| /* |
| * drivers/cpufreq/cpufreq_governor.c |
| * |
| * CPUFREQ governors common code |
| * |
| * Copyright (C) 2001 Russell King |
| * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. |
| * (C) 2003 Jun Nakajima <jun.nakajima@intel.com> |
| * (C) 2009 Alexander Clouter <alex@digriz.org.uk> |
| * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/export.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/slab.h> |
| |
| #include "cpufreq_governor.h" |
| |
| DEFINE_MUTEX(dbs_data_mutex); |
| EXPORT_SYMBOL_GPL(dbs_data_mutex); |
| |
| /* Common sysfs tunables */ |
| /** |
| * store_sampling_rate - update sampling rate effective immediately if needed. |
| * |
| * If new rate is smaller than the old, simply updating |
| * dbs.sampling_rate might not be appropriate. For example, if the |
| * original sampling_rate was 1 second and the requested new sampling rate is 10 |
| * ms because the user needs immediate reaction from ondemand governor, but not |
| * sure if higher frequency will be required or not, then, the governor may |
| * change the sampling rate too late; up to 1 second later. Thus, if we are |
| * reducing the sampling rate, we need to make the new value effective |
| * immediately. |
| * |
| * On the other hand, if new rate is larger than the old, then we may evaluate |
| * the load too soon, and it might we worth updating sample_delay_ns then as |
| * well. |
| * |
| * This must be called with dbs_data->mutex held, otherwise traversing |
| * policy_dbs_list isn't safe. |
| */ |
| ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf, |
| size_t count) |
| { |
| struct policy_dbs_info *policy_dbs; |
| unsigned int rate; |
| int ret; |
| ret = sscanf(buf, "%u", &rate); |
| if (ret != 1) |
| return -EINVAL; |
| |
| dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate); |
| |
| /* |
| * We are operating under dbs_data->mutex and so the list and its |
| * entries can't be freed concurrently. |
| */ |
| list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) { |
| mutex_lock(&policy_dbs->timer_mutex); |
| /* |
| * On 32-bit architectures this may race with the |
| * sample_delay_ns read in dbs_update_util_handler(), but that |
| * really doesn't matter. If the read returns a value that's |
| * too big, the sample will be skipped, but the next invocation |
| * of dbs_update_util_handler() (when the update has been |
| * completed) will take a sample. If the returned value is too |
| * small, the sample will be taken immediately, but that isn't a |
| * problem, as we want the new rate to take effect immediately |
| * anyway. |
| * |
| * If this runs in parallel with dbs_work_handler(), we may end |
| * up overwriting the sample_delay_ns value that it has just |
| * written, but the difference should not be too big and it will |
| * be corrected next time a sample is taken, so it shouldn't be |
| * significant. |
| */ |
| gov_update_sample_delay(policy_dbs, dbs_data->sampling_rate); |
| mutex_unlock(&policy_dbs->timer_mutex); |
| } |
| |
| return count; |
| } |
| EXPORT_SYMBOL_GPL(store_sampling_rate); |
| |
| static inline struct dbs_data *to_dbs_data(struct kobject *kobj) |
| { |
| return container_of(kobj, struct dbs_data, kobj); |
| } |
| |
| static inline struct governor_attr *to_gov_attr(struct attribute *attr) |
| { |
| return container_of(attr, struct governor_attr, attr); |
| } |
| |
| static ssize_t governor_show(struct kobject *kobj, struct attribute *attr, |
| char *buf) |
| { |
| struct dbs_data *dbs_data = to_dbs_data(kobj); |
| struct governor_attr *gattr = to_gov_attr(attr); |
| int ret = -EIO; |
| |
| if (gattr->show) |
| ret = gattr->show(dbs_data, buf); |
| |
| return ret; |
| } |
| |
| static ssize_t governor_store(struct kobject *kobj, struct attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct dbs_data *dbs_data = to_dbs_data(kobj); |
| struct governor_attr *gattr = to_gov_attr(attr); |
| int ret = -EIO; |
| |
| mutex_lock(&dbs_data->mutex); |
| |
| if (gattr->store) |
| ret = gattr->store(dbs_data, buf, count); |
| |
| mutex_unlock(&dbs_data->mutex); |
| |
| return ret; |
| } |
| |
| /* |
| * Sysfs Ops for accessing governor attributes. |
| * |
| * All show/store invocations for governor specific sysfs attributes, will first |
| * call the below show/store callbacks and the attribute specific callback will |
| * be called from within it. |
| */ |
| static const struct sysfs_ops governor_sysfs_ops = { |
| .show = governor_show, |
| .store = governor_store, |
| }; |
| |
| unsigned int dbs_update(struct cpufreq_policy *policy) |
| { |
| struct dbs_governor *gov = dbs_governor_of(policy); |
| struct policy_dbs_info *policy_dbs = policy->governor_data; |
| struct dbs_data *dbs_data = policy_dbs->dbs_data; |
| struct od_dbs_tuners *od_tuners = dbs_data->tuners; |
| unsigned int sampling_rate = dbs_data->sampling_rate; |
| unsigned int ignore_nice = dbs_data->ignore_nice_load; |
| unsigned int max_load = 0; |
| unsigned int j; |
| |
| if (gov->governor == GOV_ONDEMAND) { |
| struct od_cpu_dbs_info_s *od_dbs_info = |
| gov->get_cpu_dbs_info_s(policy->cpu); |
| |
| /* |
| * Sometimes, the ondemand governor uses an additional |
| * multiplier to give long delays. So apply this multiplier to |
| * the 'sampling_rate', so as to keep the wake-up-from-idle |
| * detection logic a bit conservative. |
| */ |
| sampling_rate *= od_dbs_info->rate_mult; |
| |
| } |
| |
| /* Get Absolute Load */ |
| for_each_cpu(j, policy->cpus) { |
| struct cpu_dbs_info *j_cdbs; |
| u64 cur_wall_time, cur_idle_time; |
| unsigned int idle_time, wall_time; |
| unsigned int load; |
| int io_busy = 0; |
| |
| j_cdbs = gov->get_cpu_cdbs(j); |
| |
| /* |
| * For the purpose of ondemand, waiting for disk IO is |
| * an indication that you're performance critical, and |
| * not that the system is actually idle. So do not add |
| * the iowait time to the cpu idle time. |
| */ |
| if (gov->governor == GOV_ONDEMAND) |
| io_busy = od_tuners->io_is_busy; |
| cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy); |
| |
| wall_time = cur_wall_time - j_cdbs->prev_cpu_wall; |
| j_cdbs->prev_cpu_wall = cur_wall_time; |
| |
| if (cur_idle_time <= j_cdbs->prev_cpu_idle) { |
| idle_time = 0; |
| } else { |
| idle_time = cur_idle_time - j_cdbs->prev_cpu_idle; |
| j_cdbs->prev_cpu_idle = cur_idle_time; |
| } |
| |
| if (ignore_nice) { |
| u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
| |
| idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice); |
| j_cdbs->prev_cpu_nice = cur_nice; |
| } |
| |
| if (unlikely(!wall_time || wall_time < idle_time)) |
| continue; |
| |
| /* |
| * If the CPU had gone completely idle, and a task just woke up |
| * on this CPU now, it would be unfair to calculate 'load' the |
| * usual way for this elapsed time-window, because it will show |
| * near-zero load, irrespective of how CPU intensive that task |
| * actually is. This is undesirable for latency-sensitive bursty |
| * workloads. |
| * |
| * To avoid this, we reuse the 'load' from the previous |
| * time-window and give this task a chance to start with a |
| * reasonably high CPU frequency. (However, we shouldn't over-do |
| * this copy, lest we get stuck at a high load (high frequency) |
| * for too long, even when the current system load has actually |
| * dropped down. So we perform the copy only once, upon the |
| * first wake-up from idle.) |
| * |
| * Detecting this situation is easy: the governor's utilization |
| * update handler would not have run during CPU-idle periods. |
| * Hence, an unusually large 'wall_time' (as compared to the |
| * sampling rate) indicates this scenario. |
| * |
| * prev_load can be zero in two cases and we must recalculate it |
| * for both cases: |
| * - during long idle intervals |
| * - explicitly set to zero |
| */ |
| if (unlikely(wall_time > (2 * sampling_rate) && |
| j_cdbs->prev_load)) { |
| load = j_cdbs->prev_load; |
| |
| /* |
| * Perform a destructive copy, to ensure that we copy |
| * the previous load only once, upon the first wake-up |
| * from idle. |
| */ |
| j_cdbs->prev_load = 0; |
| } else { |
| load = 100 * (wall_time - idle_time) / wall_time; |
| j_cdbs->prev_load = load; |
| } |
| |
| if (load > max_load) |
| max_load = load; |
| } |
| return max_load; |
| } |
| EXPORT_SYMBOL_GPL(dbs_update); |
| |
| void gov_set_update_util(struct policy_dbs_info *policy_dbs, |
| unsigned int delay_us) |
| { |
| struct cpufreq_policy *policy = policy_dbs->policy; |
| struct dbs_governor *gov = dbs_governor_of(policy); |
| int cpu; |
| |
| gov_update_sample_delay(policy_dbs, delay_us); |
| policy_dbs->last_sample_time = 0; |
| |
| for_each_cpu(cpu, policy->cpus) { |
| struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu); |
| |
| cpufreq_set_update_util_data(cpu, &cdbs->update_util); |
| } |
| } |
| EXPORT_SYMBOL_GPL(gov_set_update_util); |
| |
| static inline void gov_clear_update_util(struct cpufreq_policy *policy) |
| { |
| int i; |
| |
| for_each_cpu(i, policy->cpus) |
| cpufreq_set_update_util_data(i, NULL); |
| |
| synchronize_rcu(); |
| } |
| |
| static void gov_cancel_work(struct cpufreq_policy *policy) |
| { |
| struct policy_dbs_info *policy_dbs = policy->governor_data; |
| |
| gov_clear_update_util(policy_dbs->policy); |
| irq_work_sync(&policy_dbs->irq_work); |
| cancel_work_sync(&policy_dbs->work); |
| atomic_set(&policy_dbs->work_count, 0); |
| policy_dbs->work_in_progress = false; |
| } |
| |
| static void dbs_work_handler(struct work_struct *work) |
| { |
| struct policy_dbs_info *policy_dbs; |
| struct cpufreq_policy *policy; |
| struct dbs_governor *gov; |
| unsigned int delay; |
| |
| policy_dbs = container_of(work, struct policy_dbs_info, work); |
| policy = policy_dbs->policy; |
| gov = dbs_governor_of(policy); |
| |
| /* |
| * Make sure cpufreq_governor_limits() isn't evaluating load or the |
| * ondemand governor isn't updating the sampling rate in parallel. |
| */ |
| mutex_lock(&policy_dbs->timer_mutex); |
| delay = gov->gov_dbs_timer(policy); |
| policy_dbs->sample_delay_ns = jiffies_to_nsecs(delay); |
| mutex_unlock(&policy_dbs->timer_mutex); |
| |
| /* Allow the utilization update handler to queue up more work. */ |
| atomic_set(&policy_dbs->work_count, 0); |
| /* |
| * If the update below is reordered with respect to the sample delay |
| * modification, the utilization update handler may end up using a stale |
| * sample delay value. |
| */ |
| smp_wmb(); |
| policy_dbs->work_in_progress = false; |
| } |
| |
| static void dbs_irq_work(struct irq_work *irq_work) |
| { |
| struct policy_dbs_info *policy_dbs; |
| |
| policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work); |
| schedule_work(&policy_dbs->work); |
| } |
| |
| static void dbs_update_util_handler(struct update_util_data *data, u64 time, |
| unsigned long util, unsigned long max) |
| { |
| struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util); |
| struct policy_dbs_info *policy_dbs = cdbs->policy_dbs; |
| u64 delta_ns; |
| |
| /* |
| * The work may not be allowed to be queued up right now. |
| * Possible reasons: |
| * - Work has already been queued up or is in progress. |
| * - It is too early (too little time from the previous sample). |
| */ |
| if (policy_dbs->work_in_progress) |
| return; |
| |
| /* |
| * If the reads below are reordered before the check above, the value |
| * of sample_delay_ns used in the computation may be stale. |
| */ |
| smp_rmb(); |
| delta_ns = time - policy_dbs->last_sample_time; |
| if ((s64)delta_ns < policy_dbs->sample_delay_ns) |
| return; |
| |
| /* |
| * If the policy is not shared, the irq_work may be queued up right away |
| * at this point. Otherwise, we need to ensure that only one of the |
| * CPUs sharing the policy will do that. |
| */ |
| if (policy_dbs->is_shared && |
| !atomic_add_unless(&policy_dbs->work_count, 1, 1)) |
| return; |
| |
| policy_dbs->last_sample_time = time; |
| policy_dbs->work_in_progress = true; |
| irq_work_queue(&policy_dbs->irq_work); |
| } |
| |
| static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy, |
| struct dbs_governor *gov) |
| { |
| struct policy_dbs_info *policy_dbs; |
| int j; |
| |
| /* Allocate memory for the common information for policy->cpus */ |
| policy_dbs = kzalloc(sizeof(*policy_dbs), GFP_KERNEL); |
| if (!policy_dbs) |
| return NULL; |
| |
| policy_dbs->policy = policy; |
| mutex_init(&policy_dbs->timer_mutex); |
| atomic_set(&policy_dbs->work_count, 0); |
| init_irq_work(&policy_dbs->irq_work, dbs_irq_work); |
| INIT_WORK(&policy_dbs->work, dbs_work_handler); |
| |
| /* Set policy_dbs for all CPUs, online+offline */ |
| for_each_cpu(j, policy->related_cpus) { |
| struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j); |
| |
| j_cdbs->policy_dbs = policy_dbs; |
| j_cdbs->update_util.func = dbs_update_util_handler; |
| } |
| return policy_dbs; |
| } |
| |
| static void free_policy_dbs_info(struct cpufreq_policy *policy, |
| struct dbs_governor *gov) |
| { |
| struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(policy->cpu); |
| struct policy_dbs_info *policy_dbs = cdbs->policy_dbs; |
| int j; |
| |
| mutex_destroy(&policy_dbs->timer_mutex); |
| |
| for_each_cpu(j, policy->related_cpus) { |
| struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j); |
| |
| j_cdbs->policy_dbs = NULL; |
| j_cdbs->update_util.func = NULL; |
| } |
| kfree(policy_dbs); |
| } |
| |
| static int cpufreq_governor_init(struct cpufreq_policy *policy) |
| { |
| struct dbs_governor *gov = dbs_governor_of(policy); |
| struct dbs_data *dbs_data = gov->gdbs_data; |
| struct policy_dbs_info *policy_dbs; |
| unsigned int latency; |
| int ret; |
| |
| /* State should be equivalent to EXIT */ |
| if (policy->governor_data) |
| return -EBUSY; |
| |
| policy_dbs = alloc_policy_dbs_info(policy, gov); |
| if (!policy_dbs) |
| return -ENOMEM; |
| |
| if (dbs_data) { |
| if (WARN_ON(have_governor_per_policy())) { |
| ret = -EINVAL; |
| goto free_policy_dbs_info; |
| } |
| policy_dbs->dbs_data = dbs_data; |
| policy->governor_data = policy_dbs; |
| |
| mutex_lock(&dbs_data->mutex); |
| dbs_data->usage_count++; |
| list_add(&policy_dbs->list, &dbs_data->policy_dbs_list); |
| mutex_unlock(&dbs_data->mutex); |
| |
| return 0; |
| } |
| |
| dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL); |
| if (!dbs_data) { |
| ret = -ENOMEM; |
| goto free_policy_dbs_info; |
| } |
| |
| INIT_LIST_HEAD(&dbs_data->policy_dbs_list); |
| mutex_init(&dbs_data->mutex); |
| |
| ret = gov->init(dbs_data, !policy->governor->initialized); |
| if (ret) |
| goto free_policy_dbs_info; |
| |
| /* policy latency is in ns. Convert it to us first */ |
| latency = policy->cpuinfo.transition_latency / 1000; |
| if (latency == 0) |
| latency = 1; |
| |
| /* Bring kernel and HW constraints together */ |
| dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate, |
| MIN_LATENCY_MULTIPLIER * latency); |
| dbs_data->sampling_rate = max(dbs_data->min_sampling_rate, |
| LATENCY_MULTIPLIER * latency); |
| |
| if (!have_governor_per_policy()) |
| gov->gdbs_data = dbs_data; |
| |
| policy->governor_data = policy_dbs; |
| |
| policy_dbs->dbs_data = dbs_data; |
| dbs_data->usage_count = 1; |
| list_add(&policy_dbs->list, &dbs_data->policy_dbs_list); |
| |
| gov->kobj_type.sysfs_ops = &governor_sysfs_ops; |
| ret = kobject_init_and_add(&dbs_data->kobj, &gov->kobj_type, |
| get_governor_parent_kobj(policy), |
| "%s", gov->gov.name); |
| if (!ret) |
| return 0; |
| |
| /* Failure, so roll back. */ |
| pr_err("cpufreq: Governor initialization failed (dbs_data kobject init error %d)\n", ret); |
| |
| policy->governor_data = NULL; |
| |
| if (!have_governor_per_policy()) |
| gov->gdbs_data = NULL; |
| gov->exit(dbs_data, !policy->governor->initialized); |
| kfree(dbs_data); |
| |
| free_policy_dbs_info: |
| free_policy_dbs_info(policy, gov); |
| return ret; |
| } |
| |
| static int cpufreq_governor_exit(struct cpufreq_policy *policy) |
| { |
| struct dbs_governor *gov = dbs_governor_of(policy); |
| struct policy_dbs_info *policy_dbs = policy->governor_data; |
| struct dbs_data *dbs_data = policy_dbs->dbs_data; |
| int count; |
| |
| mutex_lock(&dbs_data->mutex); |
| list_del(&policy_dbs->list); |
| count = --dbs_data->usage_count; |
| mutex_unlock(&dbs_data->mutex); |
| |
| if (!count) { |
| kobject_put(&dbs_data->kobj); |
| |
| policy->governor_data = NULL; |
| |
| if (!have_governor_per_policy()) |
| gov->gdbs_data = NULL; |
| |
| gov->exit(dbs_data, policy->governor->initialized == 1); |
| mutex_destroy(&dbs_data->mutex); |
| kfree(dbs_data); |
| } else { |
| policy->governor_data = NULL; |
| } |
| |
| free_policy_dbs_info(policy, gov); |
| return 0; |
| } |
| |
| static int cpufreq_governor_start(struct cpufreq_policy *policy) |
| { |
| struct dbs_governor *gov = dbs_governor_of(policy); |
| struct policy_dbs_info *policy_dbs = policy->governor_data; |
| struct dbs_data *dbs_data = policy_dbs->dbs_data; |
| unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu; |
| int io_busy = 0; |
| |
| if (!policy->cur) |
| return -EINVAL; |
| |
| policy_dbs->is_shared = policy_is_shared(policy); |
| |
| sampling_rate = dbs_data->sampling_rate; |
| ignore_nice = dbs_data->ignore_nice_load; |
| |
| if (gov->governor == GOV_ONDEMAND) { |
| struct od_dbs_tuners *od_tuners = dbs_data->tuners; |
| |
| io_busy = od_tuners->io_is_busy; |
| } |
| |
| for_each_cpu(j, policy->cpus) { |
| struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j); |
| unsigned int prev_load; |
| |
| j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy); |
| |
| prev_load = j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle; |
| j_cdbs->prev_load = 100 * prev_load / (unsigned int)j_cdbs->prev_cpu_wall; |
| |
| if (ignore_nice) |
| j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
| } |
| |
| if (gov->governor == GOV_CONSERVATIVE) { |
| struct cs_cpu_dbs_info_s *cs_dbs_info = |
| gov->get_cpu_dbs_info_s(cpu); |
| |
| cs_dbs_info->down_skip = 0; |
| cs_dbs_info->requested_freq = policy->cur; |
| } else { |
| struct od_ops *od_ops = gov->gov_ops; |
| struct od_cpu_dbs_info_s *od_dbs_info = gov->get_cpu_dbs_info_s(cpu); |
| |
| od_dbs_info->rate_mult = 1; |
| od_dbs_info->sample_type = OD_NORMAL_SAMPLE; |
| od_ops->powersave_bias_init_cpu(cpu); |
| } |
| |
| gov_set_update_util(policy_dbs, sampling_rate); |
| return 0; |
| } |
| |
| static int cpufreq_governor_stop(struct cpufreq_policy *policy) |
| { |
| gov_cancel_work(policy); |
| |
| return 0; |
| } |
| |
| static int cpufreq_governor_limits(struct cpufreq_policy *policy) |
| { |
| struct policy_dbs_info *policy_dbs = policy->governor_data; |
| |
| mutex_lock(&policy_dbs->timer_mutex); |
| |
| if (policy->max < policy->cur) |
| __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H); |
| else if (policy->min > policy->cur) |
| __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L); |
| |
| gov_update_sample_delay(policy_dbs, 0); |
| |
| mutex_unlock(&policy_dbs->timer_mutex); |
| |
| return 0; |
| } |
| |
| int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event) |
| { |
| int ret = -EINVAL; |
| |
| /* Lock governor to block concurrent initialization of governor */ |
| mutex_lock(&dbs_data_mutex); |
| |
| if (event == CPUFREQ_GOV_POLICY_INIT) { |
| ret = cpufreq_governor_init(policy); |
| } else if (policy->governor_data) { |
| switch (event) { |
| case CPUFREQ_GOV_POLICY_EXIT: |
| ret = cpufreq_governor_exit(policy); |
| break; |
| case CPUFREQ_GOV_START: |
| ret = cpufreq_governor_start(policy); |
| break; |
| case CPUFREQ_GOV_STOP: |
| ret = cpufreq_governor_stop(policy); |
| break; |
| case CPUFREQ_GOV_LIMITS: |
| ret = cpufreq_governor_limits(policy); |
| break; |
| } |
| } |
| |
| mutex_unlock(&dbs_data_mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(cpufreq_governor_dbs); |