blob: 3f95d32d527796aff0144c34dd4e32b7fce42a3d [file] [log] [blame]
/*
* include/linux/amba/mmci.h
*/
#ifndef AMBA_MMCI_H
#define AMBA_MMCI_H
#include <linux/mmc/host.h>
/* Just some dummy forwarding */
struct dma_chan;
/**
* struct mmci_platform_data - platform configuration for the MMCI
* (also known as PL180) block.
* @ocr_mask: available voltages on the 4 pins from the block, this
* is ignored if a regulator is used, see the MMC_VDD_* masks in
* mmc/host.h
* @ios_handler: a callback function to act on specfic ios changes,
* used for example to control a levelshifter
* mask into a value to be binary (or set some other custom bits
* in MMCIPWR) or:ed and written into the MMCIPWR register of the
* block. May also control external power based on the power_mode.
* @status: if no GPIO read function was given to the block in
* gpio_wp (below) this function will be called to determine
* whether a card is present in the MMC slot or not
* @gpio_wp: read this GPIO pin to see if the card is write protected
* @gpio_cd: read this GPIO pin to detect card insertion
* @cd_invert: true if the gpio_cd pin value is active low
* @dma_filter: function used to select an appropriate RX and TX
* DMA channel to be used for DMA, if and only if you're deploying the
* generic DMA engine
* @dma_rx_param: parameter passed to the DMA allocation
* filter in order to select an appropriate RX channel. If
* there is a bidirectional RX+TX channel, then just specify
* this and leave dma_tx_param set to NULL
* @dma_tx_param: parameter passed to the DMA allocation
* filter in order to select an appropriate TX channel. If this
* is NULL the driver will attempt to use the RX channel as a
* bidirectional channel
*/
struct mmci_platform_data {
unsigned int ocr_mask;
int (*ios_handler)(struct device *, struct mmc_ios *);
unsigned int (*status)(struct device *);
int gpio_wp;
int gpio_cd;
bool cd_invert;
bool (*dma_filter)(struct dma_chan *chan, void *filter_param);
void *dma_rx_param;
void *dma_tx_param;
};
#endif