| /* |
| * Copyright 2010 Red Hat Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Ben Skeggs |
| */ |
| |
| #include <drm/drmP.h> |
| #include "nouveau_drm.h" |
| #include "nouveau_bios.h" |
| #include "nouveau_hw.h" |
| #include "nouveau_pm.h" |
| #include "nouveau_hwsq.h" |
| |
| #include "nv50_display.h" |
| |
| #include <subdev/bios/pll.h> |
| #include <subdev/clock.h> |
| #include <subdev/timer.h> |
| #include <subdev/fb.h> |
| |
| enum clk_src { |
| clk_src_crystal, |
| clk_src_href, |
| clk_src_hclk, |
| clk_src_hclkm3, |
| clk_src_hclkm3d2, |
| clk_src_host, |
| clk_src_nvclk, |
| clk_src_sclk, |
| clk_src_mclk, |
| clk_src_vdec, |
| clk_src_dom6 |
| }; |
| |
| static u32 read_clk(struct drm_device *, enum clk_src); |
| |
| static u32 |
| read_div(struct drm_device *dev) |
| { |
| struct nouveau_device *device = nouveau_dev(dev); |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| |
| switch (nv_device(drm->device)->chipset) { |
| case 0x50: /* it exists, but only has bit 31, not the dividers.. */ |
| case 0x84: |
| case 0x86: |
| case 0x98: |
| case 0xa0: |
| return nv_rd32(device, 0x004700); |
| case 0x92: |
| case 0x94: |
| case 0x96: |
| return nv_rd32(device, 0x004800); |
| default: |
| return 0x00000000; |
| } |
| } |
| |
| static u32 |
| read_pll_src(struct drm_device *dev, u32 base) |
| { |
| struct nouveau_device *device = nouveau_dev(dev); |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| u32 coef, ref = read_clk(dev, clk_src_crystal); |
| u32 rsel = nv_rd32(device, 0x00e18c); |
| int P, N, M, id; |
| |
| switch (nv_device(drm->device)->chipset) { |
| case 0x50: |
| case 0xa0: |
| switch (base) { |
| case 0x4020: |
| case 0x4028: id = !!(rsel & 0x00000004); break; |
| case 0x4008: id = !!(rsel & 0x00000008); break; |
| case 0x4030: id = 0; break; |
| default: |
| NV_ERROR(drm, "ref: bad pll 0x%06x\n", base); |
| return 0; |
| } |
| |
| coef = nv_rd32(device, 0x00e81c + (id * 0x0c)); |
| ref *= (coef & 0x01000000) ? 2 : 4; |
| P = (coef & 0x00070000) >> 16; |
| N = ((coef & 0x0000ff00) >> 8) + 1; |
| M = ((coef & 0x000000ff) >> 0) + 1; |
| break; |
| case 0x84: |
| case 0x86: |
| case 0x92: |
| coef = nv_rd32(device, 0x00e81c); |
| P = (coef & 0x00070000) >> 16; |
| N = (coef & 0x0000ff00) >> 8; |
| M = (coef & 0x000000ff) >> 0; |
| break; |
| case 0x94: |
| case 0x96: |
| case 0x98: |
| rsel = nv_rd32(device, 0x00c050); |
| switch (base) { |
| case 0x4020: rsel = (rsel & 0x00000003) >> 0; break; |
| case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break; |
| case 0x4028: rsel = (rsel & 0x00001800) >> 11; break; |
| case 0x4030: rsel = 3; break; |
| default: |
| NV_ERROR(drm, "ref: bad pll 0x%06x\n", base); |
| return 0; |
| } |
| |
| switch (rsel) { |
| case 0: id = 1; break; |
| case 1: return read_clk(dev, clk_src_crystal); |
| case 2: return read_clk(dev, clk_src_href); |
| case 3: id = 0; break; |
| } |
| |
| coef = nv_rd32(device, 0x00e81c + (id * 0x28)); |
| P = (nv_rd32(device, 0x00e824 + (id * 0x28)) >> 16) & 7; |
| P += (coef & 0x00070000) >> 16; |
| N = (coef & 0x0000ff00) >> 8; |
| M = (coef & 0x000000ff) >> 0; |
| break; |
| default: |
| BUG_ON(1); |
| } |
| |
| if (M) |
| return (ref * N / M) >> P; |
| return 0; |
| } |
| |
| static u32 |
| read_pll_ref(struct drm_device *dev, u32 base) |
| { |
| struct nouveau_device *device = nouveau_dev(dev); |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| u32 src, mast = nv_rd32(device, 0x00c040); |
| |
| switch (base) { |
| case 0x004028: |
| src = !!(mast & 0x00200000); |
| break; |
| case 0x004020: |
| src = !!(mast & 0x00400000); |
| break; |
| case 0x004008: |
| src = !!(mast & 0x00010000); |
| break; |
| case 0x004030: |
| src = !!(mast & 0x02000000); |
| break; |
| case 0x00e810: |
| return read_clk(dev, clk_src_crystal); |
| default: |
| NV_ERROR(drm, "bad pll 0x%06x\n", base); |
| return 0; |
| } |
| |
| if (src) |
| return read_clk(dev, clk_src_href); |
| return read_pll_src(dev, base); |
| } |
| |
| static u32 |
| read_pll(struct drm_device *dev, u32 base) |
| { |
| struct nouveau_device *device = nouveau_dev(dev); |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| u32 mast = nv_rd32(device, 0x00c040); |
| u32 ctrl = nv_rd32(device, base + 0); |
| u32 coef = nv_rd32(device, base + 4); |
| u32 ref = read_pll_ref(dev, base); |
| u32 clk = 0; |
| int N1, N2, M1, M2; |
| |
| if (base == 0x004028 && (mast & 0x00100000)) { |
| /* wtf, appears to only disable post-divider on nva0 */ |
| if (nv_device(drm->device)->chipset != 0xa0) |
| return read_clk(dev, clk_src_dom6); |
| } |
| |
| N2 = (coef & 0xff000000) >> 24; |
| M2 = (coef & 0x00ff0000) >> 16; |
| N1 = (coef & 0x0000ff00) >> 8; |
| M1 = (coef & 0x000000ff); |
| if ((ctrl & 0x80000000) && M1) { |
| clk = ref * N1 / M1; |
| if ((ctrl & 0x40000100) == 0x40000000) { |
| if (M2) |
| clk = clk * N2 / M2; |
| else |
| clk = 0; |
| } |
| } |
| |
| return clk; |
| } |
| |
| static u32 |
| read_clk(struct drm_device *dev, enum clk_src src) |
| { |
| struct nouveau_device *device = nouveau_dev(dev); |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| u32 mast = nv_rd32(device, 0x00c040); |
| u32 P = 0; |
| |
| switch (src) { |
| case clk_src_crystal: |
| return device->crystal; |
| case clk_src_href: |
| return 100000; /* PCIE reference clock */ |
| case clk_src_hclk: |
| return read_clk(dev, clk_src_href) * 27778 / 10000; |
| case clk_src_hclkm3: |
| return read_clk(dev, clk_src_hclk) * 3; |
| case clk_src_hclkm3d2: |
| return read_clk(dev, clk_src_hclk) * 3 / 2; |
| case clk_src_host: |
| switch (mast & 0x30000000) { |
| case 0x00000000: return read_clk(dev, clk_src_href); |
| case 0x10000000: break; |
| case 0x20000000: /* !0x50 */ |
| case 0x30000000: return read_clk(dev, clk_src_hclk); |
| } |
| break; |
| case clk_src_nvclk: |
| if (!(mast & 0x00100000)) |
| P = (nv_rd32(device, 0x004028) & 0x00070000) >> 16; |
| switch (mast & 0x00000003) { |
| case 0x00000000: return read_clk(dev, clk_src_crystal) >> P; |
| case 0x00000001: return read_clk(dev, clk_src_dom6); |
| case 0x00000002: return read_pll(dev, 0x004020) >> P; |
| case 0x00000003: return read_pll(dev, 0x004028) >> P; |
| } |
| break; |
| case clk_src_sclk: |
| P = (nv_rd32(device, 0x004020) & 0x00070000) >> 16; |
| switch (mast & 0x00000030) { |
| case 0x00000000: |
| if (mast & 0x00000080) |
| return read_clk(dev, clk_src_host) >> P; |
| return read_clk(dev, clk_src_crystal) >> P; |
| case 0x00000010: break; |
| case 0x00000020: return read_pll(dev, 0x004028) >> P; |
| case 0x00000030: return read_pll(dev, 0x004020) >> P; |
| } |
| break; |
| case clk_src_mclk: |
| P = (nv_rd32(device, 0x004008) & 0x00070000) >> 16; |
| if (nv_rd32(device, 0x004008) & 0x00000200) { |
| switch (mast & 0x0000c000) { |
| case 0x00000000: |
| return read_clk(dev, clk_src_crystal) >> P; |
| case 0x00008000: |
| case 0x0000c000: |
| return read_clk(dev, clk_src_href) >> P; |
| } |
| } else { |
| return read_pll(dev, 0x004008) >> P; |
| } |
| break; |
| case clk_src_vdec: |
| P = (read_div(dev) & 0x00000700) >> 8; |
| switch (nv_device(drm->device)->chipset) { |
| case 0x84: |
| case 0x86: |
| case 0x92: |
| case 0x94: |
| case 0x96: |
| case 0xa0: |
| switch (mast & 0x00000c00) { |
| case 0x00000000: |
| if (nv_device(drm->device)->chipset == 0xa0) /* wtf?? */ |
| return read_clk(dev, clk_src_nvclk) >> P; |
| return read_clk(dev, clk_src_crystal) >> P; |
| case 0x00000400: |
| return 0; |
| case 0x00000800: |
| if (mast & 0x01000000) |
| return read_pll(dev, 0x004028) >> P; |
| return read_pll(dev, 0x004030) >> P; |
| case 0x00000c00: |
| return read_clk(dev, clk_src_nvclk) >> P; |
| } |
| break; |
| case 0x98: |
| switch (mast & 0x00000c00) { |
| case 0x00000000: |
| return read_clk(dev, clk_src_nvclk) >> P; |
| case 0x00000400: |
| return 0; |
| case 0x00000800: |
| return read_clk(dev, clk_src_hclkm3d2) >> P; |
| case 0x00000c00: |
| return read_clk(dev, clk_src_mclk) >> P; |
| } |
| break; |
| } |
| break; |
| case clk_src_dom6: |
| switch (nv_device(drm->device)->chipset) { |
| case 0x50: |
| case 0xa0: |
| return read_pll(dev, 0x00e810) >> 2; |
| case 0x84: |
| case 0x86: |
| case 0x92: |
| case 0x94: |
| case 0x96: |
| case 0x98: |
| P = (read_div(dev) & 0x00000007) >> 0; |
| switch (mast & 0x0c000000) { |
| case 0x00000000: return read_clk(dev, clk_src_href); |
| case 0x04000000: break; |
| case 0x08000000: return read_clk(dev, clk_src_hclk); |
| case 0x0c000000: |
| return read_clk(dev, clk_src_hclkm3) >> P; |
| } |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| NV_DEBUG(drm, "unknown clock source %d 0x%08x\n", src, mast); |
| return 0; |
| } |
| |
| int |
| nv50_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| if (nv_device(drm->device)->chipset == 0xaa || |
| nv_device(drm->device)->chipset == 0xac) |
| return 0; |
| |
| perflvl->core = read_clk(dev, clk_src_nvclk); |
| perflvl->shader = read_clk(dev, clk_src_sclk); |
| perflvl->memory = read_clk(dev, clk_src_mclk); |
| if (nv_device(drm->device)->chipset != 0x50) { |
| perflvl->vdec = read_clk(dev, clk_src_vdec); |
| perflvl->dom6 = read_clk(dev, clk_src_dom6); |
| } |
| |
| return 0; |
| } |
| |
| struct nv50_pm_state { |
| struct nouveau_pm_level *perflvl; |
| struct hwsq_ucode eclk_hwsq; |
| struct hwsq_ucode mclk_hwsq; |
| u32 mscript; |
| u32 mmast; |
| u32 mctrl; |
| u32 mcoef; |
| }; |
| |
| static u32 |
| calc_pll(struct drm_device *dev, u32 reg, struct nvbios_pll *pll, |
| u32 clk, int *N1, int *M1, int *log2P) |
| { |
| struct nouveau_device *device = nouveau_dev(dev); |
| struct nouveau_bios *bios = nouveau_bios(device); |
| struct nouveau_clock *pclk = nouveau_clock(device); |
| struct nouveau_pll_vals coef; |
| int ret; |
| |
| ret = nvbios_pll_parse(bios, reg, pll); |
| if (ret) |
| return 0; |
| |
| pll->vco2.max_freq = 0; |
| pll->refclk = read_pll_ref(dev, reg); |
| if (!pll->refclk) |
| return 0; |
| |
| ret = pclk->pll_calc(pclk, pll, clk, &coef); |
| if (ret == 0) |
| return 0; |
| |
| *N1 = coef.N1; |
| *M1 = coef.M1; |
| *log2P = coef.log2P; |
| return ret; |
| } |
| |
| static inline u32 |
| calc_div(u32 src, u32 target, int *div) |
| { |
| u32 clk0 = src, clk1 = src; |
| for (*div = 0; *div <= 7; (*div)++) { |
| if (clk0 <= target) { |
| clk1 = clk0 << (*div ? 1 : 0); |
| break; |
| } |
| clk0 >>= 1; |
| } |
| |
| if (target - clk0 <= clk1 - target) |
| return clk0; |
| (*div)--; |
| return clk1; |
| } |
| |
| static inline u32 |
| clk_same(u32 a, u32 b) |
| { |
| return ((a / 1000) == (b / 1000)); |
| } |
| |
| static void |
| mclk_precharge(struct nouveau_mem_exec_func *exec) |
| { |
| struct nv50_pm_state *info = exec->priv; |
| struct hwsq_ucode *hwsq = &info->mclk_hwsq; |
| |
| hwsq_wr32(hwsq, 0x1002d4, 0x00000001); |
| } |
| |
| static void |
| mclk_refresh(struct nouveau_mem_exec_func *exec) |
| { |
| struct nv50_pm_state *info = exec->priv; |
| struct hwsq_ucode *hwsq = &info->mclk_hwsq; |
| |
| hwsq_wr32(hwsq, 0x1002d0, 0x00000001); |
| } |
| |
| static void |
| mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable) |
| { |
| struct nv50_pm_state *info = exec->priv; |
| struct hwsq_ucode *hwsq = &info->mclk_hwsq; |
| |
| hwsq_wr32(hwsq, 0x100210, enable ? 0x80000000 : 0x00000000); |
| } |
| |
| static void |
| mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable) |
| { |
| struct nv50_pm_state *info = exec->priv; |
| struct hwsq_ucode *hwsq = &info->mclk_hwsq; |
| |
| hwsq_wr32(hwsq, 0x1002dc, enable ? 0x00000001 : 0x00000000); |
| } |
| |
| static void |
| mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec) |
| { |
| struct nv50_pm_state *info = exec->priv; |
| struct hwsq_ucode *hwsq = &info->mclk_hwsq; |
| |
| if (nsec > 1000) |
| hwsq_usec(hwsq, (nsec + 500) / 1000); |
| } |
| |
| static u32 |
| mclk_mrg(struct nouveau_mem_exec_func *exec, int mr) |
| { |
| struct nouveau_device *device = nouveau_dev(exec->dev); |
| if (mr <= 1) |
| return nv_rd32(device, 0x1002c0 + ((mr - 0) * 4)); |
| if (mr <= 3) |
| return nv_rd32(device, 0x1002e0 + ((mr - 2) * 4)); |
| return 0; |
| } |
| |
| static void |
| mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data) |
| { |
| struct nouveau_device *device = nouveau_dev(exec->dev); |
| struct nouveau_fb *pfb = nouveau_fb(device); |
| struct nv50_pm_state *info = exec->priv; |
| struct hwsq_ucode *hwsq = &info->mclk_hwsq; |
| |
| if (mr <= 1) { |
| if (pfb->ram.ranks > 1) |
| hwsq_wr32(hwsq, 0x1002c8 + ((mr - 0) * 4), data); |
| hwsq_wr32(hwsq, 0x1002c0 + ((mr - 0) * 4), data); |
| } else |
| if (mr <= 3) { |
| if (pfb->ram.ranks > 1) |
| hwsq_wr32(hwsq, 0x1002e8 + ((mr - 2) * 4), data); |
| hwsq_wr32(hwsq, 0x1002e0 + ((mr - 2) * 4), data); |
| } |
| } |
| |
| static void |
| mclk_clock_set(struct nouveau_mem_exec_func *exec) |
| { |
| struct nouveau_device *device = nouveau_dev(exec->dev); |
| struct nv50_pm_state *info = exec->priv; |
| struct hwsq_ucode *hwsq = &info->mclk_hwsq; |
| u32 ctrl = nv_rd32(device, 0x004008); |
| |
| info->mmast = nv_rd32(device, 0x00c040); |
| info->mmast &= ~0xc0000000; /* get MCLK_2 from HREF */ |
| info->mmast |= 0x0000c000; /* use MCLK_2 as MPLL_BYPASS clock */ |
| |
| hwsq_wr32(hwsq, 0xc040, info->mmast); |
| hwsq_wr32(hwsq, 0x4008, ctrl | 0x00000200); /* bypass MPLL */ |
| if (info->mctrl & 0x80000000) |
| hwsq_wr32(hwsq, 0x400c, info->mcoef); |
| hwsq_wr32(hwsq, 0x4008, info->mctrl); |
| } |
| |
| static void |
| mclk_timing_set(struct nouveau_mem_exec_func *exec) |
| { |
| struct nouveau_device *device = nouveau_dev(exec->dev); |
| struct nv50_pm_state *info = exec->priv; |
| struct nouveau_pm_level *perflvl = info->perflvl; |
| struct hwsq_ucode *hwsq = &info->mclk_hwsq; |
| int i; |
| |
| for (i = 0; i < 9; i++) { |
| u32 reg = 0x100220 + (i * 4); |
| u32 val = nv_rd32(device, reg); |
| if (val != perflvl->timing.reg[i]) |
| hwsq_wr32(hwsq, reg, perflvl->timing.reg[i]); |
| } |
| } |
| |
| static int |
| calc_mclk(struct drm_device *dev, struct nouveau_pm_level *perflvl, |
| struct nv50_pm_state *info) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nouveau_device *device = nouveau_dev(dev); |
| u32 crtc_mask = nv50_display_active_crtcs(dev); |
| struct nouveau_mem_exec_func exec = { |
| .dev = dev, |
| .precharge = mclk_precharge, |
| .refresh = mclk_refresh, |
| .refresh_auto = mclk_refresh_auto, |
| .refresh_self = mclk_refresh_self, |
| .wait = mclk_wait, |
| .mrg = mclk_mrg, |
| .mrs = mclk_mrs, |
| .clock_set = mclk_clock_set, |
| .timing_set = mclk_timing_set, |
| .priv = info |
| }; |
| struct hwsq_ucode *hwsq = &info->mclk_hwsq; |
| struct nvbios_pll pll; |
| int N, M, P; |
| int ret; |
| |
| /* use pcie refclock if possible, otherwise use mpll */ |
| info->mctrl = nv_rd32(device, 0x004008); |
| info->mctrl &= ~0x81ff0200; |
| if (clk_same(perflvl->memory, read_clk(dev, clk_src_href))) { |
| info->mctrl |= 0x00000200 | (pll.bias_p << 19); |
| } else { |
| ret = calc_pll(dev, 0x4008, &pll, perflvl->memory, &N, &M, &P); |
| if (ret == 0) |
| return -EINVAL; |
| |
| info->mctrl |= 0x80000000 | (P << 22) | (P << 16); |
| info->mctrl |= pll.bias_p << 19; |
| info->mcoef = (N << 8) | M; |
| } |
| |
| /* build the ucode which will reclock the memory for us */ |
| hwsq_init(hwsq); |
| if (crtc_mask) { |
| hwsq_op5f(hwsq, crtc_mask, 0x00); /* wait for scanout */ |
| hwsq_op5f(hwsq, crtc_mask, 0x01); /* wait for vblank */ |
| } |
| if (nv_device(drm->device)->chipset >= 0x92) |
| hwsq_wr32(hwsq, 0x611200, 0x00003300); /* disable scanout */ |
| hwsq_setf(hwsq, 0x10, 0); /* disable bus access */ |
| hwsq_op5f(hwsq, 0x00, 0x01); /* no idea :s */ |
| |
| ret = nouveau_mem_exec(&exec, perflvl); |
| if (ret) |
| return ret; |
| |
| hwsq_setf(hwsq, 0x10, 1); /* enable bus access */ |
| hwsq_op5f(hwsq, 0x00, 0x00); /* no idea, reverse of 0x00, 0x01? */ |
| if (nv_device(drm->device)->chipset >= 0x92) |
| hwsq_wr32(hwsq, 0x611200, 0x00003330); /* enable scanout */ |
| hwsq_fini(hwsq); |
| return 0; |
| } |
| |
| void * |
| nv50_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl) |
| { |
| struct nouveau_device *device = nouveau_dev(dev); |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nv50_pm_state *info; |
| struct hwsq_ucode *hwsq; |
| struct nvbios_pll pll; |
| u32 out, mast, divs, ctrl; |
| int clk, ret = -EINVAL; |
| int N, M, P1, P2; |
| |
| if (nv_device(drm->device)->chipset == 0xaa || |
| nv_device(drm->device)->chipset == 0xac) |
| return ERR_PTR(-ENODEV); |
| |
| info = kmalloc(sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return ERR_PTR(-ENOMEM); |
| info->perflvl = perflvl; |
| |
| /* memory: build hwsq ucode which we'll use to reclock memory. |
| * use pcie refclock if possible, otherwise use mpll */ |
| info->mclk_hwsq.len = 0; |
| if (perflvl->memory) { |
| ret = calc_mclk(dev, perflvl, info); |
| if (ret) |
| goto error; |
| info->mscript = perflvl->memscript; |
| } |
| |
| divs = read_div(dev); |
| mast = info->mmast; |
| |
| /* start building HWSQ script for engine reclocking */ |
| hwsq = &info->eclk_hwsq; |
| hwsq_init(hwsq); |
| hwsq_setf(hwsq, 0x10, 0); /* disable bus access */ |
| hwsq_op5f(hwsq, 0x00, 0x01); /* wait for access disabled? */ |
| |
| /* vdec/dom6: switch to "safe" clocks temporarily */ |
| if (perflvl->vdec) { |
| mast &= ~0x00000c00; |
| divs &= ~0x00000700; |
| } |
| |
| if (perflvl->dom6) { |
| mast &= ~0x0c000000; |
| divs &= ~0x00000007; |
| } |
| |
| hwsq_wr32(hwsq, 0x00c040, mast); |
| |
| /* vdec: avoid modifying xpll until we know exactly how the other |
| * clock domains work, i suspect at least some of them can also be |
| * tied to xpll... |
| */ |
| if (perflvl->vdec) { |
| /* see how close we can get using nvclk as a source */ |
| clk = calc_div(perflvl->core, perflvl->vdec, &P1); |
| |
| /* see how close we can get using xpll/hclk as a source */ |
| if (nv_device(drm->device)->chipset != 0x98) |
| out = read_pll(dev, 0x004030); |
| else |
| out = read_clk(dev, clk_src_hclkm3d2); |
| out = calc_div(out, perflvl->vdec, &P2); |
| |
| /* select whichever gets us closest */ |
| if (abs((int)perflvl->vdec - clk) <= |
| abs((int)perflvl->vdec - out)) { |
| if (nv_device(drm->device)->chipset != 0x98) |
| mast |= 0x00000c00; |
| divs |= P1 << 8; |
| } else { |
| mast |= 0x00000800; |
| divs |= P2 << 8; |
| } |
| } |
| |
| /* dom6: nfi what this is, but we're limited to various combinations |
| * of the host clock frequency |
| */ |
| if (perflvl->dom6) { |
| if (clk_same(perflvl->dom6, read_clk(dev, clk_src_href))) { |
| mast |= 0x00000000; |
| } else |
| if (clk_same(perflvl->dom6, read_clk(dev, clk_src_hclk))) { |
| mast |= 0x08000000; |
| } else { |
| clk = read_clk(dev, clk_src_hclk) * 3; |
| clk = calc_div(clk, perflvl->dom6, &P1); |
| |
| mast |= 0x0c000000; |
| divs |= P1; |
| } |
| } |
| |
| /* vdec/dom6: complete switch to new clocks */ |
| switch (nv_device(drm->device)->chipset) { |
| case 0x92: |
| case 0x94: |
| case 0x96: |
| hwsq_wr32(hwsq, 0x004800, divs); |
| break; |
| default: |
| hwsq_wr32(hwsq, 0x004700, divs); |
| break; |
| } |
| |
| hwsq_wr32(hwsq, 0x00c040, mast); |
| |
| /* core/shader: make sure sclk/nvclk are disconnected from their |
| * PLLs (nvclk to dom6, sclk to hclk) |
| */ |
| if (nv_device(drm->device)->chipset < 0x92) |
| mast = (mast & ~0x001000b0) | 0x00100080; |
| else |
| mast = (mast & ~0x000000b3) | 0x00000081; |
| |
| hwsq_wr32(hwsq, 0x00c040, mast); |
| |
| /* core: for the moment at least, always use nvpll */ |
| clk = calc_pll(dev, 0x4028, &pll, perflvl->core, &N, &M, &P1); |
| if (clk == 0) |
| goto error; |
| |
| ctrl = nv_rd32(device, 0x004028) & ~0xc03f0100; |
| mast &= ~0x00100000; |
| mast |= 3; |
| |
| hwsq_wr32(hwsq, 0x004028, 0x80000000 | (P1 << 19) | (P1 << 16) | ctrl); |
| hwsq_wr32(hwsq, 0x00402c, (N << 8) | M); |
| |
| /* shader: tie to nvclk if possible, otherwise use spll. have to be |
| * very careful that the shader clock is at least twice the core, or |
| * some chipsets will be very unhappy. i expect most or all of these |
| * cases will be handled by tying to nvclk, but it's possible there's |
| * corners |
| */ |
| ctrl = nv_rd32(device, 0x004020) & ~0xc03f0100; |
| |
| if (P1-- && perflvl->shader == (perflvl->core << 1)) { |
| hwsq_wr32(hwsq, 0x004020, (P1 << 19) | (P1 << 16) | ctrl); |
| hwsq_wr32(hwsq, 0x00c040, 0x00000020 | mast); |
| } else { |
| clk = calc_pll(dev, 0x4020, &pll, perflvl->shader, &N, &M, &P1); |
| if (clk == 0) |
| goto error; |
| ctrl |= 0x80000000; |
| |
| hwsq_wr32(hwsq, 0x004020, (P1 << 19) | (P1 << 16) | ctrl); |
| hwsq_wr32(hwsq, 0x004024, (N << 8) | M); |
| hwsq_wr32(hwsq, 0x00c040, 0x00000030 | mast); |
| } |
| |
| hwsq_setf(hwsq, 0x10, 1); /* enable bus access */ |
| hwsq_op5f(hwsq, 0x00, 0x00); /* wait for access enabled? */ |
| hwsq_fini(hwsq); |
| |
| return info; |
| error: |
| kfree(info); |
| return ERR_PTR(ret); |
| } |
| |
| static int |
| prog_hwsq(struct drm_device *dev, struct hwsq_ucode *hwsq) |
| { |
| struct nouveau_device *device = nouveau_dev(dev); |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| u32 hwsq_data, hwsq_kick; |
| int i; |
| |
| if (nv_device(drm->device)->chipset < 0x94) { |
| hwsq_data = 0x001400; |
| hwsq_kick = 0x00000003; |
| } else { |
| hwsq_data = 0x080000; |
| hwsq_kick = 0x00000001; |
| } |
| /* upload hwsq ucode */ |
| nv_mask(device, 0x001098, 0x00000008, 0x00000000); |
| nv_wr32(device, 0x001304, 0x00000000); |
| if (nv_device(drm->device)->chipset >= 0x92) |
| nv_wr32(device, 0x001318, 0x00000000); |
| for (i = 0; i < hwsq->len / 4; i++) |
| nv_wr32(device, hwsq_data + (i * 4), hwsq->ptr.u32[i]); |
| nv_mask(device, 0x001098, 0x00000018, 0x00000018); |
| |
| /* launch, and wait for completion */ |
| nv_wr32(device, 0x00130c, hwsq_kick); |
| if (!nv_wait(device, 0x001308, 0x00000100, 0x00000000)) { |
| NV_ERROR(drm, "hwsq ucode exec timed out\n"); |
| NV_ERROR(drm, "0x001308: 0x%08x\n", nv_rd32(device, 0x001308)); |
| for (i = 0; i < hwsq->len / 4; i++) { |
| NV_ERROR(drm, "0x%06x: 0x%08x\n", 0x1400 + (i * 4), |
| nv_rd32(device, 0x001400 + (i * 4))); |
| } |
| |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| int |
| nv50_pm_clocks_set(struct drm_device *dev, void *data) |
| { |
| struct nouveau_device *device = nouveau_dev(dev); |
| struct nv50_pm_state *info = data; |
| struct bit_entry M; |
| int ret = -EBUSY; |
| |
| /* halt and idle execution engines */ |
| nv_mask(device, 0x002504, 0x00000001, 0x00000001); |
| if (!nv_wait(device, 0x002504, 0x00000010, 0x00000010)) |
| goto resume; |
| if (!nv_wait(device, 0x00251c, 0x0000003f, 0x0000003f)) |
| goto resume; |
| |
| /* program memory clock, if necessary - must come before engine clock |
| * reprogramming due to how we construct the hwsq scripts in pre() |
| */ |
| #define nouveau_bios_init_exec(a,b) nouveau_bios_run_init_table((a), (b), NULL, 0) |
| if (info->mclk_hwsq.len) { |
| /* execute some scripts that do ??? from the vbios.. */ |
| if (!bit_table(dev, 'M', &M) && M.version == 1) { |
| if (M.length >= 6) |
| nouveau_bios_init_exec(dev, ROM16(M.data[5])); |
| if (M.length >= 8) |
| nouveau_bios_init_exec(dev, ROM16(M.data[7])); |
| if (M.length >= 10) |
| nouveau_bios_init_exec(dev, ROM16(M.data[9])); |
| nouveau_bios_init_exec(dev, info->mscript); |
| } |
| |
| ret = prog_hwsq(dev, &info->mclk_hwsq); |
| if (ret) |
| goto resume; |
| } |
| |
| /* program engine clocks */ |
| ret = prog_hwsq(dev, &info->eclk_hwsq); |
| |
| resume: |
| nv_mask(device, 0x002504, 0x00000001, 0x00000000); |
| kfree(info); |
| return ret; |
| } |