| /* |
| * Copyright (C) 1995 Linus Torvalds |
| * |
| * Pentium III FXSR, SSE support |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| * |
| * X86-64 port |
| * Andi Kleen. |
| * |
| * CPU hotplug support - ashok.raj@intel.com |
| */ |
| |
| /* |
| * This file handles the architecture-dependent parts of process handling.. |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/fs.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/elfcore.h> |
| #include <linux/smp.h> |
| #include <linux/slab.h> |
| #include <linux/user.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/module.h> |
| #include <linux/ptrace.h> |
| #include <linux/notifier.h> |
| #include <linux/kprobes.h> |
| #include <linux/kdebug.h> |
| #include <linux/prctl.h> |
| #include <linux/uaccess.h> |
| #include <linux/io.h> |
| #include <linux/ftrace.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/processor.h> |
| #include <asm/fpu/internal.h> |
| #include <asm/mmu_context.h> |
| #include <asm/prctl.h> |
| #include <asm/desc.h> |
| #include <asm/proto.h> |
| #include <asm/ia32.h> |
| #include <asm/idle.h> |
| #include <asm/syscalls.h> |
| #include <asm/debugreg.h> |
| #include <asm/switch_to.h> |
| #include <asm/xen/hypervisor.h> |
| |
| asmlinkage extern void ret_from_fork(void); |
| |
| __visible DEFINE_PER_CPU(unsigned long, rsp_scratch); |
| |
| /* Prints also some state that isn't saved in the pt_regs */ |
| void __show_regs(struct pt_regs *regs, int all) |
| { |
| unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs; |
| unsigned long d0, d1, d2, d3, d6, d7; |
| unsigned int fsindex, gsindex; |
| unsigned int ds, cs, es; |
| |
| printk(KERN_DEFAULT "RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->ip); |
| printk_address(regs->ip); |
| printk(KERN_DEFAULT "RSP: %04lx:%016lx EFLAGS: %08lx\n", regs->ss, |
| regs->sp, regs->flags); |
| printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n", |
| regs->ax, regs->bx, regs->cx); |
| printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n", |
| regs->dx, regs->si, regs->di); |
| printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n", |
| regs->bp, regs->r8, regs->r9); |
| printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n", |
| regs->r10, regs->r11, regs->r12); |
| printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n", |
| regs->r13, regs->r14, regs->r15); |
| |
| asm("movl %%ds,%0" : "=r" (ds)); |
| asm("movl %%cs,%0" : "=r" (cs)); |
| asm("movl %%es,%0" : "=r" (es)); |
| asm("movl %%fs,%0" : "=r" (fsindex)); |
| asm("movl %%gs,%0" : "=r" (gsindex)); |
| |
| rdmsrl(MSR_FS_BASE, fs); |
| rdmsrl(MSR_GS_BASE, gs); |
| rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); |
| |
| if (!all) |
| return; |
| |
| cr0 = read_cr0(); |
| cr2 = read_cr2(); |
| cr3 = read_cr3(); |
| cr4 = __read_cr4(); |
| |
| printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n", |
| fs, fsindex, gs, gsindex, shadowgs); |
| printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds, |
| es, cr0); |
| printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3, |
| cr4); |
| |
| get_debugreg(d0, 0); |
| get_debugreg(d1, 1); |
| get_debugreg(d2, 2); |
| get_debugreg(d3, 3); |
| get_debugreg(d6, 6); |
| get_debugreg(d7, 7); |
| |
| /* Only print out debug registers if they are in their non-default state. */ |
| if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) && |
| (d6 == DR6_RESERVED) && (d7 == 0x400)) |
| return; |
| |
| printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2); |
| printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7); |
| |
| if (boot_cpu_has(X86_FEATURE_OSPKE)) |
| printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru()); |
| } |
| |
| void release_thread(struct task_struct *dead_task) |
| { |
| if (dead_task->mm) { |
| #ifdef CONFIG_MODIFY_LDT_SYSCALL |
| if (dead_task->mm->context.ldt) { |
| pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n", |
| dead_task->comm, |
| dead_task->mm->context.ldt->entries, |
| dead_task->mm->context.ldt->size); |
| BUG(); |
| } |
| #endif |
| } |
| } |
| |
| int copy_thread_tls(unsigned long clone_flags, unsigned long sp, |
| unsigned long arg, struct task_struct *p, unsigned long tls) |
| { |
| int err; |
| struct pt_regs *childregs; |
| struct task_struct *me = current; |
| |
| p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE; |
| childregs = task_pt_regs(p); |
| p->thread.sp = (unsigned long) childregs; |
| set_tsk_thread_flag(p, TIF_FORK); |
| p->thread.io_bitmap_ptr = NULL; |
| |
| savesegment(gs, p->thread.gsindex); |
| p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase; |
| savesegment(fs, p->thread.fsindex); |
| p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase; |
| savesegment(es, p->thread.es); |
| savesegment(ds, p->thread.ds); |
| memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); |
| |
| if (unlikely(p->flags & PF_KTHREAD)) { |
| /* kernel thread */ |
| memset(childregs, 0, sizeof(struct pt_regs)); |
| childregs->sp = (unsigned long)childregs; |
| childregs->ss = __KERNEL_DS; |
| childregs->bx = sp; /* function */ |
| childregs->bp = arg; |
| childregs->orig_ax = -1; |
| childregs->cs = __KERNEL_CS | get_kernel_rpl(); |
| childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED; |
| return 0; |
| } |
| *childregs = *current_pt_regs(); |
| |
| childregs->ax = 0; |
| if (sp) |
| childregs->sp = sp; |
| |
| err = -ENOMEM; |
| if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) { |
| p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr, |
| IO_BITMAP_BYTES, GFP_KERNEL); |
| if (!p->thread.io_bitmap_ptr) { |
| p->thread.io_bitmap_max = 0; |
| return -ENOMEM; |
| } |
| set_tsk_thread_flag(p, TIF_IO_BITMAP); |
| } |
| |
| /* |
| * Set a new TLS for the child thread? |
| */ |
| if (clone_flags & CLONE_SETTLS) { |
| #ifdef CONFIG_IA32_EMULATION |
| if (in_ia32_syscall()) |
| err = do_set_thread_area(p, -1, |
| (struct user_desc __user *)tls, 0); |
| else |
| #endif |
| err = do_arch_prctl(p, ARCH_SET_FS, tls); |
| if (err) |
| goto out; |
| } |
| err = 0; |
| out: |
| if (err && p->thread.io_bitmap_ptr) { |
| kfree(p->thread.io_bitmap_ptr); |
| p->thread.io_bitmap_max = 0; |
| } |
| |
| return err; |
| } |
| |
| static void |
| start_thread_common(struct pt_regs *regs, unsigned long new_ip, |
| unsigned long new_sp, |
| unsigned int _cs, unsigned int _ss, unsigned int _ds) |
| { |
| loadsegment(fs, 0); |
| loadsegment(es, _ds); |
| loadsegment(ds, _ds); |
| load_gs_index(0); |
| regs->ip = new_ip; |
| regs->sp = new_sp; |
| regs->cs = _cs; |
| regs->ss = _ss; |
| regs->flags = X86_EFLAGS_IF; |
| force_iret(); |
| } |
| |
| void |
| start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) |
| { |
| start_thread_common(regs, new_ip, new_sp, |
| __USER_CS, __USER_DS, 0); |
| } |
| |
| #ifdef CONFIG_COMPAT |
| void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp) |
| { |
| start_thread_common(regs, new_ip, new_sp, |
| test_thread_flag(TIF_X32) |
| ? __USER_CS : __USER32_CS, |
| __USER_DS, __USER_DS); |
| } |
| #endif |
| |
| /* |
| * switch_to(x,y) should switch tasks from x to y. |
| * |
| * This could still be optimized: |
| * - fold all the options into a flag word and test it with a single test. |
| * - could test fs/gs bitsliced |
| * |
| * Kprobes not supported here. Set the probe on schedule instead. |
| * Function graph tracer not supported too. |
| */ |
| __visible __notrace_funcgraph struct task_struct * |
| __switch_to(struct task_struct *prev_p, struct task_struct *next_p) |
| { |
| struct thread_struct *prev = &prev_p->thread; |
| struct thread_struct *next = &next_p->thread; |
| struct fpu *prev_fpu = &prev->fpu; |
| struct fpu *next_fpu = &next->fpu; |
| int cpu = smp_processor_id(); |
| struct tss_struct *tss = &per_cpu(cpu_tss, cpu); |
| unsigned prev_fsindex, prev_gsindex; |
| fpu_switch_t fpu_switch; |
| |
| fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu); |
| |
| /* We must save %fs and %gs before load_TLS() because |
| * %fs and %gs may be cleared by load_TLS(). |
| * |
| * (e.g. xen_load_tls()) |
| */ |
| savesegment(fs, prev_fsindex); |
| savesegment(gs, prev_gsindex); |
| |
| /* |
| * Load TLS before restoring any segments so that segment loads |
| * reference the correct GDT entries. |
| */ |
| load_TLS(next, cpu); |
| |
| /* |
| * Leave lazy mode, flushing any hypercalls made here. This |
| * must be done after loading TLS entries in the GDT but before |
| * loading segments that might reference them, and and it must |
| * be done before fpu__restore(), so the TS bit is up to |
| * date. |
| */ |
| arch_end_context_switch(next_p); |
| |
| /* Switch DS and ES. |
| * |
| * Reading them only returns the selectors, but writing them (if |
| * nonzero) loads the full descriptor from the GDT or LDT. The |
| * LDT for next is loaded in switch_mm, and the GDT is loaded |
| * above. |
| * |
| * We therefore need to write new values to the segment |
| * registers on every context switch unless both the new and old |
| * values are zero. |
| * |
| * Note that we don't need to do anything for CS and SS, as |
| * those are saved and restored as part of pt_regs. |
| */ |
| savesegment(es, prev->es); |
| if (unlikely(next->es | prev->es)) |
| loadsegment(es, next->es); |
| |
| savesegment(ds, prev->ds); |
| if (unlikely(next->ds | prev->ds)) |
| loadsegment(ds, next->ds); |
| |
| /* |
| * Switch FS and GS. |
| * |
| * These are even more complicated than DS and ES: they have |
| * 64-bit bases are that controlled by arch_prctl. The bases |
| * don't necessarily match the selectors, as user code can do |
| * any number of things to cause them to be inconsistent. |
| * |
| * We don't promise to preserve the bases if the selectors are |
| * nonzero. We also don't promise to preserve the base if the |
| * selector is zero and the base doesn't match whatever was |
| * most recently passed to ARCH_SET_FS/GS. (If/when the |
| * FSGSBASE instructions are enabled, we'll need to offer |
| * stronger guarantees.) |
| * |
| * As an invariant, |
| * (fsbase != 0 && fsindex != 0) || (gsbase != 0 && gsindex != 0) is |
| * impossible. |
| */ |
| if (next->fsindex) { |
| /* Loading a nonzero value into FS sets the index and base. */ |
| loadsegment(fs, next->fsindex); |
| } else { |
| if (next->fsbase) { |
| /* Next index is zero but next base is nonzero. */ |
| if (prev_fsindex) |
| loadsegment(fs, 0); |
| wrmsrl(MSR_FS_BASE, next->fsbase); |
| } else { |
| /* Next base and index are both zero. */ |
| if (static_cpu_has_bug(X86_BUG_NULL_SEG)) { |
| /* |
| * We don't know the previous base and can't |
| * find out without RDMSR. Forcibly clear it. |
| */ |
| loadsegment(fs, __USER_DS); |
| loadsegment(fs, 0); |
| } else { |
| /* |
| * If the previous index is zero and ARCH_SET_FS |
| * didn't change the base, then the base is |
| * also zero and we don't need to do anything. |
| */ |
| if (prev->fsbase || prev_fsindex) |
| loadsegment(fs, 0); |
| } |
| } |
| } |
| /* |
| * Save the old state and preserve the invariant. |
| * NB: if prev_fsindex == 0, then we can't reliably learn the base |
| * without RDMSR because Intel user code can zero it without telling |
| * us and AMD user code can program any 32-bit value without telling |
| * us. |
| */ |
| if (prev_fsindex) |
| prev->fsbase = 0; |
| prev->fsindex = prev_fsindex; |
| |
| if (next->gsindex) { |
| /* Loading a nonzero value into GS sets the index and base. */ |
| load_gs_index(next->gsindex); |
| } else { |
| if (next->gsbase) { |
| /* Next index is zero but next base is nonzero. */ |
| if (prev_gsindex) |
| load_gs_index(0); |
| wrmsrl(MSR_KERNEL_GS_BASE, next->gsbase); |
| } else { |
| /* Next base and index are both zero. */ |
| if (static_cpu_has_bug(X86_BUG_NULL_SEG)) { |
| /* |
| * We don't know the previous base and can't |
| * find out without RDMSR. Forcibly clear it. |
| * |
| * This contains a pointless SWAPGS pair. |
| * Fixing it would involve an explicit check |
| * for Xen or a new pvop. |
| */ |
| load_gs_index(__USER_DS); |
| load_gs_index(0); |
| } else { |
| /* |
| * If the previous index is zero and ARCH_SET_GS |
| * didn't change the base, then the base is |
| * also zero and we don't need to do anything. |
| */ |
| if (prev->gsbase || prev_gsindex) |
| load_gs_index(0); |
| } |
| } |
| } |
| /* |
| * Save the old state and preserve the invariant. |
| * NB: if prev_gsindex == 0, then we can't reliably learn the base |
| * without RDMSR because Intel user code can zero it without telling |
| * us and AMD user code can program any 32-bit value without telling |
| * us. |
| */ |
| if (prev_gsindex) |
| prev->gsbase = 0; |
| prev->gsindex = prev_gsindex; |
| |
| switch_fpu_finish(next_fpu, fpu_switch); |
| |
| /* |
| * Switch the PDA and FPU contexts. |
| */ |
| this_cpu_write(current_task, next_p); |
| |
| /* Reload esp0 and ss1. This changes current_thread_info(). */ |
| load_sp0(tss, next); |
| |
| /* |
| * Now maybe reload the debug registers and handle I/O bitmaps |
| */ |
| if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT || |
| task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV)) |
| __switch_to_xtra(prev_p, next_p, tss); |
| |
| #ifdef CONFIG_XEN |
| /* |
| * On Xen PV, IOPL bits in pt_regs->flags have no effect, and |
| * current_pt_regs()->flags may not match the current task's |
| * intended IOPL. We need to switch it manually. |
| */ |
| if (unlikely(static_cpu_has(X86_FEATURE_XENPV) && |
| prev->iopl != next->iopl)) |
| xen_set_iopl_mask(next->iopl); |
| #endif |
| |
| if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) { |
| /* |
| * AMD CPUs have a misfeature: SYSRET sets the SS selector but |
| * does not update the cached descriptor. As a result, if we |
| * do SYSRET while SS is NULL, we'll end up in user mode with |
| * SS apparently equal to __USER_DS but actually unusable. |
| * |
| * The straightforward workaround would be to fix it up just |
| * before SYSRET, but that would slow down the system call |
| * fast paths. Instead, we ensure that SS is never NULL in |
| * system call context. We do this by replacing NULL SS |
| * selectors at every context switch. SYSCALL sets up a valid |
| * SS, so the only way to get NULL is to re-enter the kernel |
| * from CPL 3 through an interrupt. Since that can't happen |
| * in the same task as a running syscall, we are guaranteed to |
| * context switch between every interrupt vector entry and a |
| * subsequent SYSRET. |
| * |
| * We read SS first because SS reads are much faster than |
| * writes. Out of caution, we force SS to __KERNEL_DS even if |
| * it previously had a different non-NULL value. |
| */ |
| unsigned short ss_sel; |
| savesegment(ss, ss_sel); |
| if (ss_sel != __KERNEL_DS) |
| loadsegment(ss, __KERNEL_DS); |
| } |
| |
| return prev_p; |
| } |
| |
| void set_personality_64bit(void) |
| { |
| /* inherit personality from parent */ |
| |
| /* Make sure to be in 64bit mode */ |
| clear_thread_flag(TIF_IA32); |
| clear_thread_flag(TIF_ADDR32); |
| clear_thread_flag(TIF_X32); |
| |
| /* Ensure the corresponding mm is not marked. */ |
| if (current->mm) |
| current->mm->context.ia32_compat = 0; |
| |
| /* TBD: overwrites user setup. Should have two bits. |
| But 64bit processes have always behaved this way, |
| so it's not too bad. The main problem is just that |
| 32bit childs are affected again. */ |
| current->personality &= ~READ_IMPLIES_EXEC; |
| } |
| |
| void set_personality_ia32(bool x32) |
| { |
| /* inherit personality from parent */ |
| |
| /* Make sure to be in 32bit mode */ |
| set_thread_flag(TIF_ADDR32); |
| |
| /* Mark the associated mm as containing 32-bit tasks. */ |
| if (x32) { |
| clear_thread_flag(TIF_IA32); |
| set_thread_flag(TIF_X32); |
| if (current->mm) |
| current->mm->context.ia32_compat = TIF_X32; |
| current->personality &= ~READ_IMPLIES_EXEC; |
| /* in_compat_syscall() uses the presence of the x32 |
| syscall bit flag to determine compat status */ |
| current_thread_info()->status &= ~TS_COMPAT; |
| } else { |
| set_thread_flag(TIF_IA32); |
| clear_thread_flag(TIF_X32); |
| if (current->mm) |
| current->mm->context.ia32_compat = TIF_IA32; |
| current->personality |= force_personality32; |
| /* Prepare the first "return" to user space */ |
| current_thread_info()->status |= TS_COMPAT; |
| } |
| } |
| EXPORT_SYMBOL_GPL(set_personality_ia32); |
| |
| long do_arch_prctl(struct task_struct *task, int code, unsigned long addr) |
| { |
| int ret = 0; |
| int doit = task == current; |
| int cpu; |
| |
| switch (code) { |
| case ARCH_SET_GS: |
| if (addr >= TASK_SIZE_MAX) |
| return -EPERM; |
| cpu = get_cpu(); |
| task->thread.gsindex = 0; |
| task->thread.gsbase = addr; |
| if (doit) { |
| load_gs_index(0); |
| ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr); |
| } |
| put_cpu(); |
| break; |
| case ARCH_SET_FS: |
| /* Not strictly needed for fs, but do it for symmetry |
| with gs */ |
| if (addr >= TASK_SIZE_MAX) |
| return -EPERM; |
| cpu = get_cpu(); |
| task->thread.fsindex = 0; |
| task->thread.fsbase = addr; |
| if (doit) { |
| /* set the selector to 0 to not confuse __switch_to */ |
| loadsegment(fs, 0); |
| ret = wrmsrl_safe(MSR_FS_BASE, addr); |
| } |
| put_cpu(); |
| break; |
| case ARCH_GET_FS: { |
| unsigned long base; |
| if (doit) |
| rdmsrl(MSR_FS_BASE, base); |
| else |
| base = task->thread.fsbase; |
| ret = put_user(base, (unsigned long __user *)addr); |
| break; |
| } |
| case ARCH_GET_GS: { |
| unsigned long base; |
| if (doit) |
| rdmsrl(MSR_KERNEL_GS_BASE, base); |
| else |
| base = task->thread.gsbase; |
| ret = put_user(base, (unsigned long __user *)addr); |
| break; |
| } |
| |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| long sys_arch_prctl(int code, unsigned long addr) |
| { |
| return do_arch_prctl(current, code, addr); |
| } |
| |
| unsigned long KSTK_ESP(struct task_struct *task) |
| { |
| return task_pt_regs(task)->sp; |
| } |