| /* |
| * Dynamic DMA mapping support. |
| * |
| * On cris there is no hardware dynamic DMA address translation, |
| * so consistent alloc/free are merely page allocation/freeing. |
| * The rest of the dynamic DMA mapping interface is implemented |
| * in asm/pci.h. |
| * |
| * Borrowed from i386. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/mm.h> |
| #include <linux/string.h> |
| #include <linux/pci.h> |
| #include <asm/io.h> |
| |
| struct dma_coherent_mem { |
| void *virt_base; |
| u32 device_base; |
| int size; |
| int flags; |
| unsigned long *bitmap; |
| }; |
| |
| void *dma_alloc_coherent(struct device *dev, size_t size, |
| dma_addr_t *dma_handle, gfp_t gfp) |
| { |
| void *ret; |
| struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL; |
| int order = get_order(size); |
| /* ignore region specifiers */ |
| gfp &= ~(__GFP_DMA | __GFP_HIGHMEM); |
| |
| if (mem) { |
| int page = bitmap_find_free_region(mem->bitmap, mem->size, |
| order); |
| if (page >= 0) { |
| *dma_handle = mem->device_base + (page << PAGE_SHIFT); |
| ret = mem->virt_base + (page << PAGE_SHIFT); |
| memset(ret, 0, size); |
| return ret; |
| } |
| if (mem->flags & DMA_MEMORY_EXCLUSIVE) |
| return NULL; |
| } |
| |
| if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff)) |
| gfp |= GFP_DMA; |
| |
| ret = (void *)__get_free_pages(gfp, order); |
| |
| if (ret != NULL) { |
| memset(ret, 0, size); |
| *dma_handle = virt_to_phys(ret); |
| } |
| return ret; |
| } |
| |
| void dma_free_coherent(struct device *dev, size_t size, |
| void *vaddr, dma_addr_t dma_handle) |
| { |
| struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL; |
| int order = get_order(size); |
| |
| if (mem && vaddr >= mem->virt_base && vaddr < (mem->virt_base + (mem->size << PAGE_SHIFT))) { |
| int page = (vaddr - mem->virt_base) >> PAGE_SHIFT; |
| |
| bitmap_release_region(mem->bitmap, page, order); |
| } else |
| free_pages((unsigned long)vaddr, order); |
| } |
| |
| int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr, |
| dma_addr_t device_addr, size_t size, int flags) |
| { |
| void __iomem *mem_base; |
| int pages = size >> PAGE_SHIFT; |
| int bitmap_size = (pages + 31)/32; |
| |
| if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0) |
| goto out; |
| if (!size) |
| goto out; |
| if (dev->dma_mem) |
| goto out; |
| |
| /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */ |
| |
| mem_base = ioremap(bus_addr, size); |
| if (!mem_base) |
| goto out; |
| |
| dev->dma_mem = kmalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); |
| if (!dev->dma_mem) |
| goto out; |
| memset(dev->dma_mem, 0, sizeof(struct dma_coherent_mem)); |
| dev->dma_mem->bitmap = kmalloc(bitmap_size, GFP_KERNEL); |
| if (!dev->dma_mem->bitmap) |
| goto free1_out; |
| memset(dev->dma_mem->bitmap, 0, bitmap_size); |
| |
| dev->dma_mem->virt_base = mem_base; |
| dev->dma_mem->device_base = device_addr; |
| dev->dma_mem->size = pages; |
| dev->dma_mem->flags = flags; |
| |
| if (flags & DMA_MEMORY_MAP) |
| return DMA_MEMORY_MAP; |
| |
| return DMA_MEMORY_IO; |
| |
| free1_out: |
| kfree(dev->dma_mem->bitmap); |
| out: |
| return 0; |
| } |
| EXPORT_SYMBOL(dma_declare_coherent_memory); |
| |
| void dma_release_declared_memory(struct device *dev) |
| { |
| struct dma_coherent_mem *mem = dev->dma_mem; |
| |
| if(!mem) |
| return; |
| dev->dma_mem = NULL; |
| iounmap(mem->virt_base); |
| kfree(mem->bitmap); |
| kfree(mem); |
| } |
| EXPORT_SYMBOL(dma_release_declared_memory); |
| |
| void *dma_mark_declared_memory_occupied(struct device *dev, |
| dma_addr_t device_addr, size_t size) |
| { |
| struct dma_coherent_mem *mem = dev->dma_mem; |
| int pages = (size + (device_addr & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| int pos, err; |
| |
| if (!mem) |
| return ERR_PTR(-EINVAL); |
| |
| pos = (device_addr - mem->device_base) >> PAGE_SHIFT; |
| err = bitmap_allocate_region(mem->bitmap, pos, get_order(pages)); |
| if (err != 0) |
| return ERR_PTR(err); |
| return mem->virt_base + (pos << PAGE_SHIFT); |
| } |
| EXPORT_SYMBOL(dma_mark_declared_memory_occupied); |