
}
static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
struct ath_rx_status *rs)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_desc *ds;
struct ath_buf *bf;
int ret;
if (list_empty(&sc->rx.rxbuf)) {
sc->rx.rxlink = NULL;
return NULL;
}
bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
ds = bf->bf_desc;
/*
* Must provide the virtual address of the current
* descriptor, the physical address, and the virtual
* address of the next descriptor in the h/w chain.
* This allows the HAL to look ahead to see if the
* hardware is done with a descriptor by checking the
* done bit in the following descriptor and the address
* of the current descriptor the DMA engine is working
* on. All this is necessary because of our use of
* a self-linked list to avoid rx overruns.
*/
ret = ath9k_hw_rxprocdesc(ah, ds, rs, 0);
if (ret == -EINPROGRESS) {
struct ath_rx_status trs;
struct ath_buf *tbf;
struct ath_desc *tds;
memset(&trs, 0, sizeof(trs));
if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
sc->rx.rxlink = NULL;
return NULL;
}
tbf = list_entry(bf->list.next, struct ath_buf, list);
/*
* On some hardware the descriptor status words could
* get corrupted, including the done bit. Because of
* this, check if the next descriptor's done bit is
* set or not.
*
* If the next descriptor's done bit is set, the current
* descriptor has been corrupted. Force s/w to discard
* this descriptor and continue...
*/
tds = tbf->bf_desc;
ret = ath9k_hw_rxprocdesc(ah, tds, &trs, 0);
if (ret == -EINPROGRESS)
return NULL;
}
if (!bf->bf_mpdu)
return bf;
/*
* Synchronize the DMA transfer with CPU before
* 1. accessing the frame
* 2. requeueing the same buffer to h/w
*/
dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
common->rx_bufsize,
DMA_FROM_DEVICE);
return bf;
}
/* Assumes you've already done the endian to CPU conversion */
static bool ath9k_rx_accept(struct ath_common *common,
struct ieee80211_hdr *hdr,
struct ieee80211_rx_status *rxs,
struct ath_rx_status *rx_stats,
bool *decrypt_error)
{
struct ath_hw *ah = common->ah;
__le16 fc;
u8 rx_status_len = ah->caps.rx_status_len;
fc = hdr->frame_control;
if (!rx_stats->rs_datalen)
return false;
/*
* rs_status follows rs_datalen so if rs_datalen is too large
* we can take a hint that hardware corrupted it, so ignore
* those frames.
*/
if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len))
return false;
/*
* rs_more indicates chained descriptors which can be used
* to link buffers together for a sort of scatter-gather
* operation.
* reject the frame, we don't support scatter-gather yet and
* the frame is probably corrupt anyway
*/
if (rx_stats->rs_more)
return false;
/*
* The rx_stats->rs_status will not be set until the end of the
* chained descriptors so it can be ignored if rs_more is set. The
* rs_more will be false at the last element of the chained
* descriptors.
*/
if (rx_stats->rs_status != 0) {
if (rx_stats->rs_status & ATH9K_RXERR_CRC)
rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
if (rx_stats->rs_status & ATH9K_RXERR_PHY)
return false;
if (rx_stats->rs_status & ATH9K_RXERR_DECRYPT) {
*decrypt_error = true;
} else if (rx_stats->rs_status & ATH9K_RXERR_MIC) {
/*
* The MIC error bit is only valid if the frame
* is not a control frame or fragment, and it was
* decrypted using a valid TKIP key.
*/
if (!ieee80211_is_ctl(fc) &&
!ieee80211_has_morefrags(fc) &&
!(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) &&
test_bit(rx_stats->rs_keyix, common->tkip_keymap))
rxs->flag |= RX_FLAG_MMIC_ERROR;
else
rx_stats->rs_status &= ~ATH9K_RXERR_MIC;
}
/*
* Reject error frames with the exception of
* decryption and MIC failures. For monitor mode,
* we also ignore the CRC error.
*/
if (ah->is_monitoring) {
if (rx_stats->rs_status &
~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
ATH9K_RXERR_CRC))
return false;
} else {
if (rx_stats->rs_status &
~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) {
return false;
}
}
}
return true;
}
static int ath9k_process_rate(struct ath_common *common,
struct ieee80211_hw *hw,
struct ath_rx_status *rx_stats,
struct ieee80211_rx_status *rxs)
{
struct ieee80211_supported_band *sband;
enum ieee80211_band band;
unsigned int i = 0;
band = hw->conf.channel->band;
sband = hw->wiphy->bands[band];
if (rx_stats->rs_rate & 0x80) {
/* HT rate */
rxs->flag |= RX_FLAG_HT;
if (rx_stats->rs_flags & ATH9K_RX_2040)
rxs->flag |= RX_FLAG_40MHZ;
if (rx_stats->rs_flags & ATH9K_RX_GI)
rxs->flag |= RX_FLAG_SHORT_GI;
rxs->rate_idx = rx_stats->rs_rate & 0x7f;
return 0;
}
for (i = 0; i < sband->n_bitrates; i++) {
if (sband->bitrates[i].hw_value == rx_stats->rs_rate) {
rxs->rate_idx = i;
return 0;
}
if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) {
rxs->flag |= RX_FLAG_SHORTPRE;
rxs->rate_idx = i;
return 0;
}
}
/*
* No valid hardware bitrate found -- we should not get here
* because hardware has already validated this frame as OK.
*/
ath_print(common, ATH_DBG_XMIT, "unsupported hw bitrate detected "
"0x%02x using 1 Mbit\n", rx_stats->rs_rate);
return -EINVAL;
}
static void ath9k_process_rssi(struct ath_common *common,
struct ieee80211_hw *hw,
struct ieee80211_hdr *hdr,
struct ath_rx_status *rx_stats)
{
struct ath_hw *ah = common->ah;
struct ieee80211_sta *sta;
struct ath_node *an;
int last_rssi = ATH_RSSI_DUMMY_MARKER;
__le16 fc;
fc = hdr->frame_control;
rcu_read_lock();
/*
* XXX: use ieee80211_find_sta! This requires quite a bit of work
* under the current ath9k virtual wiphy implementation as we have
* no way of tying a vif to wiphy. Typically vifs are attached to
* at least one sdata of a wiphy on mac80211 but with ath9k virtual
* wiphy you'd have to iterate over every wiphy and each sdata.
*/
if (is_multicast_ether_addr(hdr->addr1))
sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr2, NULL);
else
sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr2, hdr->addr1);
if (sta) {
an = (struct ath_node *) sta->drv_priv;
if (rx_stats->rs_rssi != ATH9K_RSSI_BAD &&
!rx_stats->rs_moreaggr)
ATH_RSSI_LPF(an->last_rssi, rx_stats->rs_rssi);
last_rssi = an->last_rssi;
}
rcu_read_unlock();
if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
rx_stats->rs_rssi = ATH_EP_RND(last_rssi,
ATH_RSSI_EP_MULTIPLIER);
if (rx_stats->rs_rssi < 0)
rx_stats->rs_rssi = 0;
/* Update Beacon RSSI, this is used by ANI. */
if (ieee80211_is_beacon(fc))
ah->stats.avgbrssi = rx_stats->rs_rssi;
}
/*
* For Decrypt or Demic errors, we only mark packet status here and always push
* up the frame up to let mac80211 handle the actual error case, be it no
* decryption key or real decryption error. This let us keep statistics there.
*/
static int ath9k_rx_skb_preprocess(struct ath_common *common,
struct ieee80211_hw *hw,
struct ieee80211_hdr *hdr,
struct ath_rx_status *rx_stats,
struct ieee80211_rx_status *rx_status,
bool *decrypt_error)
{
memset(rx_status, 0, sizeof(struct ieee80211_rx_status));
/*
* everything but the rate is checked here, the rate check is done
* separately to avoid doing two lookups for a rate for each frame.
*/
if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error))
return -EINVAL;
ath9k_process_rssi(common, hw, hdr, rx_stats);
if (ath9k_process_rate(common, hw, rx_stats, rx_status))
return -EINVAL;
rx_status->band = hw->conf.channel->band;
rx_status->freq = hw->conf.channel->center_freq;
rx_status->signal = ATH_DEFAULT_NOISE_FLOOR + rx_stats->rs_rssi;
rx_status->antenna = rx_stats->rs_antenna;
rx_status->flag |= RX_FLAG_TSFT;
return 0;
}
static void ath9k_rx_skb_postprocess(struct ath_common *common,
struct sk_buff *skb,
struct ath_rx_status *rx_stats,
struct ieee80211_rx_status *rxs,
bool decrypt_error)
{
struct ath_hw *ah = common->ah;
struct ieee80211_hdr *hdr;
int hdrlen, padpos, padsize;
u8 keyix;
__le16 fc;
/* see if any padding is done by the hw and remove it */
hdr = (struct ieee80211_hdr *) skb->data;
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
fc = hdr->frame_control;
padpos = ath9k_cmn_padpos(hdr->frame_control);
/* The MAC header is padded to have 32-bit boundary if the
* packet payload is non-zero. The general calculation for
* padsize would take into account odd header lengths:
* padsize = (4 - padpos % 4) % 4; However, since only
* even-length headers are used, padding can only be 0 or 2
* bytes and we can optimize this a bit. In addition, we must
* not try to remove padding from short control frames that do
* not have payload. */
padsize = padpos & 3;
if (padsize && skb->len>=padpos+padsize+FCS_LEN) {
memmove(skb->data + padsize, skb->data, padpos);
skb_pull(skb, padsize);
}
keyix = rx_stats->rs_keyix;
if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error &&
ieee80211_has_protected(fc)) {
rxs->flag |= RX_FLAG_DECRYPTED;
} else if (ieee80211_has_protected(fc)
&& !decrypt_error && skb->len >= hdrlen + 4) {
keyix = skb->data[hdrlen + 3] >> 6;
if (test_bit(keyix, common->keymap))
rxs->flag |= RX_FLAG_DECRYPTED;
}
if (ah->sw_mgmt_crypto &&
(rxs->flag & RX_FLAG_DECRYPTED) &&
ieee80211_is_mgmt(fc))
/* Use software decrypt for management frames. */
rxs->flag &= ~RX_FLAG_DECRYPTED;
}
static void ath_lnaconf_alt_good_scan(struct ath_ant_comb *antcomb,
struct ath_hw_antcomb_conf ant_conf,
int main_rssi_avg)
{
antcomb->quick_scan_cnt = 0;
if (ant_conf.main_lna_conf == ATH_ANT_DIV_COMB_LNA2)
antcomb->rssi_lna2 = main_rssi_avg;
else if (ant_conf.main_lna_conf == ATH_ANT_DIV_COMB_LNA1)
antcomb->rssi_lna1 = main_rssi_avg;
switch ((ant_conf.main_lna_conf << 4) | ant_conf.alt_lna_conf) {
case (0x10): /* LNA2 A-B */
antcomb->main_conf = ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2;
antcomb->first_quick_scan_conf =
ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2;
antcomb->second_quick_scan_conf = ATH_ANT_DIV_COMB_LNA1;
break;
case (0x20): /* LNA1 A-B */
antcomb->main_conf = ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2;
antcomb->first_quick_scan_conf =
ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2;
antcomb->second_quick_scan_conf = ATH_ANT_DIV_COMB_LNA2;
break;
case (0x21): /* LNA1 LNA2 */
antcomb->main_conf = ATH_ANT_DIV_COMB_LNA2;
antcomb->first_quick_scan_conf =
ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2;
antcomb->second_quick_scan_conf =
ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2;
break;
case (0x12): /* LNA2 LNA1 */
antcomb->main_conf = ATH_ANT_DIV_COMB_LNA1;
antcomb->first_quick_scan_conf =
ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2;
antcomb->second_quick_scan_conf =
ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2;
break;
case (0x13): /* LNA2 A+B */
antcomb->main_conf = ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2;
antcomb->first_quick_scan_conf =
ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2;
antcomb->second_quick_scan_conf = ATH_ANT_DIV_COMB_LNA1;
break;
case (0x23): /* LNA1 A+B */
antcomb->main_conf = ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2;
antcomb->first_quick_scan_conf =
ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2;
antcomb->second_quick_scan_conf = ATH_ANT_DIV_COMB_LNA2;
break;
default:
break;
}
}
static void ath_select_ant_div_from_quick_scan(struct ath_ant_comb *antcomb,
struct ath_hw_antcomb_conf *div_ant_conf,
int main_rssi_avg, int alt_rssi_avg,
int alt_ratio)
{
/* alt_good */
switch (antcomb->quick_scan_cnt) {
case 0:
/* set alt to main, and alt to first conf */
div_ant_conf->main_lna_conf = antcomb->main_conf;
div_ant_conf->alt_lna_conf = antcomb->first_quick_scan_conf;
break;
case 1:
/* set alt to main, and alt to first conf */
div_ant_conf->main_lna_conf = antcomb->main_conf;
div_ant_conf->alt_lna_conf = antcomb->second_quick_scan_conf;
antcomb->rssi_first = main_rssi_avg;
antcomb->rssi_second = alt_rssi_avg;
if (antcomb->main_conf == ATH_ANT_DIV_COMB_LNA1) {
/* main is LNA1 */
if (ath_is_alt_ant_ratio_better(alt_ratio,
ATH_ANT_DIV_COMB_LNA1_DELTA_HI,
ATH_ANT_DIV_COMB_LNA1_DELTA_LOW,
main_rssi_avg, alt_rssi_avg,
antcomb->total_pkt_count))
antcomb->first_ratio = true;
else
antcomb->first_ratio = false;
} else if (antcomb->main_conf == ATH_ANT_DIV_COMB_LNA2) {
if (ath_is_alt_ant_ratio_better(alt_ratio,
ATH_ANT_DIV_COMB_LNA1_DELTA_MID,
ATH_ANT_DIV_COMB_LNA1_DELTA_LOW,
main_rssi_avg, alt_rssi_avg,
antcomb->total_pkt_count))
antcomb->first_ratio = true;
else
antcomb->first_ratio = false;
} else {
if ((((alt_ratio >= ATH_ANT_DIV_COMB_ALT_ANT_RATIO2) &&
(alt_rssi_avg > main_rssi_avg +
ATH_ANT_DIV_COMB_LNA1_DELTA_HI)) ||
(alt_rssi_avg > main_rssi_avg)) &&
(antcomb->total_pkt_count > 50))
antcomb->first_ratio = true;
else
antcomb->first_ratio = false;
}
break;
case 2:
antcomb->alt_good = false;
antcomb->scan_not_start = false;
antcomb->scan = false;
antcomb->rssi_first = main_rssi_avg;
antcomb->rssi_third = alt_rssi_avg;
if (antcomb->second_quick_scan_conf == ATH_ANT_DIV_COMB_LNA1)
antcomb->rssi_lna1 = alt_rssi_avg;
else if (antcomb->second_quick_scan_conf ==
ATH_ANT_DIV_COMB_LNA2)
antcomb->rssi_lna2 = alt_rssi_avg;
else if (antcomb->second_quick_scan_conf ==
ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2) {
if (antcomb->main_conf == ATH_ANT_DIV_COMB_LNA2)
antcomb->rssi_lna2 = main_rssi_avg;
else if (antcomb->main_conf == ATH_ANT_DIV_COMB_LNA1)
antcomb->rssi_lna1 = main_rssi_avg;
}
if (antcomb->rssi_lna2 > antcomb->rssi_lna1 +
ATH_ANT_DIV_COMB_LNA1_LNA2_SWITCH_DELTA)
div_ant_conf->main_lna_conf = ATH_ANT_DIV_COMB_LNA2;
else
div_ant_conf->main_lna_conf = ATH_ANT_DIV_COMB_LNA1;
if (antcomb->main_conf == ATH_ANT_DIV_COMB_LNA1) {
if (ath_is_alt_ant_ratio_better(alt_ratio,
ATH_ANT_DIV_COMB_LNA1_DELTA_HI,
ATH_ANT_DIV_COMB_LNA1_DELTA_LOW,
main_rssi_avg, alt_rssi_avg,
antcomb->total_pkt_count))
antcomb->second_ratio = true;
else
antcomb->second_ratio = false;
} else if (antcomb->main_conf == ATH_ANT_DIV_COMB_LNA2) {
if (ath_is_alt_ant_ratio_better(alt_ratio,
ATH_ANT_DIV_COMB_LNA1_DELTA_MID,
ATH_ANT_DIV_COMB_LNA1_DELTA_LOW,
main_rssi_avg, alt_rssi_avg,
antcomb->total_pkt_count))
antcomb->second_ratio = true;
else
antcomb->second_ratio = false;
} else {
if ((((alt_ratio >= ATH_ANT_DIV_COMB_ALT_ANT_RATIO2) &&
(alt_rssi_avg > main_rssi_avg +
ATH_ANT_DIV_COMB_LNA1_DELTA_HI)) ||
(alt_rssi_avg > main_rssi_avg)) &&
(antcomb->total_pkt_count > 50))
antcomb->second_ratio = true;
else
antcomb->second_ratio = false;
}
/* set alt to the conf with maximun ratio */
if (antcomb->first_ratio && antcomb->second_ratio) {
if (antcomb->rssi_second > antcomb->rssi_third) {
/* first alt*/
if ((antcomb->first_quick_scan_conf ==
ATH_ANT_DIV_COMB_LNA1) ||
(antcomb->first_quick_scan_conf ==
ATH_ANT_DIV_COMB_LNA2))
/* Set alt LNA1 or LNA2*/
if (div_ant_conf->main_lna_conf ==
ATH_ANT_DIV_COMB_LNA2)
div_ant_conf->alt_lna_conf =
ATH_ANT_DIV_COMB_LNA1;
else
div_ant_conf->alt_lna_conf =
ATH_ANT_DIV_COMB_LNA2;
else
/* Set alt to A+B or A-B */
div_ant_conf->alt_lna_conf =
antcomb->first_quick_scan_conf;
} else if ((antcomb->second_quick_scan_conf ==
ATH_ANT_DIV_COMB_LNA1) ||
(antcomb->second_quick_scan_conf ==
ATH_ANT_DIV_COMB_LNA2)) {
/* Set alt LNA1 or LNA2 */
if (div_ant_conf->main_lna_conf ==
ATH_ANT_DIV_COMB_LNA2)
div_ant_conf->alt_lna_conf =
ATH_ANT_DIV_COMB_LNA1;
else
div_ant_conf->alt_lna_conf =
ATH_ANT_DIV_COMB_LNA2;
} else {
/* Set alt to A+B or A-B */
div_ant_conf->alt_lna_conf =
antcomb->second_quick_scan_conf;
}
} else if (antcomb->first_ratio) {
/* first alt */
if ((antcomb->first_quick_scan_conf ==
ATH_ANT_DIV_COMB_LNA1) ||
(antcomb->first_quick_scan_conf ==
ATH_ANT_DIV_COMB_LNA2))
/* Set alt LNA1 or LNA2 */
if (div_ant_conf->main_lna_conf ==
ATH_ANT_DIV_COMB_LNA2)
div_ant_conf->alt_lna_conf =
ATH_ANT_DIV_COMB_LNA1;
else
div_ant_conf->alt_lna_conf =
ATH_ANT_DIV_COMB_LNA2;
else
/* Set alt to A+B or A-B */
div_ant_conf->alt_lna_conf =
antcomb->first_quick_scan_conf;
} else if (antcomb->second_ratio) {
/* second alt */
if ((antcomb->second_quick_scan_conf ==
ATH_ANT_DIV_COMB_LNA1) ||
(antcomb->second_quick_scan_conf ==
ATH_ANT_DIV_COMB_LNA2))
/* Set alt LNA1 or LNA2 */
if (div_ant_conf->main_lna_conf ==
ATH_ANT_DIV_COMB_LNA2)
div_ant_conf->alt_lna_conf =
ATH_ANT_DIV_COMB_LNA1;
else
div_ant_conf->alt_lna_conf =
ATH_ANT_DIV_COMB_LNA2;
else
/* Set alt to A+B or A-B */
div_ant_conf->alt_lna_conf =
antcomb->second_quick_scan_conf;
} else {
/* main is largest */
if ((antcomb->main_conf == ATH_ANT_DIV_COMB_LNA1) ||
(antcomb->main_conf == ATH_ANT_DIV_COMB_LNA2))
/* Set alt LNA1 or LNA2 */
if (div_ant_conf->main_lna_conf ==
ATH_ANT_DIV_COMB_LNA2)
div_ant_conf->alt_lna_conf =
ATH_ANT_DIV_COMB_LNA1;
else
div_ant_conf->alt_lna_conf =
ATH_ANT_DIV_COMB_LNA2;
else
/* Set alt to A+B or A-B */
div_ant_conf->alt_lna_conf = antcomb->main_conf;
}
break;
default:
break;
}
}
static void ath_ant_div_conf_fast_divbias(struct ath_hw_antcomb_conf *ant_conf)
{
/* Adjust the fast_div_bias based on main and alt lna conf */
switch ((ant_conf->main_lna_conf << 4) | ant_conf->alt_lna_conf) {
case (0x01): /* A-B LNA2 */
ant_conf->fast_div_bias = 0x3b;
break;
case (0x02): /* A-B LNA1 */
ant_conf->fast_div_bias = 0x3d;
break;
case (0x03): /* A-B A+B */
ant_conf->fast_div_bias = 0x1;
break;
case (0x10): /* LNA2 A-B */
ant_conf->fast_div_bias = 0x7;
break;
case (0x12): /* LNA2 LNA1 */
ant_conf->fast_div_bias = 0x2;
break;
case (0x13): /* LNA2 A+B */
ant_conf->fast_div_bias = 0x7;
break;
case (0x20): /* LNA1 A-B */
ant_conf->fast_div_bias = 0x6;
break;
case (0x21): /* LNA1 LNA2 */
ant_conf->fast_div_bias = 0x0;
break;
case (0x23): /* LNA1 A+B */
ant_conf->fast_div_bias = 0x6;
break;
case (0x30): /* A+B A-B */
ant_conf->fast_div_bias = 0x1;
break;
case (0x31): /* A+B LNA2 */
ant_conf->fast_div_bias = 0x3b;
break;
case (0x32): /* A+B LNA1 */
ant_conf->fast_div_bias = 0x3d;
break;
default:
break;
}
}
/* Antenna diversity and combining */
static void ath_ant_comb_scan(struct ath_softc *sc, struct ath_rx_status *rs)
{
struct ath_hw_antcomb_conf div_ant_conf;
struct ath_ant_comb *antcomb = &sc->ant_comb;
int alt_ratio = 0, alt_rssi_avg = 0, main_rssi_avg = 0, curr_alt_set;
int curr_main_set, curr_bias;
int main_rssi = rs->rs_rssi_ctl0;
int alt_rssi = rs->rs_rssi_ctl1;
int rx_ant_conf, main_ant_conf;
bool short_scan = false;
rx_ant_conf = (rs->rs_rssi_ctl2 >> ATH_ANT_RX_CURRENT_SHIFT) &
ATH_ANT_RX_MASK;
main_ant_conf = (rs->rs_rssi_ctl2 >> ATH_ANT_RX_MAIN_SHIFT) &
ATH_ANT_RX_MASK;
/* Record packet only when alt_rssi is positive */
if (alt_rssi > 0) {
antcomb->total_pkt_count++;
antcomb->main_total_rssi += main_rssi;
antcomb->alt_total_rssi += alt_rssi;
if (main_ant_conf == rx_ant_conf)
antcomb->main_recv_cnt++;
else
antcomb->alt_recv_cnt++;
}
/* Short scan check */
if (antcomb->scan && antcomb->alt_good) {
if (time_after(jiffies, antcomb->scan_start_time +
msecs_to_jiffies(ATH_ANT_DIV_COMB_SHORT_SCAN_INTR)))
short_scan = true;
else
if (antcomb->total_pkt_count ==
ATH_ANT_DIV_COMB_SHORT_SCAN_PKTCOUNT) {
alt_ratio = ((antcomb->alt_recv_cnt * 100) /
antcomb->total_pkt_count);
if (alt_ratio < ATH_ANT_DIV_COMB_ALT_ANT_RATIO)
short_scan = true;
}
}
if (((antcomb->total_pkt_count < ATH_ANT_DIV_COMB_MAX_PKTCOUNT) ||
rs->rs_moreaggr) && !short_scan)
return;
if (antcomb->total_pkt_count) {
alt_ratio = ((antcomb->alt_recv_cnt * 100) /
antcomb->total_pkt_count);
main_rssi_avg = (antcomb->main_total_rssi /
antcomb->total_pkt_count);
alt_rssi_avg = (antcomb->alt_total_rssi /
antcomb->total_pkt_count);
}
ath9k_hw_antdiv_comb_conf_get(sc->sc_ah, &div_ant_conf);
curr_alt_set = div_ant_conf.alt_lna_conf;
curr_main_set = div_ant_conf.main_lna_conf;
curr_bias = div_ant_conf.fast_div_bias;
antcomb->count++;
if (antcomb->count == ATH_ANT_DIV_COMB_MAX_COUNT) {
if (alt_ratio > ATH_ANT_DIV_COMB_ALT_ANT_RATIO) {
ath_lnaconf_alt_good_scan(antcomb, div_ant_conf,
main_rssi_avg);
antcomb->alt_good = true;
} else {
antcomb->alt_good = false;
}
antcomb->count = 0;
antcomb->scan = true;
antcomb->scan_not_start = true;
}
if (!antcomb->scan) {
if (alt_ratio > ATH_ANT_DIV_COMB_ALT_ANT_RATIO) {
if (curr_alt_set == ATH_ANT_DIV_COMB_LNA2) {
/* Switch main and alt LNA */
div_ant_conf.main_lna_conf =
ATH_ANT_DIV_COMB_LNA2;
div_ant_conf.alt_lna_conf =
ATH_ANT_DIV_COMB_LNA1;
} else if (curr_alt_set == ATH_ANT_DIV_COMB_LNA1) {
div_ant_conf.main_lna_conf =
ATH_ANT_DIV_COMB_LNA1;
div_ant_conf.alt_lna_conf =
ATH_ANT_DIV_COMB_LNA2;
}
goto div_comb_done;
} else if ((curr_alt_set != ATH_ANT_DIV_COMB_LNA1) &&
(curr_alt_set != ATH_ANT_DIV_COMB_LNA2)) {
/* Set alt to another LNA */
if (curr_main_set == ATH_ANT_DIV_COMB_LNA2)
div_ant_conf.alt_lna_conf =
ATH_ANT_DIV_COMB_LNA1;
else if (curr_main_set == ATH_ANT_DIV_COMB_LNA1)
div_ant_conf.alt_lna_conf =
ATH_ANT_DIV_COMB_LNA2;
goto div_comb_done;
}
if ((alt_rssi_avg < (main_rssi_avg +
ATH_ANT_DIV_COMB_LNA1_LNA2_DELTA)))
goto div_comb_done;
}
if (!antcomb->scan_not_start) {
switch (curr_alt_set) {
case ATH_ANT_DIV_COMB_LNA2:
antcomb->rssi_lna2 = alt_rssi_avg;
antcomb->rssi_lna1 = main_rssi_avg;
antcomb->scan = true;
/* set to A+B */
div_ant_conf.main_lna_conf =
ATH_ANT_DIV_COMB_LNA1;
div_ant_conf.alt_lna_conf =
ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2;
break;
case ATH_ANT_DIV_COMB_LNA1:
antcomb->rssi_lna1 = alt_rssi_avg;
antcomb->rssi_lna2 = main_rssi_avg;
antcomb->scan = true;
/* set to A+B */
div_ant_conf.main_lna_conf = ATH_ANT_DIV_COMB_LNA2;
div_ant_conf.alt_lna_conf =
ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2;
break;
case ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2:
antcomb->rssi_add = alt_rssi_avg;
antcomb->scan = true;
/* set to A-B */
div_ant_conf.alt_lna_conf =
ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2;
break;
case ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2:
antcomb->rssi_sub = alt_rssi_avg;
antcomb->scan = false;
if (antcomb->rssi_lna2 >
(antcomb->rssi_lna1 +
ATH_ANT_DIV_COMB_LNA1_LNA2_SWITCH_DELTA)) {
/* use LNA2 as main LNA */
if ((antcomb->rssi_add > antcomb->rssi_lna1) &&
(antcomb->rssi_add > antcomb->rssi_sub)) {
/* set to A+B */
div_ant_conf.main_lna_conf =
ATH_ANT_DIV_COMB_LNA2;
div_ant_conf.alt_lna_conf =
ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2;
} else if (antcomb->rssi_sub >
antcomb->rssi_lna1) {
/* set to A-B */
div_ant_conf.main_lna_conf =
ATH_ANT_DIV_COMB_LNA2;
div_ant_conf.alt_lna_conf =
ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2;
} else {
/* set to LNA1 */
div_ant_conf.main_lna_conf =
ATH_ANT_DIV_COMB_LNA2;
div_ant_conf.alt_lna_conf =
ATH_ANT_DIV_COMB_LNA1;
}
} else {
/* use LNA1 as main LNA */
if ((antcomb->rssi_add > antcomb->rssi_lna2) &&
(antcomb->rssi_add > antcomb->rssi_sub)) {
/* set to A+B */
div_ant_conf.main_lna_conf =
ATH_ANT_DIV_COMB_LNA1;
div_ant_conf.alt_lna_conf =
ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2;
} else if (antcomb->rssi_sub >
antcomb->rssi_lna1) {
/* set to A-B */
div_ant_conf.main_lna_conf =
ATH_ANT_DIV_COMB_LNA1;
div_ant_conf.alt_lna_conf =
ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2;
} else {
/* set to LNA2 */
div_ant_conf.main_lna_conf =
ATH_ANT_DIV_COMB_LNA1;
div_ant_conf.alt_lna_conf =
ATH_ANT_DIV_COMB_LNA2;
}
}
break;
default:
break;
}
} else {
if (!antcomb->alt_good) {
antcomb->scan_not_start = false;
/* Set alt to another LNA */
if (curr_main_set == ATH_ANT_DIV_COMB_LNA2) {
div_ant_conf.main_lna_conf =
ATH_ANT_DIV_COMB_LNA2;
div_ant_conf.alt_lna_conf =
ATH_ANT_DIV_COMB_LNA1;
} else if (curr_main_set == ATH_ANT_DIV_COMB_LNA1) {
div_ant_conf.main_lna_conf =
ATH_ANT_DIV_COMB_LNA1;
div_ant_conf.alt_lna_conf =
ATH_ANT_DIV_COMB_LNA2;
}
goto div_comb_done;
}
}
ath_select_ant_div_from_quick_scan(antcomb, &div_ant_conf,
main_rssi_avg, alt_rssi_avg,
alt_ratio);
antcomb->quick_scan_cnt++;
div_comb_done:
ath_ant_div_conf_fast_divbias(&div_ant_conf);
ath9k_hw_antdiv_comb_conf_set(sc->sc_ah, &div_ant_conf);
antcomb->scan_start_time = jiffies;
antcomb->total_pkt_count = 0;
antcomb->main_total_rssi = 0;
antcomb->alt_total_rssi = 0;
antcomb->main_recv_cnt = 0;
antcomb->alt_recv_cnt = 0;
}
int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
{
struct ath_buf *bf;
struct sk_buff *skb = NULL, *requeue_skb;
struct ieee80211_rx_status *rxs;
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
/*
* The hw can techncically differ from common->hw when using ath9k
* virtual wiphy so to account for that we iterate over the active
* wiphys and find the appropriate wiphy and therefore hw.
*/
struct ieee80211_hw *hw = NULL;
struct ieee80211_hdr *hdr;
int retval;
bool decrypt_error = false;
struct ath_rx_status rs;
enum ath9k_rx_qtype qtype;
bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
int dma_type;
u8 rx_status_len = ah->caps.rx_status_len;
u64 tsf = 0;
u32 tsf_lower = 0;
unsigned long flags;
if (edma)
dma_type = DMA_BIDIRECTIONAL;
else
dma_type = DMA_FROM_DEVICE;
qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
spin_lock_bh(&sc->rx.rxbuflock);
tsf = ath9k_hw_gettsf64(ah);
tsf_lower = tsf & 0xffffffff;
do {
/* If handling rx interrupt and flush is in progress => exit */
if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0))
break;
memset(&rs, 0, sizeof(rs));
if (edma)
bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
else
bf = ath_get_next_rx_buf(sc, &rs);
if (!bf)
break;
skb = bf->bf_mpdu;
if (!skb)
continue;
hdr = (struct ieee80211_hdr *) (skb->data + rx_status_len);
rxs = IEEE80211_SKB_RXCB(skb);
hw = ath_get_virt_hw(sc, hdr);
ath_debug_stat_rx(sc, &rs);
/*
* If we're asked to flush receive queue, directly
* chain it back at the queue without processing it.
*/
if (flush)
goto requeue;
retval = ath9k_rx_skb_preprocess(common, hw, hdr, &rs,
rxs, &decrypt_error);
if (retval)
goto requeue;
rxs->mactime = (tsf & ~0xffffffffULL) | rs.rs_tstamp;
if (rs.rs_tstamp > tsf_lower &&
unlikely(rs.rs_tstamp - tsf_lower > 0x10000000))
rxs->mactime -= 0x100000000ULL;
if (rs.rs_tstamp < tsf_lower &&
unlikely(tsf_lower - rs.rs_tstamp > 0x10000000))
rxs->mactime += 0x100000000ULL;
/* Ensure we always have an skb to requeue once we are done
* processing the current buffer's skb */
requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
/* If there is no memory we ignore the current RX'd frame,
* tell hardware it can give us a new frame using the old
* skb and put it at the tail of the sc->rx.rxbuf list for
* processing. */
if (!requeue_skb)
goto requeue;
/* Unmap the frame */
dma_unmap_single(sc->dev, bf->bf_buf_addr,
common->rx_bufsize,
dma_type);
skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
if (ah->caps.rx_status_len)
skb_pull(skb, ah->caps.rx_status_len);
ath9k_rx_skb_postprocess(common, skb, &rs,
rxs, decrypt_error);
/* We will now give hardware our shiny new allocated skb */
bf->bf_mpdu = requeue_skb;
bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
common->rx_bufsize,
dma_type);
if (unlikely(dma_mapping_error(sc->dev,
bf->bf_buf_addr))) {
dev_kfree_skb_any(requeue_skb);
bf->bf_mpdu = NULL;
bf->bf_buf_addr = 0;
ath_print(common, ATH_DBG_FATAL,
"dma_mapping_error() on RX\n");
ath_rx_send_to_mac80211(hw, sc, skb, rxs);
break;
}
/*
* change the default rx antenna if rx diversity chooses the
* other antenna 3 times in a row.
*/
if (sc->rx.defant != rs.rs_antenna) {
if (++sc->rx.rxotherant >= 3)
ath_setdefantenna(sc, rs.rs_antenna);
} else {
sc->rx.rxotherant = 0;
}
spin_lock_irqsave(&sc->sc_pm_lock, flags);
if (unlikely(ath9k_check_auto_sleep(sc) ||
(sc->ps_flags & (PS_WAIT_FOR_BEACON |
PS_WAIT_FOR_CAB |
PS_WAIT_FOR_PSPOLL_DATA))))
ath_rx_ps(sc, skb);
spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)
ath_ant_comb_scan(sc, &rs);
ath_rx_send_to_mac80211(hw, sc, skb, rxs);
requeue:
if (edma) {
list_add_tail(&bf->list, &sc->rx.rxbuf);
ath_rx_edma_buf_link(sc, qtype);
} else {
list_move_tail(&bf->list, &sc->rx.rxbuf);
ath_rx_buf_link(sc, bf);
}
} while (1);
spin_unlock_bh(&sc->rx.rxbuflock);
return 0;
}