blob: d3158e74a59effa5d9e7fe36e4631e63bc622066 [file] [log] [blame]
#ifndef _LINUX_DAX_H
#define _LINUX_DAX_H
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/radix-tree.h>
#include <asm/pgtable.h>
struct iomap_ops;
struct dax_device;
struct dax_operations {
/*
* direct_access: translate a device-relative
* logical-page-offset into an absolute physical pfn. Return the
* number of pages available for DAX at that pfn.
*/
long (*direct_access)(struct dax_device *, pgoff_t, long,
void **, pfn_t *);
};
int dax_read_lock(void);
void dax_read_unlock(int id);
struct dax_device *dax_get_by_host(const char *host);
struct dax_device *alloc_dax(void *private, const char *host,
const struct dax_operations *ops);
void put_dax(struct dax_device *dax_dev);
bool dax_alive(struct dax_device *dax_dev);
void kill_dax(struct dax_device *dax_dev);
void *dax_get_private(struct dax_device *dax_dev);
long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages,
void **kaddr, pfn_t *pfn);
/*
* We use lowest available bit in exceptional entry for locking, one bit for
* the entry size (PMD) and two more to tell us if the entry is a huge zero
* page (HZP) or an empty entry that is just used for locking. In total four
* special bits.
*
* If the PMD bit isn't set the entry has size PAGE_SIZE, and if the HZP and
* EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
* block allocation.
*/
#define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
#define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
#define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
#define RADIX_DAX_HZP (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
#define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
static inline unsigned long dax_radix_sector(void *entry)
{
return (unsigned long)entry >> RADIX_DAX_SHIFT;
}
static inline void *dax_radix_locked_entry(sector_t sector, unsigned long flags)
{
return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
((unsigned long)sector << RADIX_DAX_SHIFT) |
RADIX_DAX_ENTRY_LOCK);
}
ssize_t dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
const struct iomap_ops *ops);
int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
const struct iomap_ops *ops);
int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index);
int dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index);
int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
pgoff_t index);
void dax_wake_mapping_entry_waiter(struct address_space *mapping,
pgoff_t index, void *entry, bool wake_all);
#ifdef CONFIG_FS_DAX
int __dax_zero_page_range(struct block_device *bdev,
struct dax_device *dax_dev, sector_t sector,
unsigned int offset, unsigned int length);
#else
static inline int __dax_zero_page_range(struct block_device *bdev,
struct dax_device *dax_dev, sector_t sector,
unsigned int offset, unsigned int length)
{
return -ENXIO;
}
#endif
#ifdef CONFIG_FS_DAX_PMD
static inline unsigned int dax_radix_order(void *entry)
{
if ((unsigned long)entry & RADIX_DAX_PMD)
return PMD_SHIFT - PAGE_SHIFT;
return 0;
}
#else
static inline unsigned int dax_radix_order(void *entry)
{
return 0;
}
#endif
int dax_pfn_mkwrite(struct vm_fault *vmf);
static inline bool vma_is_dax(struct vm_area_struct *vma)
{
return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host);
}
static inline bool dax_mapping(struct address_space *mapping)
{
return mapping->host && IS_DAX(mapping->host);
}
struct writeback_control;
int dax_writeback_mapping_range(struct address_space *mapping,
struct block_device *bdev, struct writeback_control *wbc);
#endif