blob: b2900d8406d3904316b5da1bec7f9a4e2c1b88b0 [file] [log] [blame]
/*
* Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2008 Sascha Hauer, kernel@pengutronix.de
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <asm/mach/flash.h>
#include <mach/mxc_nand.h>
#include <mach/hardware.h>
#define DRIVER_NAME "mxc_nand"
#define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35())
#define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27())
/* Addresses for NFC registers */
#define NFC_BUF_SIZE 0xE00
#define NFC_BUF_ADDR 0xE04
#define NFC_FLASH_ADDR 0xE06
#define NFC_FLASH_CMD 0xE08
#define NFC_CONFIG 0xE0A
#define NFC_ECC_STATUS_RESULT 0xE0C
#define NFC_RSLTMAIN_AREA 0xE0E
#define NFC_RSLTSPARE_AREA 0xE10
#define NFC_WRPROT 0xE12
#define NFC_V1_UNLOCKSTART_BLKADDR 0xe14
#define NFC_V1_UNLOCKEND_BLKADDR 0xe16
#define NFC_V21_UNLOCKSTART_BLKADDR 0xe20
#define NFC_V21_UNLOCKEND_BLKADDR 0xe22
#define NFC_NF_WRPRST 0xE18
#define NFC_CONFIG1 0xE1A
#define NFC_CONFIG2 0xE1C
/* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
* for Command operation */
#define NFC_CMD 0x1
/* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
* for Address operation */
#define NFC_ADDR 0x2
/* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
* for Input operation */
#define NFC_INPUT 0x4
/* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
* for Data Output operation */
#define NFC_OUTPUT 0x8
/* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
* for Read ID operation */
#define NFC_ID 0x10
/* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
* for Read Status operation */
#define NFC_STATUS 0x20
/* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
* Status operation */
#define NFC_INT 0x8000
#define NFC_SP_EN (1 << 2)
#define NFC_ECC_EN (1 << 3)
#define NFC_INT_MSK (1 << 4)
#define NFC_BIG (1 << 5)
#define NFC_RST (1 << 6)
#define NFC_CE (1 << 7)
#define NFC_ONE_CYCLE (1 << 8)
struct mxc_nand_host {
struct mtd_info mtd;
struct nand_chip nand;
struct mtd_partition *parts;
struct device *dev;
void *spare0;
void *main_area0;
void *main_area1;
void __iomem *base;
void __iomem *regs;
int status_request;
struct clk *clk;
int clk_act;
int irq;
wait_queue_head_t irq_waitq;
uint8_t *data_buf;
unsigned int buf_start;
int spare_len;
};
/* OOB placement block for use with hardware ecc generation */
static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
.eccbytes = 5,
.eccpos = {6, 7, 8, 9, 10},
.oobfree = {{0, 5}, {12, 4}, }
};
static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
.eccbytes = 20,
.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
.oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
};
/* OOB description for 512 byte pages with 16 byte OOB */
static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
.eccbytes = 1 * 9,
.eccpos = {
7, 8, 9, 10, 11, 12, 13, 14, 15
},
.oobfree = {
{.offset = 0, .length = 5}
}
};
/* OOB description for 2048 byte pages with 64 byte OOB */
static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
.eccbytes = 4 * 9,
.eccpos = {
7, 8, 9, 10, 11, 12, 13, 14, 15,
23, 24, 25, 26, 27, 28, 29, 30, 31,
39, 40, 41, 42, 43, 44, 45, 46, 47,
55, 56, 57, 58, 59, 60, 61, 62, 63
},
.oobfree = {
{.offset = 2, .length = 4},
{.offset = 16, .length = 7},
{.offset = 32, .length = 7},
{.offset = 48, .length = 7}
}
};
#ifdef CONFIG_MTD_PARTITIONS
static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
#endif
static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
{
struct mxc_nand_host *host = dev_id;
uint16_t tmp;
tmp = readw(host->regs + NFC_CONFIG1);
tmp |= NFC_INT_MSK; /* Disable interrupt */
writew(tmp, host->regs + NFC_CONFIG1);
wake_up(&host->irq_waitq);
return IRQ_HANDLED;
}
/* This function polls the NANDFC to wait for the basic operation to
* complete by checking the INT bit of config2 register.
*/
static void wait_op_done(struct mxc_nand_host *host, int useirq)
{
uint32_t tmp;
int max_retries = 2000;
if (useirq) {
if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) {
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_INT_MSK; /* Enable interrupt */
writew(tmp, host->regs + NFC_CONFIG1);
wait_event(host->irq_waitq,
readw(host->regs + NFC_CONFIG2) & NFC_INT);
tmp = readw(host->regs + NFC_CONFIG2);
tmp &= ~NFC_INT;
writew(tmp, host->regs + NFC_CONFIG2);
}
} else {
while (max_retries-- > 0) {
if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {
tmp = readw(host->regs + NFC_CONFIG2);
tmp &= ~NFC_INT;
writew(tmp, host->regs + NFC_CONFIG2);
break;
}
udelay(1);
}
if (max_retries < 0)
DEBUG(MTD_DEBUG_LEVEL0, "%s: INT not set\n",
__func__);
}
}
/* This function issues the specified command to the NAND device and
* waits for completion. */
static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq)
{
DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
writew(cmd, host->regs + NFC_FLASH_CMD);
writew(NFC_CMD, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, useirq);
}
/* This function sends an address (or partial address) to the
* NAND device. The address is used to select the source/destination for
* a NAND command. */
static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast)
{
DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
writew(addr, host->regs + NFC_FLASH_ADDR);
writew(NFC_ADDR, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, islast);
}
static void send_page(struct mtd_info *mtd, unsigned int ops)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
int bufs, i;
if (nfc_is_v1() && mtd->writesize > 512)
bufs = 4;
else
bufs = 1;
for (i = 0; i < bufs; i++) {
/* NANDFC buffer 0 is used for page read/write */
writew(i, host->regs + NFC_BUF_ADDR);
writew(ops, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, true);
}
}
/* Request the NANDFC to perform a read of the NAND device ID. */
static void send_read_id(struct mxc_nand_host *host)
{
struct nand_chip *this = &host->nand;
/* NANDFC buffer 0 is used for device ID output */
writew(0x0, host->regs + NFC_BUF_ADDR);
writew(NFC_ID, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, true);
if (this->options & NAND_BUSWIDTH_16) {
void __iomem *main_buf = host->main_area0;
/* compress the ID info */
writeb(readb(main_buf + 2), main_buf + 1);
writeb(readb(main_buf + 4), main_buf + 2);
writeb(readb(main_buf + 6), main_buf + 3);
writeb(readb(main_buf + 8), main_buf + 4);
writeb(readb(main_buf + 10), main_buf + 5);
}
memcpy(host->data_buf, host->main_area0, 16);
}
/* This function requests the NANDFC to perform a read of the
* NAND device status and returns the current status. */
static uint16_t get_dev_status(struct mxc_nand_host *host)
{
void __iomem *main_buf = host->main_area1;
uint32_t store;
uint16_t ret;
/* Issue status request to NAND device */
/* store the main area1 first word, later do recovery */
store = readl(main_buf);
/* NANDFC buffer 1 is used for device status to prevent
* corruption of read/write buffer on status requests. */
writew(1, host->regs + NFC_BUF_ADDR);
writew(NFC_STATUS, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, true);
/* Status is placed in first word of main buffer */
/* get status, then recovery area 1 data */
ret = readw(main_buf);
writel(store, main_buf);
return ret;
}
/* This functions is used by upper layer to checks if device is ready */
static int mxc_nand_dev_ready(struct mtd_info *mtd)
{
/*
* NFC handles R/B internally. Therefore, this function
* always returns status as ready.
*/
return 1;
}
static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
/*
* If HW ECC is enabled, we turn it on during init. There is
* no need to enable again here.
*/
}
static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
/*
* 1-Bit errors are automatically corrected in HW. No need for
* additional correction. 2-Bit errors cannot be corrected by
* HW ECC, so we need to return failure
*/
uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);
if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
DEBUG(MTD_DEBUG_LEVEL0,
"MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
return -1;
}
return 0;
}
static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
return 0;
}
static u_char mxc_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint8_t ret;
/* Check for status request */
if (host->status_request)
return get_dev_status(host) & 0xFF;
ret = *(uint8_t *)(host->data_buf + host->buf_start);
host->buf_start++;
return ret;
}
static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint16_t ret;
ret = *(uint16_t *)(host->data_buf + host->buf_start);
host->buf_start += 2;
return ret;
}
/* Write data of length len to buffer buf. The data to be
* written on NAND Flash is first copied to RAMbuffer. After the Data Input
* Operation by the NFC, the data is written to NAND Flash */
static void mxc_nand_write_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
u16 col = host->buf_start;
int n = mtd->oobsize + mtd->writesize - col;
n = min(n, len);
memcpy(host->data_buf + col, buf, n);
host->buf_start += n;
}
/* Read the data buffer from the NAND Flash. To read the data from NAND
* Flash first the data output cycle is initiated by the NFC, which copies
* the data to RAMbuffer. This data of length len is then copied to buffer buf.
*/
static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
u16 col = host->buf_start;
int n = mtd->oobsize + mtd->writesize - col;
n = min(n, len);
memcpy(buf, host->data_buf + col, len);
host->buf_start += len;
}
/* Used by the upper layer to verify the data in NAND Flash
* with the data in the buf. */
static int mxc_nand_verify_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
return -EFAULT;
}
/* This function is used by upper layer for select and
* deselect of the NAND chip */
static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
switch (chip) {
case -1:
/* Disable the NFC clock */
if (host->clk_act) {
clk_disable(host->clk);
host->clk_act = 0;
}
break;
case 0:
/* Enable the NFC clock */
if (!host->clk_act) {
clk_enable(host->clk);
host->clk_act = 1;
}
break;
default:
break;
}
}
/*
* Function to transfer data to/from spare area.
*/
static void copy_spare(struct mtd_info *mtd, bool bfrom)
{
struct nand_chip *this = mtd->priv;
struct mxc_nand_host *host = this->priv;
u16 i, j;
u16 n = mtd->writesize >> 9;
u8 *d = host->data_buf + mtd->writesize;
u8 *s = host->spare0;
u16 t = host->spare_len;
j = (mtd->oobsize / n >> 1) << 1;
if (bfrom) {
for (i = 0; i < n - 1; i++)
memcpy(d + i * j, s + i * t, j);
/* the last section */
memcpy(d + i * j, s + i * t, mtd->oobsize - i * j);
} else {
for (i = 0; i < n - 1; i++)
memcpy(&s[i * t], &d[i * j], j);
/* the last section */
memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j);
}
}
static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
/* Write out column address, if necessary */
if (column != -1) {
/*
* MXC NANDFC can only perform full page+spare or
* spare-only read/write. When the upper layers
* layers perform a read/write buf operation,
* we will used the saved column address to index into
* the full page.
*/
send_addr(host, 0, page_addr == -1);
if (mtd->writesize > 512)
/* another col addr cycle for 2k page */
send_addr(host, 0, false);
}
/* Write out page address, if necessary */
if (page_addr != -1) {
/* paddr_0 - p_addr_7 */
send_addr(host, (page_addr & 0xff), false);
if (mtd->writesize > 512) {
if (mtd->size >= 0x10000000) {
/* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff, false);
send_addr(host, (page_addr >> 16) & 0xff, true);
} else
/* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff, true);
} else {
/* One more address cycle for higher density devices */
if (mtd->size >= 0x4000000) {
/* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff, false);
send_addr(host, (page_addr >> 16) & 0xff, true);
} else
/* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff, true);
}
}
}
/* Used by the upper layer to write command to NAND Flash for
* different operations to be carried out on NAND Flash */
static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
DEBUG(MTD_DEBUG_LEVEL3,
"mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
command, column, page_addr);
/* Reset command state information */
host->status_request = false;
/* Command pre-processing step */
switch (command) {
case NAND_CMD_STATUS:
host->buf_start = 0;
host->status_request = true;
send_cmd(host, command, true);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_READ0:
case NAND_CMD_READOOB:
if (command == NAND_CMD_READ0)
host->buf_start = column;
else
host->buf_start = column + mtd->writesize;
if (mtd->writesize > 512)
command = NAND_CMD_READ0; /* only READ0 is valid */
send_cmd(host, command, false);
mxc_do_addr_cycle(mtd, column, page_addr);
if (mtd->writesize > 512)
send_cmd(host, NAND_CMD_READSTART, true);
send_page(mtd, NFC_OUTPUT);
memcpy(host->data_buf, host->main_area0, mtd->writesize);
copy_spare(mtd, true);
break;
case NAND_CMD_SEQIN:
if (column >= mtd->writesize) {
/*
* FIXME: before send SEQIN command for write OOB,
* We must read one page out.
* For K9F1GXX has no READ1 command to set current HW
* pointer to spare area, we must write the whole page
* including OOB together.
*/
if (mtd->writesize > 512)
/* call ourself to read a page */
mxc_nand_command(mtd, NAND_CMD_READ0, 0,
page_addr);
host->buf_start = column;
/* Set program pointer to spare region */
if (mtd->writesize == 512)
send_cmd(host, NAND_CMD_READOOB, false);
} else {
host->buf_start = column;
/* Set program pointer to page start */
if (mtd->writesize == 512)
send_cmd(host, NAND_CMD_READ0, false);
}
send_cmd(host, command, false);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_PAGEPROG:
memcpy(host->main_area0, host->data_buf, mtd->writesize);
copy_spare(mtd, false);
send_page(mtd, NFC_INPUT);
send_cmd(host, command, true);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_READID:
send_cmd(host, command, true);
mxc_do_addr_cycle(mtd, column, page_addr);
send_read_id(host);
host->buf_start = column;
break;
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
send_cmd(host, command, false);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
}
}
/*
* The generic flash bbt decriptors overlap with our ecc
* hardware, so define some i.MX specific ones.
*/
static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = mirror_pattern,
};
static int __init mxcnd_probe(struct platform_device *pdev)
{
struct nand_chip *this;
struct mtd_info *mtd;
struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
struct mxc_nand_host *host;
struct resource *res;
uint16_t tmp;
int err = 0, nr_parts = 0;
struct nand_ecclayout *oob_smallpage, *oob_largepage;
/* Allocate memory for MTD device structure and private data */
host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
NAND_MAX_OOBSIZE, GFP_KERNEL);
if (!host)
return -ENOMEM;
host->data_buf = (uint8_t *)(host + 1);
host->dev = &pdev->dev;
/* structures must be linked */
this = &host->nand;
mtd = &host->mtd;
mtd->priv = this;
mtd->owner = THIS_MODULE;
mtd->dev.parent = &pdev->dev;
mtd->name = DRIVER_NAME;
/* 50 us command delay time */
this->chip_delay = 5;
this->priv = host;
this->dev_ready = mxc_nand_dev_ready;
this->cmdfunc = mxc_nand_command;
this->select_chip = mxc_nand_select_chip;
this->read_byte = mxc_nand_read_byte;
this->read_word = mxc_nand_read_word;
this->write_buf = mxc_nand_write_buf;
this->read_buf = mxc_nand_read_buf;
this->verify_buf = mxc_nand_verify_buf;
host->clk = clk_get(&pdev->dev, "nfc");
if (IS_ERR(host->clk)) {
err = PTR_ERR(host->clk);
goto eclk;
}
clk_enable(host->clk);
host->clk_act = 1;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
err = -ENODEV;
goto eres;
}
host->base = ioremap(res->start, resource_size(res));
if (!host->base) {
err = -ENOMEM;
goto eres;
}
host->main_area0 = host->base;
host->main_area1 = host->base + 0x200;
if (nfc_is_v21()) {
host->regs = host->base + 0x1000;
host->spare0 = host->base + 0x1000;
host->spare_len = 64;
oob_smallpage = &nandv2_hw_eccoob_smallpage;
oob_largepage = &nandv2_hw_eccoob_largepage;
} else if (nfc_is_v1()) {
host->regs = host->base;
host->spare0 = host->base + 0x800;
host->spare_len = 16;
oob_smallpage = &nandv1_hw_eccoob_smallpage;
oob_largepage = &nandv1_hw_eccoob_largepage;
} else
BUG();
/* disable interrupt and spare enable */
tmp = readw(host->regs + NFC_CONFIG1);
tmp |= NFC_INT_MSK;
tmp &= ~NFC_SP_EN;
writew(tmp, host->regs + NFC_CONFIG1);
init_waitqueue_head(&host->irq_waitq);
host->irq = platform_get_irq(pdev, 0);
err = request_irq(host->irq, mxc_nfc_irq, 0, DRIVER_NAME, host);
if (err)
goto eirq;
/* Reset NAND */
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* preset operation */
/* Unlock the internal RAM Buffer */
writew(0x2, host->regs + NFC_CONFIG);
/* Blocks to be unlocked */
if (nfc_is_v21()) {
writew(0x0, host->regs + NFC_V21_UNLOCKSTART_BLKADDR);
writew(0xffff, host->regs + NFC_V21_UNLOCKEND_BLKADDR);
this->ecc.bytes = 9;
} else if (nfc_is_v1()) {
writew(0x0, host->regs + NFC_V1_UNLOCKSTART_BLKADDR);
writew(0x4000, host->regs + NFC_V1_UNLOCKEND_BLKADDR);
this->ecc.bytes = 3;
} else
BUG();
/* Unlock Block Command for given address range */
writew(0x4, host->regs + NFC_WRPROT);
this->ecc.size = 512;
this->ecc.layout = oob_smallpage;
if (pdata->hw_ecc) {
this->ecc.calculate = mxc_nand_calculate_ecc;
this->ecc.hwctl = mxc_nand_enable_hwecc;
this->ecc.correct = mxc_nand_correct_data;
this->ecc.mode = NAND_ECC_HW;
tmp = readw(host->regs + NFC_CONFIG1);
tmp |= NFC_ECC_EN;
writew(tmp, host->regs + NFC_CONFIG1);
} else {
this->ecc.mode = NAND_ECC_SOFT;
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_ECC_EN;
writew(tmp, host->regs + NFC_CONFIG1);
}
/* NAND bus width determines access funtions used by upper layer */
if (pdata->width == 2)
this->options |= NAND_BUSWIDTH_16;
if (pdata->flash_bbt) {
this->bbt_td = &bbt_main_descr;
this->bbt_md = &bbt_mirror_descr;
/* update flash based bbt */
this->options |= NAND_USE_FLASH_BBT;
}
/* first scan to find the device and get the page size */
if (nand_scan_ident(mtd, 1)) {
err = -ENXIO;
goto escan;
}
if (mtd->writesize == 2048)
this->ecc.layout = oob_largepage;
/* second phase scan */
if (nand_scan_tail(mtd)) {
err = -ENXIO;
goto escan;
}
/* Register the partitions */
#ifdef CONFIG_MTD_PARTITIONS
nr_parts =
parse_mtd_partitions(mtd, part_probes, &host->parts, 0);
if (nr_parts > 0)
add_mtd_partitions(mtd, host->parts, nr_parts);
else
#endif
{
pr_info("Registering %s as whole device\n", mtd->name);
add_mtd_device(mtd);
}
platform_set_drvdata(pdev, host);
return 0;
escan:
free_irq(host->irq, host);
eirq:
iounmap(host->base);
eres:
clk_put(host->clk);
eclk:
kfree(host);
return err;
}
static int __devexit mxcnd_remove(struct platform_device *pdev)
{
struct mxc_nand_host *host = platform_get_drvdata(pdev);
clk_put(host->clk);
platform_set_drvdata(pdev, NULL);
nand_release(&host->mtd);
free_irq(host->irq, host);
iounmap(host->base);
kfree(host);
return 0;
}
#ifdef CONFIG_PM
static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state)
{
struct mtd_info *mtd = platform_get_drvdata(pdev);
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
int ret = 0;
DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n");
if (mtd) {
ret = mtd->suspend(mtd);
/* Disable the NFC clock */
clk_disable(host->clk);
}
return ret;
}
static int mxcnd_resume(struct platform_device *pdev)
{
struct mtd_info *mtd = platform_get_drvdata(pdev);
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
int ret = 0;
DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n");
if (mtd) {
/* Enable the NFC clock */
clk_enable(host->clk);
mtd->resume(mtd);
}
return ret;
}
#else
# define mxcnd_suspend NULL
# define mxcnd_resume NULL
#endif /* CONFIG_PM */
static struct platform_driver mxcnd_driver = {
.driver = {
.name = DRIVER_NAME,
},
.remove = __devexit_p(mxcnd_remove),
.suspend = mxcnd_suspend,
.resume = mxcnd_resume,
};
static int __init mxc_nd_init(void)
{
return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
}
static void __exit mxc_nd_cleanup(void)
{
/* Unregister the device structure */
platform_driver_unregister(&mxcnd_driver);
}
module_init(mxc_nd_init);
module_exit(mxc_nd_cleanup);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("MXC NAND MTD driver");
MODULE_LICENSE("GPL");