blob: 8a62648848e5754a747649078206e782ef550172 [file] [log] [blame]
/*
* Based on arch/arm/kernel/traps.c
*
* Copyright (C) 1995-2009 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/bug.h>
#include <linux/signal.h>
#include <linux/personality.h>
#include <linux/kallsyms.h>
#include <linux/spinlock.h>
#include <linux/uaccess.h>
#include <linux/hardirq.h>
#include <linux/kdebug.h>
#include <linux/module.h>
#include <linux/kexec.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/sched/signal.h>
#include <linux/sched/debug.h>
#include <linux/sched/task_stack.h>
#include <linux/syscalls.h>
#include <linux/mm_types.h>
#include <asm/atomic.h>
#include <asm/bug.h>
#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/insn.h>
#include <asm/traps.h>
#include <asm/stack_pointer.h>
#include <asm/stacktrace.h>
#include <asm/exception.h>
#include <asm/system_misc.h>
#include <asm/sysreg.h>
static const char *handler[]= {
"Synchronous Abort",
"IRQ",
"FIQ",
"Error"
};
int show_unhandled_signals = 1;
/*
* Dump out the contents of some kernel memory nicely...
*/
static void dump_mem(const char *lvl, const char *str, unsigned long bottom,
unsigned long top)
{
unsigned long first;
mm_segment_t fs;
int i;
/*
* We need to switch to kernel mode so that we can use __get_user
* to safely read from kernel space.
*/
fs = get_fs();
set_fs(KERNEL_DS);
printk("%s%s(0x%016lx to 0x%016lx)\n", lvl, str, bottom, top);
for (first = bottom & ~31; first < top; first += 32) {
unsigned long p;
char str[sizeof(" 12345678") * 8 + 1];
memset(str, ' ', sizeof(str));
str[sizeof(str) - 1] = '\0';
for (p = first, i = 0; i < (32 / 8)
&& p < top; i++, p += 8) {
if (p >= bottom && p < top) {
unsigned long val;
if (__get_user(val, (unsigned long *)p) == 0)
sprintf(str + i * 17, " %016lx", val);
else
sprintf(str + i * 17, " ????????????????");
}
}
printk("%s%04lx:%s\n", lvl, first & 0xffff, str);
}
set_fs(fs);
}
static void dump_backtrace_entry(unsigned long where)
{
/*
* Note that 'where' can have a physical address, but it's not handled.
*/
print_ip_sym(where);
}
static void __dump_instr(const char *lvl, struct pt_regs *regs)
{
unsigned long addr = instruction_pointer(regs);
char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
int i;
for (i = -4; i < 1; i++) {
unsigned int val, bad;
bad = __get_user(val, &((u32 *)addr)[i]);
if (!bad)
p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
else {
p += sprintf(p, "bad PC value");
break;
}
}
printk("%sCode: %s\n", lvl, str);
}
static void dump_instr(const char *lvl, struct pt_regs *regs)
{
if (!user_mode(regs)) {
mm_segment_t fs = get_fs();
set_fs(KERNEL_DS);
__dump_instr(lvl, regs);
set_fs(fs);
} else {
__dump_instr(lvl, regs);
}
}
void dump_backtrace(struct pt_regs *regs, struct task_struct *tsk)
{
struct stackframe frame;
unsigned long irq_stack_ptr;
int skip;
pr_debug("%s(regs = %p tsk = %p)\n", __func__, regs, tsk);
if (!tsk)
tsk = current;
if (!try_get_task_stack(tsk))
return;
/*
* Switching between stacks is valid when tracing current and in
* non-preemptible context.
*/
if (tsk == current && !preemptible())
irq_stack_ptr = IRQ_STACK_PTR(smp_processor_id());
else
irq_stack_ptr = 0;
if (tsk == current) {
frame.fp = (unsigned long)__builtin_frame_address(0);
frame.sp = current_stack_pointer;
frame.pc = (unsigned long)dump_backtrace;
} else {
/*
* task blocked in __switch_to
*/
frame.fp = thread_saved_fp(tsk);
frame.sp = thread_saved_sp(tsk);
frame.pc = thread_saved_pc(tsk);
}
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
frame.graph = tsk->curr_ret_stack;
#endif
skip = !!regs;
printk("Call trace:\n");
while (1) {
unsigned long where = frame.pc;
unsigned long stack;
int ret;
/* skip until specified stack frame */
if (!skip) {
dump_backtrace_entry(where);
} else if (frame.fp == regs->regs[29]) {
skip = 0;
/*
* Mostly, this is the case where this function is
* called in panic/abort. As exception handler's
* stack frame does not contain the corresponding pc
* at which an exception has taken place, use regs->pc
* instead.
*/
dump_backtrace_entry(regs->pc);
}
ret = unwind_frame(tsk, &frame);
if (ret < 0)
break;
stack = frame.sp;
if (in_exception_text(where)) {
/*
* If we switched to the irq_stack before calling this
* exception handler, then the pt_regs will be on the
* task stack. The easiest way to tell is if the large
* pt_regs would overlap with the end of the irq_stack.
*/
if (stack < irq_stack_ptr &&
(stack + sizeof(struct pt_regs)) > irq_stack_ptr)
stack = IRQ_STACK_TO_TASK_STACK(irq_stack_ptr);
dump_mem("", "Exception stack", stack,
stack + sizeof(struct pt_regs));
}
}
put_task_stack(tsk);
}
void show_stack(struct task_struct *tsk, unsigned long *sp)
{
dump_backtrace(NULL, tsk);
barrier();
}
#ifdef CONFIG_PREEMPT
#define S_PREEMPT " PREEMPT"
#else
#define S_PREEMPT ""
#endif
#define S_SMP " SMP"
static int __die(const char *str, int err, struct pt_regs *regs)
{
struct task_struct *tsk = current;
static int die_counter;
int ret;
pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
str, err, ++die_counter);
/* trap and error numbers are mostly meaningless on ARM */
ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
if (ret == NOTIFY_STOP)
return ret;
print_modules();
__show_regs(regs);
pr_emerg("Process %.*s (pid: %d, stack limit = 0x%p)\n",
TASK_COMM_LEN, tsk->comm, task_pid_nr(tsk),
end_of_stack(tsk));
if (!user_mode(regs)) {
dump_mem(KERN_EMERG, "Stack: ", regs->sp,
THREAD_SIZE + (unsigned long)task_stack_page(tsk));
dump_backtrace(regs, tsk);
dump_instr(KERN_EMERG, regs);
}
return ret;
}
static DEFINE_RAW_SPINLOCK(die_lock);
/*
* This function is protected against re-entrancy.
*/
void die(const char *str, struct pt_regs *regs, int err)
{
int ret;
unsigned long flags;
raw_spin_lock_irqsave(&die_lock, flags);
oops_enter();
console_verbose();
bust_spinlocks(1);
ret = __die(str, err, regs);
if (regs && kexec_should_crash(current))
crash_kexec(regs);
bust_spinlocks(0);
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
oops_exit();
if (in_interrupt())
panic("Fatal exception in interrupt");
if (panic_on_oops)
panic("Fatal exception");
raw_spin_unlock_irqrestore(&die_lock, flags);
if (ret != NOTIFY_STOP)
do_exit(SIGSEGV);
}
void arm64_notify_die(const char *str, struct pt_regs *regs,
struct siginfo *info, int err)
{
if (user_mode(regs)) {
current->thread.fault_address = 0;
current->thread.fault_code = err;
force_sig_info(info->si_signo, info, current);
} else {
die(str, regs, err);
}
}
static LIST_HEAD(undef_hook);
static DEFINE_RAW_SPINLOCK(undef_lock);
void register_undef_hook(struct undef_hook *hook)
{
unsigned long flags;
raw_spin_lock_irqsave(&undef_lock, flags);
list_add(&hook->node, &undef_hook);
raw_spin_unlock_irqrestore(&undef_lock, flags);
}
void unregister_undef_hook(struct undef_hook *hook)
{
unsigned long flags;
raw_spin_lock_irqsave(&undef_lock, flags);
list_del(&hook->node);
raw_spin_unlock_irqrestore(&undef_lock, flags);
}
static int call_undef_hook(struct pt_regs *regs)
{
struct undef_hook *hook;
unsigned long flags;
u32 instr;
int (*fn)(struct pt_regs *regs, u32 instr) = NULL;
void __user *pc = (void __user *)instruction_pointer(regs);
if (!user_mode(regs))
return 1;
if (compat_thumb_mode(regs)) {
/* 16-bit Thumb instruction */
__le16 instr_le;
if (get_user(instr_le, (__le16 __user *)pc))
goto exit;
instr = le16_to_cpu(instr_le);
if (aarch32_insn_is_wide(instr)) {
u32 instr2;
if (get_user(instr_le, (__le16 __user *)(pc + 2)))
goto exit;
instr2 = le16_to_cpu(instr_le);
instr = (instr << 16) | instr2;
}
} else {
/* 32-bit ARM instruction */
__le32 instr_le;
if (get_user(instr_le, (__le32 __user *)pc))
goto exit;
instr = le32_to_cpu(instr_le);
}
raw_spin_lock_irqsave(&undef_lock, flags);
list_for_each_entry(hook, &undef_hook, node)
if ((instr & hook->instr_mask) == hook->instr_val &&
(regs->pstate & hook->pstate_mask) == hook->pstate_val)
fn = hook->fn;
raw_spin_unlock_irqrestore(&undef_lock, flags);
exit:
return fn ? fn(regs, instr) : 1;
}
static void force_signal_inject(int signal, int code, struct pt_regs *regs,
unsigned long address)
{
siginfo_t info;
void __user *pc = (void __user *)instruction_pointer(regs);
const char *desc;
switch (signal) {
case SIGILL:
desc = "undefined instruction";
break;
case SIGSEGV:
desc = "illegal memory access";
break;
default:
desc = "bad mode";
break;
}
if (unhandled_signal(current, signal) &&
show_unhandled_signals_ratelimited()) {
pr_info("%s[%d]: %s: pc=%p\n",
current->comm, task_pid_nr(current), desc, pc);
dump_instr(KERN_INFO, regs);
}
info.si_signo = signal;
info.si_errno = 0;
info.si_code = code;
info.si_addr = pc;
arm64_notify_die(desc, regs, &info, 0);
}
/*
* Set up process info to signal segmentation fault - called on access error.
*/
void arm64_notify_segfault(struct pt_regs *regs, unsigned long addr)
{
int code;
down_read(&current->mm->mmap_sem);
if (find_vma(current->mm, addr) == NULL)
code = SEGV_MAPERR;
else
code = SEGV_ACCERR;
up_read(&current->mm->mmap_sem);
force_signal_inject(SIGSEGV, code, regs, addr);
}
asmlinkage void __exception do_undefinstr(struct pt_regs *regs)
{
/* check for AArch32 breakpoint instructions */
if (!aarch32_break_handler(regs))
return;
if (call_undef_hook(regs) == 0)
return;
force_signal_inject(SIGILL, ILL_ILLOPC, regs, 0);
}
int cpu_enable_cache_maint_trap(void *__unused)
{
config_sctlr_el1(SCTLR_EL1_UCI, 0);
return 0;
}
#define __user_cache_maint(insn, address, res) \
if (address >= user_addr_max()) { \
res = -EFAULT; \
} else { \
uaccess_ttbr0_enable(); \
asm volatile ( \
"1: " insn ", %1\n" \
" mov %w0, #0\n" \
"2:\n" \
" .pushsection .fixup,\"ax\"\n" \
" .align 2\n" \
"3: mov %w0, %w2\n" \
" b 2b\n" \
" .popsection\n" \
_ASM_EXTABLE(1b, 3b) \
: "=r" (res) \
: "r" (address), "i" (-EFAULT)); \
uaccess_ttbr0_disable(); \
}
static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs)
{
unsigned long address;
int rt = (esr & ESR_ELx_SYS64_ISS_RT_MASK) >> ESR_ELx_SYS64_ISS_RT_SHIFT;
int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
int ret = 0;
address = untagged_addr(pt_regs_read_reg(regs, rt));
switch (crm) {
case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */
__user_cache_maint("dc civac", address, ret);
break;
case ESR_ELx_SYS64_ISS_CRM_DC_CVAC: /* DC CVAC, gets promoted */
__user_cache_maint("dc civac", address, ret);
break;
case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC: /* DC CIVAC */
__user_cache_maint("dc civac", address, ret);
break;
case ESR_ELx_SYS64_ISS_CRM_IC_IVAU: /* IC IVAU */
__user_cache_maint("ic ivau", address, ret);
break;
default:
force_signal_inject(SIGILL, ILL_ILLOPC, regs, 0);
return;
}
if (ret)
arm64_notify_segfault(regs, address);
else
regs->pc += 4;
}
static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
{
int rt = (esr & ESR_ELx_SYS64_ISS_RT_MASK) >> ESR_ELx_SYS64_ISS_RT_SHIFT;
unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
pt_regs_write_reg(regs, rt, val);
regs->pc += 4;
}
static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
{
int rt = (esr & ESR_ELx_SYS64_ISS_RT_MASK) >> ESR_ELx_SYS64_ISS_RT_SHIFT;
pt_regs_write_reg(regs, rt, arch_counter_get_cntvct());
regs->pc += 4;
}
static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
{
int rt = (esr & ESR_ELx_SYS64_ISS_RT_MASK) >> ESR_ELx_SYS64_ISS_RT_SHIFT;
pt_regs_write_reg(regs, rt, arch_timer_get_rate());
regs->pc += 4;
}
struct sys64_hook {
unsigned int esr_mask;
unsigned int esr_val;
void (*handler)(unsigned int esr, struct pt_regs *regs);
};
static struct sys64_hook sys64_hooks[] = {
{
.esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
.esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
.handler = user_cache_maint_handler,
},
{
/* Trap read access to CTR_EL0 */
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
.handler = ctr_read_handler,
},
{
/* Trap read access to CNTVCT_EL0 */
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
.handler = cntvct_read_handler,
},
{
/* Trap read access to CNTFRQ_EL0 */
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
.handler = cntfrq_read_handler,
},
{},
};
asmlinkage void __exception do_sysinstr(unsigned int esr, struct pt_regs *regs)
{
struct sys64_hook *hook;
for (hook = sys64_hooks; hook->handler; hook++)
if ((hook->esr_mask & esr) == hook->esr_val) {
hook->handler(esr, regs);
return;
}
/*
* New SYS instructions may previously have been undefined at EL0. Fall
* back to our usual undefined instruction handler so that we handle
* these consistently.
*/
do_undefinstr(regs);
}
long compat_arm_syscall(struct pt_regs *regs);
asmlinkage long do_ni_syscall(struct pt_regs *regs)
{
#ifdef CONFIG_COMPAT
long ret;
if (is_compat_task()) {
ret = compat_arm_syscall(regs);
if (ret != -ENOSYS)
return ret;
}
#endif
if (show_unhandled_signals_ratelimited()) {
pr_info("%s[%d]: syscall %d\n", current->comm,
task_pid_nr(current), (int)regs->syscallno);
dump_instr("", regs);
if (user_mode(regs))
__show_regs(regs);
}
return sys_ni_syscall();
}
static const char *esr_class_str[] = {
[0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC",
[ESR_ELx_EC_UNKNOWN] = "Unknown/Uncategorized",
[ESR_ELx_EC_WFx] = "WFI/WFE",
[ESR_ELx_EC_CP15_32] = "CP15 MCR/MRC",
[ESR_ELx_EC_CP15_64] = "CP15 MCRR/MRRC",
[ESR_ELx_EC_CP14_MR] = "CP14 MCR/MRC",
[ESR_ELx_EC_CP14_LS] = "CP14 LDC/STC",
[ESR_ELx_EC_FP_ASIMD] = "ASIMD",
[ESR_ELx_EC_CP10_ID] = "CP10 MRC/VMRS",
[ESR_ELx_EC_CP14_64] = "CP14 MCRR/MRRC",
[ESR_ELx_EC_ILL] = "PSTATE.IL",
[ESR_ELx_EC_SVC32] = "SVC (AArch32)",
[ESR_ELx_EC_HVC32] = "HVC (AArch32)",
[ESR_ELx_EC_SMC32] = "SMC (AArch32)",
[ESR_ELx_EC_SVC64] = "SVC (AArch64)",
[ESR_ELx_EC_HVC64] = "HVC (AArch64)",
[ESR_ELx_EC_SMC64] = "SMC (AArch64)",
[ESR_ELx_EC_SYS64] = "MSR/MRS (AArch64)",
[ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF",
[ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)",
[ESR_ELx_EC_IABT_CUR] = "IABT (current EL)",
[ESR_ELx_EC_PC_ALIGN] = "PC Alignment",
[ESR_ELx_EC_DABT_LOW] = "DABT (lower EL)",
[ESR_ELx_EC_DABT_CUR] = "DABT (current EL)",
[ESR_ELx_EC_SP_ALIGN] = "SP Alignment",
[ESR_ELx_EC_FP_EXC32] = "FP (AArch32)",
[ESR_ELx_EC_FP_EXC64] = "FP (AArch64)",
[ESR_ELx_EC_SERROR] = "SError",
[ESR_ELx_EC_BREAKPT_LOW] = "Breakpoint (lower EL)",
[ESR_ELx_EC_BREAKPT_CUR] = "Breakpoint (current EL)",
[ESR_ELx_EC_SOFTSTP_LOW] = "Software Step (lower EL)",
[ESR_ELx_EC_SOFTSTP_CUR] = "Software Step (current EL)",
[ESR_ELx_EC_WATCHPT_LOW] = "Watchpoint (lower EL)",
[ESR_ELx_EC_WATCHPT_CUR] = "Watchpoint (current EL)",
[ESR_ELx_EC_BKPT32] = "BKPT (AArch32)",
[ESR_ELx_EC_VECTOR32] = "Vector catch (AArch32)",
[ESR_ELx_EC_BRK64] = "BRK (AArch64)",
};
const char *esr_get_class_string(u32 esr)
{
return esr_class_str[ESR_ELx_EC(esr)];
}
/*
* bad_mode handles the impossible case in the exception vector. This is always
* fatal.
*/
asmlinkage void bad_mode(struct pt_regs *regs, int reason, unsigned int esr)
{
console_verbose();
pr_crit("Bad mode in %s handler detected on CPU%d, code 0x%08x -- %s\n",
handler[reason], smp_processor_id(), esr,
esr_get_class_string(esr));
die("Oops - bad mode", regs, 0);
local_irq_disable();
panic("bad mode");
}
/*
* bad_el0_sync handles unexpected, but potentially recoverable synchronous
* exceptions taken from EL0. Unlike bad_mode, this returns.
*/
asmlinkage void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
{
siginfo_t info;
void __user *pc = (void __user *)instruction_pointer(regs);
console_verbose();
pr_crit("Bad EL0 synchronous exception detected on CPU%d, code 0x%08x -- %s\n",
smp_processor_id(), esr, esr_get_class_string(esr));
__show_regs(regs);
info.si_signo = SIGILL;
info.si_errno = 0;
info.si_code = ILL_ILLOPC;
info.si_addr = pc;
current->thread.fault_address = 0;
current->thread.fault_code = 0;
force_sig_info(info.si_signo, &info, current);
}
void __pte_error(const char *file, int line, unsigned long val)
{
pr_err("%s:%d: bad pte %016lx.\n", file, line, val);
}
void __pmd_error(const char *file, int line, unsigned long val)
{
pr_err("%s:%d: bad pmd %016lx.\n", file, line, val);
}
void __pud_error(const char *file, int line, unsigned long val)
{
pr_err("%s:%d: bad pud %016lx.\n", file, line, val);
}
void __pgd_error(const char *file, int line, unsigned long val)
{
pr_err("%s:%d: bad pgd %016lx.\n", file, line, val);
}
/* GENERIC_BUG traps */
int is_valid_bugaddr(unsigned long addr)
{
/*
* bug_handler() only called for BRK #BUG_BRK_IMM.
* So the answer is trivial -- any spurious instances with no
* bug table entry will be rejected by report_bug() and passed
* back to the debug-monitors code and handled as a fatal
* unexpected debug exception.
*/
return 1;
}
static int bug_handler(struct pt_regs *regs, unsigned int esr)
{
if (user_mode(regs))
return DBG_HOOK_ERROR;
switch (report_bug(regs->pc, regs)) {
case BUG_TRAP_TYPE_BUG:
die("Oops - BUG", regs, 0);
break;
case BUG_TRAP_TYPE_WARN:
break;
default:
/* unknown/unrecognised bug trap type */
return DBG_HOOK_ERROR;
}
/* If thread survives, skip over the BUG instruction and continue: */
regs->pc += AARCH64_INSN_SIZE; /* skip BRK and resume */
return DBG_HOOK_HANDLED;
}
static struct break_hook bug_break_hook = {
.esr_val = 0xf2000000 | BUG_BRK_IMM,
.esr_mask = 0xffffffff,
.fn = bug_handler,
};
/*
* Initial handler for AArch64 BRK exceptions
* This handler only used until debug_traps_init().
*/
int __init early_brk64(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
{
return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
}
/* This registration must happen early, before debug_traps_init(). */
void __init trap_init(void)
{
register_break_hook(&bug_break_hook);
}