| /* |
| * Local APIC handling, local APIC timers |
| * |
| * (c) 1999, 2000 Ingo Molnar <mingo@redhat.com> |
| * |
| * Fixes |
| * Maciej W. Rozycki : Bits for genuine 82489DX APICs; |
| * thanks to Eric Gilmore |
| * and Rolf G. Tews |
| * for testing these extensively. |
| * Maciej W. Rozycki : Various updates and fixes. |
| * Mikael Pettersson : Power Management for UP-APIC. |
| * Pavel Machek and |
| * Mikael Pettersson : PM converted to driver model. |
| */ |
| |
| #include <linux/init.h> |
| |
| #include <linux/mm.h> |
| #include <linux/delay.h> |
| #include <linux/bootmem.h> |
| #include <linux/interrupt.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/sysdev.h> |
| #include <linux/ioport.h> |
| #include <linux/clockchips.h> |
| #include <linux/acpi_pmtmr.h> |
| #include <linux/module.h> |
| |
| #include <asm/atomic.h> |
| #include <asm/smp.h> |
| #include <asm/mtrr.h> |
| #include <asm/mpspec.h> |
| #include <asm/hpet.h> |
| #include <asm/pgalloc.h> |
| #include <asm/nmi.h> |
| #include <asm/idle.h> |
| #include <asm/proto.h> |
| #include <asm/timex.h> |
| #include <asm/apic.h> |
| |
| #include <mach_ipi.h> |
| #include <mach_apic.h> |
| |
| int disable_apic_timer __cpuinitdata; |
| static int apic_calibrate_pmtmr __initdata; |
| int disable_apic; |
| |
| /* Local APIC timer works in C2 */ |
| int local_apic_timer_c2_ok; |
| EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok); |
| |
| /* |
| * Debug level, exported for io_apic.c |
| */ |
| int apic_verbosity; |
| |
| static struct resource lapic_resource = { |
| .name = "Local APIC", |
| .flags = IORESOURCE_MEM | IORESOURCE_BUSY, |
| }; |
| |
| static unsigned int calibration_result; |
| |
| static int lapic_next_event(unsigned long delta, |
| struct clock_event_device *evt); |
| static void lapic_timer_setup(enum clock_event_mode mode, |
| struct clock_event_device *evt); |
| static void lapic_timer_broadcast(cpumask_t mask); |
| static void apic_pm_activate(void); |
| |
| static struct clock_event_device lapic_clockevent = { |
| .name = "lapic", |
| .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
| | CLOCK_EVT_FEAT_C3STOP | CLOCK_EVT_FEAT_DUMMY, |
| .shift = 32, |
| .set_mode = lapic_timer_setup, |
| .set_next_event = lapic_next_event, |
| .broadcast = lapic_timer_broadcast, |
| .rating = 100, |
| .irq = -1, |
| }; |
| static DEFINE_PER_CPU(struct clock_event_device, lapic_events); |
| |
| static unsigned long apic_phys; |
| |
| unsigned long mp_lapic_addr; |
| |
| DEFINE_PER_CPU(u16, x86_bios_cpu_apicid) = BAD_APICID; |
| EXPORT_PER_CPU_SYMBOL(x86_bios_cpu_apicid); |
| |
| unsigned int __cpuinitdata maxcpus = NR_CPUS; |
| /* |
| * Get the LAPIC version |
| */ |
| static inline int lapic_get_version(void) |
| { |
| return GET_APIC_VERSION(apic_read(APIC_LVR)); |
| } |
| |
| /* |
| * Check, if the APIC is integrated or a seperate chip |
| */ |
| static inline int lapic_is_integrated(void) |
| { |
| return 1; |
| } |
| |
| /* |
| * Check, whether this is a modern or a first generation APIC |
| */ |
| static int modern_apic(void) |
| { |
| /* AMD systems use old APIC versions, so check the CPU */ |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && |
| boot_cpu_data.x86 >= 0xf) |
| return 1; |
| return lapic_get_version() >= 0x14; |
| } |
| |
| void apic_wait_icr_idle(void) |
| { |
| while (apic_read(APIC_ICR) & APIC_ICR_BUSY) |
| cpu_relax(); |
| } |
| |
| u32 safe_apic_wait_icr_idle(void) |
| { |
| u32 send_status; |
| int timeout; |
| |
| timeout = 0; |
| do { |
| send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| if (!send_status) |
| break; |
| udelay(100); |
| } while (timeout++ < 1000); |
| |
| return send_status; |
| } |
| |
| /** |
| * enable_NMI_through_LVT0 - enable NMI through local vector table 0 |
| */ |
| void __cpuinit enable_NMI_through_LVT0(void) |
| { |
| unsigned int v; |
| |
| /* unmask and set to NMI */ |
| v = APIC_DM_NMI; |
| apic_write(APIC_LVT0, v); |
| } |
| |
| /** |
| * lapic_get_maxlvt - get the maximum number of local vector table entries |
| */ |
| int lapic_get_maxlvt(void) |
| { |
| unsigned int v, maxlvt; |
| |
| v = apic_read(APIC_LVR); |
| maxlvt = GET_APIC_MAXLVT(v); |
| return maxlvt; |
| } |
| |
| /* |
| * This function sets up the local APIC timer, with a timeout of |
| * 'clocks' APIC bus clock. During calibration we actually call |
| * this function twice on the boot CPU, once with a bogus timeout |
| * value, second time for real. The other (noncalibrating) CPUs |
| * call this function only once, with the real, calibrated value. |
| * |
| * We do reads before writes even if unnecessary, to get around the |
| * P5 APIC double write bug. |
| */ |
| |
| static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen) |
| { |
| unsigned int lvtt_value, tmp_value; |
| |
| lvtt_value = LOCAL_TIMER_VECTOR; |
| if (!oneshot) |
| lvtt_value |= APIC_LVT_TIMER_PERIODIC; |
| if (!irqen) |
| lvtt_value |= APIC_LVT_MASKED; |
| |
| apic_write(APIC_LVTT, lvtt_value); |
| |
| /* |
| * Divide PICLK by 16 |
| */ |
| tmp_value = apic_read(APIC_TDCR); |
| apic_write(APIC_TDCR, (tmp_value |
| & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) |
| | APIC_TDR_DIV_16); |
| |
| if (!oneshot) |
| apic_write(APIC_TMICT, clocks); |
| } |
| |
| /* |
| * Setup extended LVT, AMD specific (K8, family 10h) |
| * |
| * Vector mappings are hard coded. On K8 only offset 0 (APIC500) and |
| * MCE interrupts are supported. Thus MCE offset must be set to 0. |
| */ |
| |
| #define APIC_EILVT_LVTOFF_MCE 0 |
| #define APIC_EILVT_LVTOFF_IBS 1 |
| |
| static void setup_APIC_eilvt(u8 lvt_off, u8 vector, u8 msg_type, u8 mask) |
| { |
| unsigned long reg = (lvt_off << 4) + APIC_EILVT0; |
| unsigned int v = (mask << 16) | (msg_type << 8) | vector; |
| |
| apic_write(reg, v); |
| } |
| |
| u8 setup_APIC_eilvt_mce(u8 vector, u8 msg_type, u8 mask) |
| { |
| setup_APIC_eilvt(APIC_EILVT_LVTOFF_MCE, vector, msg_type, mask); |
| return APIC_EILVT_LVTOFF_MCE; |
| } |
| |
| u8 setup_APIC_eilvt_ibs(u8 vector, u8 msg_type, u8 mask) |
| { |
| setup_APIC_eilvt(APIC_EILVT_LVTOFF_IBS, vector, msg_type, mask); |
| return APIC_EILVT_LVTOFF_IBS; |
| } |
| |
| /* |
| * Program the next event, relative to now |
| */ |
| static int lapic_next_event(unsigned long delta, |
| struct clock_event_device *evt) |
| { |
| apic_write(APIC_TMICT, delta); |
| return 0; |
| } |
| |
| /* |
| * Setup the lapic timer in periodic or oneshot mode |
| */ |
| static void lapic_timer_setup(enum clock_event_mode mode, |
| struct clock_event_device *evt) |
| { |
| unsigned long flags; |
| unsigned int v; |
| |
| /* Lapic used as dummy for broadcast ? */ |
| if (evt->features & CLOCK_EVT_FEAT_DUMMY) |
| return; |
| |
| local_irq_save(flags); |
| |
| switch (mode) { |
| case CLOCK_EVT_MODE_PERIODIC: |
| case CLOCK_EVT_MODE_ONESHOT: |
| __setup_APIC_LVTT(calibration_result, |
| mode != CLOCK_EVT_MODE_PERIODIC, 1); |
| break; |
| case CLOCK_EVT_MODE_UNUSED: |
| case CLOCK_EVT_MODE_SHUTDOWN: |
| v = apic_read(APIC_LVTT); |
| v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); |
| apic_write(APIC_LVTT, v); |
| break; |
| case CLOCK_EVT_MODE_RESUME: |
| /* Nothing to do here */ |
| break; |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Local APIC timer broadcast function |
| */ |
| static void lapic_timer_broadcast(cpumask_t mask) |
| { |
| #ifdef CONFIG_SMP |
| send_IPI_mask(mask, LOCAL_TIMER_VECTOR); |
| #endif |
| } |
| |
| /* |
| * Setup the local APIC timer for this CPU. Copy the initilized values |
| * of the boot CPU and register the clock event in the framework. |
| */ |
| static void setup_APIC_timer(void) |
| { |
| struct clock_event_device *levt = &__get_cpu_var(lapic_events); |
| |
| memcpy(levt, &lapic_clockevent, sizeof(*levt)); |
| levt->cpumask = cpumask_of_cpu(smp_processor_id()); |
| |
| clockevents_register_device(levt); |
| } |
| |
| /* |
| * In this function we calibrate APIC bus clocks to the external |
| * timer. Unfortunately we cannot use jiffies and the timer irq |
| * to calibrate, since some later bootup code depends on getting |
| * the first irq? Ugh. |
| * |
| * We want to do the calibration only once since we |
| * want to have local timer irqs syncron. CPUs connected |
| * by the same APIC bus have the very same bus frequency. |
| * And we want to have irqs off anyways, no accidental |
| * APIC irq that way. |
| */ |
| |
| #define TICK_COUNT 100000000 |
| |
| static void __init calibrate_APIC_clock(void) |
| { |
| unsigned apic, apic_start; |
| unsigned long tsc, tsc_start; |
| int result; |
| |
| local_irq_disable(); |
| |
| /* |
| * Put whatever arbitrary (but long enough) timeout |
| * value into the APIC clock, we just want to get the |
| * counter running for calibration. |
| * |
| * No interrupt enable ! |
| */ |
| __setup_APIC_LVTT(250000000, 0, 0); |
| |
| apic_start = apic_read(APIC_TMCCT); |
| #ifdef CONFIG_X86_PM_TIMER |
| if (apic_calibrate_pmtmr && pmtmr_ioport) { |
| pmtimer_wait(5000); /* 5ms wait */ |
| apic = apic_read(APIC_TMCCT); |
| result = (apic_start - apic) * 1000L / 5; |
| } else |
| #endif |
| { |
| rdtscll(tsc_start); |
| |
| do { |
| apic = apic_read(APIC_TMCCT); |
| rdtscll(tsc); |
| } while ((tsc - tsc_start) < TICK_COUNT && |
| (apic_start - apic) < TICK_COUNT); |
| |
| result = (apic_start - apic) * 1000L * tsc_khz / |
| (tsc - tsc_start); |
| } |
| |
| local_irq_enable(); |
| |
| printk(KERN_DEBUG "APIC timer calibration result %d\n", result); |
| |
| printk(KERN_INFO "Detected %d.%03d MHz APIC timer.\n", |
| result / 1000 / 1000, result / 1000 % 1000); |
| |
| /* Calculate the scaled math multiplication factor */ |
| lapic_clockevent.mult = div_sc(result, NSEC_PER_SEC, |
| lapic_clockevent.shift); |
| lapic_clockevent.max_delta_ns = |
| clockevent_delta2ns(0x7FFFFF, &lapic_clockevent); |
| lapic_clockevent.min_delta_ns = |
| clockevent_delta2ns(0xF, &lapic_clockevent); |
| |
| calibration_result = result / HZ; |
| } |
| |
| /* |
| * Setup the boot APIC |
| * |
| * Calibrate and verify the result. |
| */ |
| void __init setup_boot_APIC_clock(void) |
| { |
| /* |
| * The local apic timer can be disabled via the kernel commandline. |
| * Register the lapic timer as a dummy clock event source on SMP |
| * systems, so the broadcast mechanism is used. On UP systems simply |
| * ignore it. |
| */ |
| if (disable_apic_timer) { |
| printk(KERN_INFO "Disabling APIC timer\n"); |
| /* No broadcast on UP ! */ |
| if (num_possible_cpus() > 1) { |
| lapic_clockevent.mult = 1; |
| setup_APIC_timer(); |
| } |
| return; |
| } |
| |
| printk(KERN_INFO "Using local APIC timer interrupts.\n"); |
| calibrate_APIC_clock(); |
| |
| /* |
| * Do a sanity check on the APIC calibration result |
| */ |
| if (calibration_result < (1000000 / HZ)) { |
| printk(KERN_WARNING |
| "APIC frequency too slow, disabling apic timer\n"); |
| /* No broadcast on UP ! */ |
| if (num_possible_cpus() > 1) |
| setup_APIC_timer(); |
| return; |
| } |
| |
| /* |
| * If nmi_watchdog is set to IO_APIC, we need the |
| * PIT/HPET going. Otherwise register lapic as a dummy |
| * device. |
| */ |
| if (nmi_watchdog != NMI_IO_APIC) |
| lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; |
| else |
| printk(KERN_WARNING "APIC timer registered as dummy," |
| " due to nmi_watchdog=1!\n"); |
| |
| setup_APIC_timer(); |
| } |
| |
| /* |
| * AMD C1E enabled CPUs have a real nasty problem: Some BIOSes set the |
| * C1E flag only in the secondary CPU, so when we detect the wreckage |
| * we already have enabled the boot CPU local apic timer. Check, if |
| * disable_apic_timer is set and the DUMMY flag is cleared. If yes, |
| * set the DUMMY flag again and force the broadcast mode in the |
| * clockevents layer. |
| */ |
| static void __cpuinit check_boot_apic_timer_broadcast(void) |
| { |
| if (!disable_apic_timer || |
| (lapic_clockevent.features & CLOCK_EVT_FEAT_DUMMY)) |
| return; |
| |
| printk(KERN_INFO "AMD C1E detected late. Force timer broadcast.\n"); |
| lapic_clockevent.features |= CLOCK_EVT_FEAT_DUMMY; |
| |
| local_irq_enable(); |
| clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, |
| &boot_cpu_physical_apicid); |
| local_irq_disable(); |
| } |
| |
| void __cpuinit setup_secondary_APIC_clock(void) |
| { |
| check_boot_apic_timer_broadcast(); |
| setup_APIC_timer(); |
| } |
| |
| /* |
| * The guts of the apic timer interrupt |
| */ |
| static void local_apic_timer_interrupt(void) |
| { |
| int cpu = smp_processor_id(); |
| struct clock_event_device *evt = &per_cpu(lapic_events, cpu); |
| |
| /* |
| * Normally we should not be here till LAPIC has been initialized but |
| * in some cases like kdump, its possible that there is a pending LAPIC |
| * timer interrupt from previous kernel's context and is delivered in |
| * new kernel the moment interrupts are enabled. |
| * |
| * Interrupts are enabled early and LAPIC is setup much later, hence |
| * its possible that when we get here evt->event_handler is NULL. |
| * Check for event_handler being NULL and discard the interrupt as |
| * spurious. |
| */ |
| if (!evt->event_handler) { |
| printk(KERN_WARNING |
| "Spurious LAPIC timer interrupt on cpu %d\n", cpu); |
| /* Switch it off */ |
| lapic_timer_setup(CLOCK_EVT_MODE_SHUTDOWN, evt); |
| return; |
| } |
| |
| /* |
| * the NMI deadlock-detector uses this. |
| */ |
| add_pda(apic_timer_irqs, 1); |
| |
| evt->event_handler(evt); |
| } |
| |
| /* |
| * Local APIC timer interrupt. This is the most natural way for doing |
| * local interrupts, but local timer interrupts can be emulated by |
| * broadcast interrupts too. [in case the hw doesn't support APIC timers] |
| * |
| * [ if a single-CPU system runs an SMP kernel then we call the local |
| * interrupt as well. Thus we cannot inline the local irq ... ] |
| */ |
| void smp_apic_timer_interrupt(struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| |
| /* |
| * NOTE! We'd better ACK the irq immediately, |
| * because timer handling can be slow. |
| */ |
| ack_APIC_irq(); |
| /* |
| * update_process_times() expects us to have done irq_enter(). |
| * Besides, if we don't timer interrupts ignore the global |
| * interrupt lock, which is the WrongThing (tm) to do. |
| */ |
| exit_idle(); |
| irq_enter(); |
| local_apic_timer_interrupt(); |
| irq_exit(); |
| set_irq_regs(old_regs); |
| } |
| |
| int setup_profiling_timer(unsigned int multiplier) |
| { |
| return -EINVAL; |
| } |
| |
| |
| /* |
| * Local APIC start and shutdown |
| */ |
| |
| /** |
| * clear_local_APIC - shutdown the local APIC |
| * |
| * This is called, when a CPU is disabled and before rebooting, so the state of |
| * the local APIC has no dangling leftovers. Also used to cleanout any BIOS |
| * leftovers during boot. |
| */ |
| void clear_local_APIC(void) |
| { |
| int maxlvt; |
| u32 v; |
| |
| /* APIC hasn't been mapped yet */ |
| if (!apic_phys) |
| return; |
| |
| maxlvt = lapic_get_maxlvt(); |
| /* |
| * Masking an LVT entry can trigger a local APIC error |
| * if the vector is zero. Mask LVTERR first to prevent this. |
| */ |
| if (maxlvt >= 3) { |
| v = ERROR_APIC_VECTOR; /* any non-zero vector will do */ |
| apic_write(APIC_LVTERR, v | APIC_LVT_MASKED); |
| } |
| /* |
| * Careful: we have to set masks only first to deassert |
| * any level-triggered sources. |
| */ |
| v = apic_read(APIC_LVTT); |
| apic_write(APIC_LVTT, v | APIC_LVT_MASKED); |
| v = apic_read(APIC_LVT0); |
| apic_write(APIC_LVT0, v | APIC_LVT_MASKED); |
| v = apic_read(APIC_LVT1); |
| apic_write(APIC_LVT1, v | APIC_LVT_MASKED); |
| if (maxlvt >= 4) { |
| v = apic_read(APIC_LVTPC); |
| apic_write(APIC_LVTPC, v | APIC_LVT_MASKED); |
| } |
| |
| /* |
| * Clean APIC state for other OSs: |
| */ |
| apic_write(APIC_LVTT, APIC_LVT_MASKED); |
| apic_write(APIC_LVT0, APIC_LVT_MASKED); |
| apic_write(APIC_LVT1, APIC_LVT_MASKED); |
| if (maxlvt >= 3) |
| apic_write(APIC_LVTERR, APIC_LVT_MASKED); |
| if (maxlvt >= 4) |
| apic_write(APIC_LVTPC, APIC_LVT_MASKED); |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| } |
| |
| /** |
| * disable_local_APIC - clear and disable the local APIC |
| */ |
| void disable_local_APIC(void) |
| { |
| unsigned int value; |
| |
| clear_local_APIC(); |
| |
| /* |
| * Disable APIC (implies clearing of registers |
| * for 82489DX!). |
| */ |
| value = apic_read(APIC_SPIV); |
| value &= ~APIC_SPIV_APIC_ENABLED; |
| apic_write(APIC_SPIV, value); |
| } |
| |
| void lapic_shutdown(void) |
| { |
| unsigned long flags; |
| |
| if (!cpu_has_apic) |
| return; |
| |
| local_irq_save(flags); |
| |
| disable_local_APIC(); |
| |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * This is to verify that we're looking at a real local APIC. |
| * Check these against your board if the CPUs aren't getting |
| * started for no apparent reason. |
| */ |
| int __init verify_local_APIC(void) |
| { |
| unsigned int reg0, reg1; |
| |
| /* |
| * The version register is read-only in a real APIC. |
| */ |
| reg0 = apic_read(APIC_LVR); |
| apic_printk(APIC_DEBUG, "Getting VERSION: %x\n", reg0); |
| apic_write(APIC_LVR, reg0 ^ APIC_LVR_MASK); |
| reg1 = apic_read(APIC_LVR); |
| apic_printk(APIC_DEBUG, "Getting VERSION: %x\n", reg1); |
| |
| /* |
| * The two version reads above should print the same |
| * numbers. If the second one is different, then we |
| * poke at a non-APIC. |
| */ |
| if (reg1 != reg0) |
| return 0; |
| |
| /* |
| * Check if the version looks reasonably. |
| */ |
| reg1 = GET_APIC_VERSION(reg0); |
| if (reg1 == 0x00 || reg1 == 0xff) |
| return 0; |
| reg1 = lapic_get_maxlvt(); |
| if (reg1 < 0x02 || reg1 == 0xff) |
| return 0; |
| |
| /* |
| * The ID register is read/write in a real APIC. |
| */ |
| reg0 = read_apic_id(); |
| apic_printk(APIC_DEBUG, "Getting ID: %x\n", reg0); |
| apic_write(APIC_ID, reg0 ^ APIC_ID_MASK); |
| reg1 = read_apic_id(); |
| apic_printk(APIC_DEBUG, "Getting ID: %x\n", reg1); |
| apic_write(APIC_ID, reg0); |
| if (reg1 != (reg0 ^ APIC_ID_MASK)) |
| return 0; |
| |
| /* |
| * The next two are just to see if we have sane values. |
| * They're only really relevant if we're in Virtual Wire |
| * compatibility mode, but most boxes are anymore. |
| */ |
| reg0 = apic_read(APIC_LVT0); |
| apic_printk(APIC_DEBUG, "Getting LVT0: %x\n", reg0); |
| reg1 = apic_read(APIC_LVT1); |
| apic_printk(APIC_DEBUG, "Getting LVT1: %x\n", reg1); |
| |
| return 1; |
| } |
| |
| /** |
| * sync_Arb_IDs - synchronize APIC bus arbitration IDs |
| */ |
| void __init sync_Arb_IDs(void) |
| { |
| /* Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 */ |
| if (modern_apic()) |
| return; |
| |
| /* |
| * Wait for idle. |
| */ |
| apic_wait_icr_idle(); |
| |
| apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n"); |
| apic_write(APIC_ICR, APIC_DEST_ALLINC | APIC_INT_LEVELTRIG |
| | APIC_DM_INIT); |
| } |
| |
| /* |
| * An initial setup of the virtual wire mode. |
| */ |
| void __init init_bsp_APIC(void) |
| { |
| unsigned int value; |
| |
| /* |
| * Don't do the setup now if we have a SMP BIOS as the |
| * through-I/O-APIC virtual wire mode might be active. |
| */ |
| if (smp_found_config || !cpu_has_apic) |
| return; |
| |
| value = apic_read(APIC_LVR); |
| |
| /* |
| * Do not trust the local APIC being empty at bootup. |
| */ |
| clear_local_APIC(); |
| |
| /* |
| * Enable APIC. |
| */ |
| value = apic_read(APIC_SPIV); |
| value &= ~APIC_VECTOR_MASK; |
| value |= APIC_SPIV_APIC_ENABLED; |
| value |= APIC_SPIV_FOCUS_DISABLED; |
| value |= SPURIOUS_APIC_VECTOR; |
| apic_write(APIC_SPIV, value); |
| |
| /* |
| * Set up the virtual wire mode. |
| */ |
| apic_write(APIC_LVT0, APIC_DM_EXTINT); |
| value = APIC_DM_NMI; |
| apic_write(APIC_LVT1, value); |
| } |
| |
| /** |
| * setup_local_APIC - setup the local APIC |
| */ |
| void __cpuinit setup_local_APIC(void) |
| { |
| unsigned int value; |
| int i, j; |
| |
| preempt_disable(); |
| value = apic_read(APIC_LVR); |
| |
| BUILD_BUG_ON((SPURIOUS_APIC_VECTOR & 0x0f) != 0x0f); |
| |
| /* |
| * Double-check whether this APIC is really registered. |
| * This is meaningless in clustered apic mode, so we skip it. |
| */ |
| if (!apic_id_registered()) |
| BUG(); |
| |
| /* |
| * Intel recommends to set DFR, LDR and TPR before enabling |
| * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel |
| * document number 292116). So here it goes... |
| */ |
| init_apic_ldr(); |
| |
| /* |
| * Set Task Priority to 'accept all'. We never change this |
| * later on. |
| */ |
| value = apic_read(APIC_TASKPRI); |
| value &= ~APIC_TPRI_MASK; |
| apic_write(APIC_TASKPRI, value); |
| |
| /* |
| * After a crash, we no longer service the interrupts and a pending |
| * interrupt from previous kernel might still have ISR bit set. |
| * |
| * Most probably by now CPU has serviced that pending interrupt and |
| * it might not have done the ack_APIC_irq() because it thought, |
| * interrupt came from i8259 as ExtInt. LAPIC did not get EOI so it |
| * does not clear the ISR bit and cpu thinks it has already serivced |
| * the interrupt. Hence a vector might get locked. It was noticed |
| * for timer irq (vector 0x31). Issue an extra EOI to clear ISR. |
| */ |
| for (i = APIC_ISR_NR - 1; i >= 0; i--) { |
| value = apic_read(APIC_ISR + i*0x10); |
| for (j = 31; j >= 0; j--) { |
| if (value & (1<<j)) |
| ack_APIC_irq(); |
| } |
| } |
| |
| /* |
| * Now that we are all set up, enable the APIC |
| */ |
| value = apic_read(APIC_SPIV); |
| value &= ~APIC_VECTOR_MASK; |
| /* |
| * Enable APIC |
| */ |
| value |= APIC_SPIV_APIC_ENABLED; |
| |
| /* We always use processor focus */ |
| |
| /* |
| * Set spurious IRQ vector |
| */ |
| value |= SPURIOUS_APIC_VECTOR; |
| apic_write(APIC_SPIV, value); |
| |
| /* |
| * Set up LVT0, LVT1: |
| * |
| * set up through-local-APIC on the BP's LINT0. This is not |
| * strictly necessary in pure symmetric-IO mode, but sometimes |
| * we delegate interrupts to the 8259A. |
| */ |
| /* |
| * TODO: set up through-local-APIC from through-I/O-APIC? --macro |
| */ |
| value = apic_read(APIC_LVT0) & APIC_LVT_MASKED; |
| if (!smp_processor_id() && !value) { |
| value = APIC_DM_EXTINT; |
| apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", |
| smp_processor_id()); |
| } else { |
| value = APIC_DM_EXTINT | APIC_LVT_MASKED; |
| apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", |
| smp_processor_id()); |
| } |
| apic_write(APIC_LVT0, value); |
| |
| /* |
| * only the BP should see the LINT1 NMI signal, obviously. |
| */ |
| if (!smp_processor_id()) |
| value = APIC_DM_NMI; |
| else |
| value = APIC_DM_NMI | APIC_LVT_MASKED; |
| apic_write(APIC_LVT1, value); |
| preempt_enable(); |
| } |
| |
| static void __cpuinit lapic_setup_esr(void) |
| { |
| unsigned maxlvt = lapic_get_maxlvt(); |
| |
| apic_write(APIC_LVTERR, ERROR_APIC_VECTOR); |
| /* |
| * spec says clear errors after enabling vector. |
| */ |
| if (maxlvt > 3) |
| apic_write(APIC_ESR, 0); |
| } |
| |
| void __cpuinit end_local_APIC_setup(void) |
| { |
| lapic_setup_esr(); |
| nmi_watchdog_default(); |
| setup_apic_nmi_watchdog(NULL); |
| apic_pm_activate(); |
| } |
| |
| /* |
| * Detect and enable local APICs on non-SMP boards. |
| * Original code written by Keir Fraser. |
| * On AMD64 we trust the BIOS - if it says no APIC it is likely |
| * not correctly set up (usually the APIC timer won't work etc.) |
| */ |
| static int __init detect_init_APIC(void) |
| { |
| if (!cpu_has_apic) { |
| printk(KERN_INFO "No local APIC present\n"); |
| return -1; |
| } |
| |
| mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; |
| boot_cpu_physical_apicid = 0; |
| return 0; |
| } |
| |
| void __init early_init_lapic_mapping(void) |
| { |
| unsigned long apic_phys; |
| |
| /* |
| * If no local APIC can be found then go out |
| * : it means there is no mpatable and MADT |
| */ |
| if (!smp_found_config) |
| return; |
| |
| apic_phys = mp_lapic_addr; |
| |
| set_fixmap_nocache(FIX_APIC_BASE, apic_phys); |
| apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n", |
| APIC_BASE, apic_phys); |
| |
| /* |
| * Fetch the APIC ID of the BSP in case we have a |
| * default configuration (or the MP table is broken). |
| */ |
| boot_cpu_physical_apicid = GET_APIC_ID(read_apic_id()); |
| } |
| |
| /** |
| * init_apic_mappings - initialize APIC mappings |
| */ |
| void __init init_apic_mappings(void) |
| { |
| /* |
| * If no local APIC can be found then set up a fake all |
| * zeroes page to simulate the local APIC and another |
| * one for the IO-APIC. |
| */ |
| if (!smp_found_config && detect_init_APIC()) { |
| apic_phys = (unsigned long) alloc_bootmem_pages(PAGE_SIZE); |
| apic_phys = __pa(apic_phys); |
| } else |
| apic_phys = mp_lapic_addr; |
| |
| set_fixmap_nocache(FIX_APIC_BASE, apic_phys); |
| apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n", |
| APIC_BASE, apic_phys); |
| |
| /* |
| * Fetch the APIC ID of the BSP in case we have a |
| * default configuration (or the MP table is broken). |
| */ |
| boot_cpu_physical_apicid = GET_APIC_ID(read_apic_id()); |
| } |
| |
| /* |
| * This initializes the IO-APIC and APIC hardware if this is |
| * a UP kernel. |
| */ |
| int __init APIC_init_uniprocessor(void) |
| { |
| if (disable_apic) { |
| printk(KERN_INFO "Apic disabled\n"); |
| return -1; |
| } |
| if (!cpu_has_apic) { |
| disable_apic = 1; |
| printk(KERN_INFO "Apic disabled by BIOS\n"); |
| return -1; |
| } |
| |
| verify_local_APIC(); |
| |
| phys_cpu_present_map = physid_mask_of_physid(boot_cpu_physical_apicid); |
| apic_write(APIC_ID, SET_APIC_ID(boot_cpu_physical_apicid)); |
| |
| setup_local_APIC(); |
| |
| /* |
| * Now enable IO-APICs, actually call clear_IO_APIC |
| * We need clear_IO_APIC before enabling vector on BP |
| */ |
| if (!skip_ioapic_setup && nr_ioapics) |
| enable_IO_APIC(); |
| |
| end_local_APIC_setup(); |
| |
| if (smp_found_config && !skip_ioapic_setup && nr_ioapics) |
| setup_IO_APIC(); |
| else |
| nr_ioapics = 0; |
| setup_boot_APIC_clock(); |
| check_nmi_watchdog(); |
| return 0; |
| } |
| |
| /* |
| * Local APIC interrupts |
| */ |
| |
| /* |
| * This interrupt should _never_ happen with our APIC/SMP architecture |
| */ |
| asmlinkage void smp_spurious_interrupt(void) |
| { |
| unsigned int v; |
| exit_idle(); |
| irq_enter(); |
| /* |
| * Check if this really is a spurious interrupt and ACK it |
| * if it is a vectored one. Just in case... |
| * Spurious interrupts should not be ACKed. |
| */ |
| v = apic_read(APIC_ISR + ((SPURIOUS_APIC_VECTOR & ~0x1f) >> 1)); |
| if (v & (1 << (SPURIOUS_APIC_VECTOR & 0x1f))) |
| ack_APIC_irq(); |
| |
| add_pda(irq_spurious_count, 1); |
| irq_exit(); |
| } |
| |
| /* |
| * This interrupt should never happen with our APIC/SMP architecture |
| */ |
| asmlinkage void smp_error_interrupt(void) |
| { |
| unsigned int v, v1; |
| |
| exit_idle(); |
| irq_enter(); |
| /* First tickle the hardware, only then report what went on. -- REW */ |
| v = apic_read(APIC_ESR); |
| apic_write(APIC_ESR, 0); |
| v1 = apic_read(APIC_ESR); |
| ack_APIC_irq(); |
| atomic_inc(&irq_err_count); |
| |
| /* Here is what the APIC error bits mean: |
| 0: Send CS error |
| 1: Receive CS error |
| 2: Send accept error |
| 3: Receive accept error |
| 4: Reserved |
| 5: Send illegal vector |
| 6: Received illegal vector |
| 7: Illegal register address |
| */ |
| printk(KERN_DEBUG "APIC error on CPU%d: %02x(%02x)\n", |
| smp_processor_id(), v , v1); |
| irq_exit(); |
| } |
| |
| void disconnect_bsp_APIC(int virt_wire_setup) |
| { |
| /* Go back to Virtual Wire compatibility mode */ |
| unsigned long value; |
| |
| /* For the spurious interrupt use vector F, and enable it */ |
| value = apic_read(APIC_SPIV); |
| value &= ~APIC_VECTOR_MASK; |
| value |= APIC_SPIV_APIC_ENABLED; |
| value |= 0xf; |
| apic_write(APIC_SPIV, value); |
| |
| if (!virt_wire_setup) { |
| /* |
| * For LVT0 make it edge triggered, active high, |
| * external and enabled |
| */ |
| value = apic_read(APIC_LVT0); |
| value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | |
| APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | |
| APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); |
| value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; |
| value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT); |
| apic_write(APIC_LVT0, value); |
| } else { |
| /* Disable LVT0 */ |
| apic_write(APIC_LVT0, APIC_LVT_MASKED); |
| } |
| |
| /* For LVT1 make it edge triggered, active high, nmi and enabled */ |
| value = apic_read(APIC_LVT1); |
| value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | |
| APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | |
| APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); |
| value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; |
| value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI); |
| apic_write(APIC_LVT1, value); |
| } |
| |
| void __cpuinit generic_processor_info(int apicid, int version) |
| { |
| int cpu; |
| cpumask_t tmp_map; |
| |
| if (num_processors >= NR_CPUS) { |
| printk(KERN_WARNING "WARNING: NR_CPUS limit of %i reached." |
| " Processor ignored.\n", NR_CPUS); |
| return; |
| } |
| |
| if (num_processors >= maxcpus) { |
| printk(KERN_WARNING "WARNING: maxcpus limit of %i reached." |
| " Processor ignored.\n", maxcpus); |
| return; |
| } |
| |
| num_processors++; |
| cpus_complement(tmp_map, cpu_present_map); |
| cpu = first_cpu(tmp_map); |
| |
| physid_set(apicid, phys_cpu_present_map); |
| if (apicid == boot_cpu_physical_apicid) { |
| /* |
| * x86_bios_cpu_apicid is required to have processors listed |
| * in same order as logical cpu numbers. Hence the first |
| * entry is BSP, and so on. |
| */ |
| cpu = 0; |
| } |
| /* are we being called early in kernel startup? */ |
| if (x86_cpu_to_apicid_early_ptr) { |
| u16 *cpu_to_apicid = x86_cpu_to_apicid_early_ptr; |
| u16 *bios_cpu_apicid = x86_bios_cpu_apicid_early_ptr; |
| |
| cpu_to_apicid[cpu] = apicid; |
| bios_cpu_apicid[cpu] = apicid; |
| } else { |
| per_cpu(x86_cpu_to_apicid, cpu) = apicid; |
| per_cpu(x86_bios_cpu_apicid, cpu) = apicid; |
| } |
| |
| cpu_set(cpu, cpu_possible_map); |
| cpu_set(cpu, cpu_present_map); |
| } |
| |
| /* |
| * Power management |
| */ |
| #ifdef CONFIG_PM |
| |
| static struct { |
| /* 'active' is true if the local APIC was enabled by us and |
| not the BIOS; this signifies that we are also responsible |
| for disabling it before entering apm/acpi suspend */ |
| int active; |
| /* r/w apic fields */ |
| unsigned int apic_id; |
| unsigned int apic_taskpri; |
| unsigned int apic_ldr; |
| unsigned int apic_dfr; |
| unsigned int apic_spiv; |
| unsigned int apic_lvtt; |
| unsigned int apic_lvtpc; |
| unsigned int apic_lvt0; |
| unsigned int apic_lvt1; |
| unsigned int apic_lvterr; |
| unsigned int apic_tmict; |
| unsigned int apic_tdcr; |
| unsigned int apic_thmr; |
| } apic_pm_state; |
| |
| static int lapic_suspend(struct sys_device *dev, pm_message_t state) |
| { |
| unsigned long flags; |
| int maxlvt; |
| |
| if (!apic_pm_state.active) |
| return 0; |
| |
| maxlvt = lapic_get_maxlvt(); |
| |
| apic_pm_state.apic_id = read_apic_id(); |
| apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI); |
| apic_pm_state.apic_ldr = apic_read(APIC_LDR); |
| apic_pm_state.apic_dfr = apic_read(APIC_DFR); |
| apic_pm_state.apic_spiv = apic_read(APIC_SPIV); |
| apic_pm_state.apic_lvtt = apic_read(APIC_LVTT); |
| if (maxlvt >= 4) |
| apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC); |
| apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0); |
| apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1); |
| apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR); |
| apic_pm_state.apic_tmict = apic_read(APIC_TMICT); |
| apic_pm_state.apic_tdcr = apic_read(APIC_TDCR); |
| #ifdef CONFIG_X86_MCE_INTEL |
| if (maxlvt >= 5) |
| apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR); |
| #endif |
| local_irq_save(flags); |
| disable_local_APIC(); |
| local_irq_restore(flags); |
| return 0; |
| } |
| |
| static int lapic_resume(struct sys_device *dev) |
| { |
| unsigned int l, h; |
| unsigned long flags; |
| int maxlvt; |
| |
| if (!apic_pm_state.active) |
| return 0; |
| |
| maxlvt = lapic_get_maxlvt(); |
| |
| local_irq_save(flags); |
| rdmsr(MSR_IA32_APICBASE, l, h); |
| l &= ~MSR_IA32_APICBASE_BASE; |
| l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr; |
| wrmsr(MSR_IA32_APICBASE, l, h); |
| apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED); |
| apic_write(APIC_ID, apic_pm_state.apic_id); |
| apic_write(APIC_DFR, apic_pm_state.apic_dfr); |
| apic_write(APIC_LDR, apic_pm_state.apic_ldr); |
| apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri); |
| apic_write(APIC_SPIV, apic_pm_state.apic_spiv); |
| apic_write(APIC_LVT0, apic_pm_state.apic_lvt0); |
| apic_write(APIC_LVT1, apic_pm_state.apic_lvt1); |
| #ifdef CONFIG_X86_MCE_INTEL |
| if (maxlvt >= 5) |
| apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr); |
| #endif |
| if (maxlvt >= 4) |
| apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc); |
| apic_write(APIC_LVTT, apic_pm_state.apic_lvtt); |
| apic_write(APIC_TDCR, apic_pm_state.apic_tdcr); |
| apic_write(APIC_TMICT, apic_pm_state.apic_tmict); |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr); |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| local_irq_restore(flags); |
| return 0; |
| } |
| |
| static struct sysdev_class lapic_sysclass = { |
| .name = "lapic", |
| .resume = lapic_resume, |
| .suspend = lapic_suspend, |
| }; |
| |
| static struct sys_device device_lapic = { |
| .id = 0, |
| .cls = &lapic_sysclass, |
| }; |
| |
| static void __cpuinit apic_pm_activate(void) |
| { |
| apic_pm_state.active = 1; |
| } |
| |
| static int __init init_lapic_sysfs(void) |
| { |
| int error; |
| |
| if (!cpu_has_apic) |
| return 0; |
| /* XXX: remove suspend/resume procs if !apic_pm_state.active? */ |
| |
| error = sysdev_class_register(&lapic_sysclass); |
| if (!error) |
| error = sysdev_register(&device_lapic); |
| return error; |
| } |
| device_initcall(init_lapic_sysfs); |
| |
| #else /* CONFIG_PM */ |
| |
| static void apic_pm_activate(void) { } |
| |
| #endif /* CONFIG_PM */ |
| |
| /* |
| * apic_is_clustered_box() -- Check if we can expect good TSC |
| * |
| * Thus far, the major user of this is IBM's Summit2 series: |
| * |
| * Clustered boxes may have unsynced TSC problems if they are |
| * multi-chassis. Use available data to take a good guess. |
| * If in doubt, go HPET. |
| */ |
| __cpuinit int apic_is_clustered_box(void) |
| { |
| int i, clusters, zeros; |
| unsigned id; |
| u16 *bios_cpu_apicid; |
| DECLARE_BITMAP(clustermap, NUM_APIC_CLUSTERS); |
| |
| /* |
| * there is not this kind of box with AMD CPU yet. |
| * Some AMD box with quadcore cpu and 8 sockets apicid |
| * will be [4, 0x23] or [8, 0x27] could be thought to |
| * vsmp box still need checking... |
| */ |
| if ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && !is_vsmp_box()) |
| return 0; |
| |
| bios_cpu_apicid = x86_bios_cpu_apicid_early_ptr; |
| bitmap_zero(clustermap, NUM_APIC_CLUSTERS); |
| |
| for (i = 0; i < NR_CPUS; i++) { |
| /* are we being called early in kernel startup? */ |
| if (bios_cpu_apicid) { |
| id = bios_cpu_apicid[i]; |
| } |
| else if (i < nr_cpu_ids) { |
| if (cpu_present(i)) |
| id = per_cpu(x86_bios_cpu_apicid, i); |
| else |
| continue; |
| } |
| else |
| break; |
| |
| if (id != BAD_APICID) |
| __set_bit(APIC_CLUSTERID(id), clustermap); |
| } |
| |
| /* Problem: Partially populated chassis may not have CPUs in some of |
| * the APIC clusters they have been allocated. Only present CPUs have |
| * x86_bios_cpu_apicid entries, thus causing zeroes in the bitmap. |
| * Since clusters are allocated sequentially, count zeros only if |
| * they are bounded by ones. |
| */ |
| clusters = 0; |
| zeros = 0; |
| for (i = 0; i < NUM_APIC_CLUSTERS; i++) { |
| if (test_bit(i, clustermap)) { |
| clusters += 1 + zeros; |
| zeros = 0; |
| } else |
| ++zeros; |
| } |
| |
| /* ScaleMP vSMPowered boxes have one cluster per board and TSCs are |
| * not guaranteed to be synced between boards |
| */ |
| if (is_vsmp_box() && clusters > 1) |
| return 1; |
| |
| /* |
| * If clusters > 2, then should be multi-chassis. |
| * May have to revisit this when multi-core + hyperthreaded CPUs come |
| * out, but AFAIK this will work even for them. |
| */ |
| return (clusters > 2); |
| } |
| |
| /* |
| * APIC command line parameters |
| */ |
| static int __init apic_set_verbosity(char *str) |
| { |
| if (str == NULL) { |
| skip_ioapic_setup = 0; |
| ioapic_force = 1; |
| return 0; |
| } |
| if (strcmp("debug", str) == 0) |
| apic_verbosity = APIC_DEBUG; |
| else if (strcmp("verbose", str) == 0) |
| apic_verbosity = APIC_VERBOSE; |
| else { |
| printk(KERN_WARNING "APIC Verbosity level %s not recognised" |
| " use apic=verbose or apic=debug\n", str); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| early_param("apic", apic_set_verbosity); |
| |
| static __init int setup_disableapic(char *str) |
| { |
| disable_apic = 1; |
| clear_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC); |
| return 0; |
| } |
| early_param("disableapic", setup_disableapic); |
| |
| /* same as disableapic, for compatibility */ |
| static __init int setup_nolapic(char *str) |
| { |
| return setup_disableapic(str); |
| } |
| early_param("nolapic", setup_nolapic); |
| |
| static int __init parse_lapic_timer_c2_ok(char *arg) |
| { |
| local_apic_timer_c2_ok = 1; |
| return 0; |
| } |
| early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok); |
| |
| static __init int setup_noapictimer(char *str) |
| { |
| if (str[0] != ' ' && str[0] != 0) |
| return 0; |
| disable_apic_timer = 1; |
| return 1; |
| } |
| __setup("noapictimer", setup_noapictimer); |
| |
| static __init int setup_apicpmtimer(char *s) |
| { |
| apic_calibrate_pmtmr = 1; |
| notsc_setup(NULL); |
| return 0; |
| } |
| __setup("apicpmtimer", setup_apicpmtimer); |
| |
| static int __init lapic_insert_resource(void) |
| { |
| if (!apic_phys) |
| return -1; |
| |
| /* Put local APIC into the resource map. */ |
| lapic_resource.start = apic_phys; |
| lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1; |
| insert_resource(&iomem_resource, &lapic_resource); |
| |
| return 0; |
| } |
| |
| /* |
| * need call insert after e820_reserve_resources() |
| * that is using request_resource |
| */ |
| late_initcall(lapic_insert_resource); |