| /* |
| * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01 |
| * |
| * The data sheet for this device can be found at: |
| * http://wiki.laptop.org/go/Datasheets |
| * |
| * Copyright © 2006 Red Hat, Inc. |
| * Copyright © 2006 David Woodhouse <dwmw2@infradead.org> |
| */ |
| |
| #define DEBUG |
| |
| #include <linux/device.h> |
| #undef DEBUG |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/rslib.h> |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <asm/io.h> |
| |
| #define CAFE_NAND_CTRL1 0x00 |
| #define CAFE_NAND_CTRL2 0x04 |
| #define CAFE_NAND_CTRL3 0x08 |
| #define CAFE_NAND_STATUS 0x0c |
| #define CAFE_NAND_IRQ 0x10 |
| #define CAFE_NAND_IRQ_MASK 0x14 |
| #define CAFE_NAND_DATA_LEN 0x18 |
| #define CAFE_NAND_ADDR1 0x1c |
| #define CAFE_NAND_ADDR2 0x20 |
| #define CAFE_NAND_TIMING1 0x24 |
| #define CAFE_NAND_TIMING2 0x28 |
| #define CAFE_NAND_TIMING3 0x2c |
| #define CAFE_NAND_NONMEM 0x30 |
| #define CAFE_NAND_ECC_RESULT 0x3C |
| #define CAFE_NAND_DMA_CTRL 0x40 |
| #define CAFE_NAND_DMA_ADDR0 0x44 |
| #define CAFE_NAND_DMA_ADDR1 0x48 |
| #define CAFE_NAND_ECC_SYN01 0x50 |
| #define CAFE_NAND_ECC_SYN23 0x54 |
| #define CAFE_NAND_ECC_SYN45 0x58 |
| #define CAFE_NAND_ECC_SYN67 0x5c |
| #define CAFE_NAND_READ_DATA 0x1000 |
| #define CAFE_NAND_WRITE_DATA 0x2000 |
| |
| #define CAFE_GLOBAL_CTRL 0x3004 |
| #define CAFE_GLOBAL_IRQ 0x3008 |
| #define CAFE_GLOBAL_IRQ_MASK 0x300c |
| #define CAFE_NAND_RESET 0x3034 |
| |
| /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */ |
| #define CTRL1_CHIPSELECT (1<<19) |
| |
| struct cafe_priv { |
| struct nand_chip nand; |
| struct pci_dev *pdev; |
| void __iomem *mmio; |
| struct rs_control *rs; |
| uint32_t ctl1; |
| uint32_t ctl2; |
| int datalen; |
| int nr_data; |
| int data_pos; |
| int page_addr; |
| dma_addr_t dmaaddr; |
| unsigned char *dmabuf; |
| }; |
| |
| static int usedma = 1; |
| module_param(usedma, int, 0644); |
| |
| static int skipbbt = 0; |
| module_param(skipbbt, int, 0644); |
| |
| static int debug = 0; |
| module_param(debug, int, 0644); |
| |
| static int regdebug = 0; |
| module_param(regdebug, int, 0644); |
| |
| static int checkecc = 1; |
| module_param(checkecc, int, 0644); |
| |
| static unsigned int numtimings; |
| static int timing[3]; |
| module_param_array(timing, int, &numtimings, 0644); |
| |
| static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL }; |
| |
| /* Hrm. Why isn't this already conditional on something in the struct device? */ |
| #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0) |
| |
| /* Make it easier to switch to PIO if we need to */ |
| #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr) |
| #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr) |
| |
| static int cafe_device_ready(struct mtd_info *mtd) |
| { |
| struct cafe_priv *cafe = mtd->priv; |
| int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000); |
| uint32_t irqs = cafe_readl(cafe, NAND_IRQ); |
| |
| cafe_writel(cafe, irqs, NAND_IRQ); |
| |
| cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n", |
| result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ), |
| cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK)); |
| |
| return result; |
| } |
| |
| |
| static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) |
| { |
| struct cafe_priv *cafe = mtd->priv; |
| |
| if (usedma) |
| memcpy(cafe->dmabuf + cafe->datalen, buf, len); |
| else |
| memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len); |
| |
| cafe->datalen += len; |
| |
| cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n", |
| len, cafe->datalen); |
| } |
| |
| static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| struct cafe_priv *cafe = mtd->priv; |
| |
| if (usedma) |
| memcpy(buf, cafe->dmabuf + cafe->datalen, len); |
| else |
| memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len); |
| |
| cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n", |
| len, cafe->datalen); |
| cafe->datalen += len; |
| } |
| |
| static uint8_t cafe_read_byte(struct mtd_info *mtd) |
| { |
| struct cafe_priv *cafe = mtd->priv; |
| uint8_t d; |
| |
| cafe_read_buf(mtd, &d, 1); |
| cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d); |
| |
| return d; |
| } |
| |
| static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command, |
| int column, int page_addr) |
| { |
| struct cafe_priv *cafe = mtd->priv; |
| int adrbytes = 0; |
| uint32_t ctl1; |
| uint32_t doneint = 0x80000000; |
| |
| cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n", |
| command, column, page_addr); |
| |
| if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) { |
| /* Second half of a command we already calculated */ |
| cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2); |
| ctl1 = cafe->ctl1; |
| cafe->ctl2 &= ~(1<<30); |
| cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n", |
| cafe->ctl1, cafe->nr_data); |
| goto do_command; |
| } |
| /* Reset ECC engine */ |
| cafe_writel(cafe, 0, NAND_CTRL2); |
| |
| /* Emulate NAND_CMD_READOOB on large-page chips */ |
| if (mtd->writesize > 512 && |
| command == NAND_CMD_READOOB) { |
| column += mtd->writesize; |
| command = NAND_CMD_READ0; |
| } |
| |
| /* FIXME: Do we need to send read command before sending data |
| for small-page chips, to position the buffer correctly? */ |
| |
| if (column != -1) { |
| cafe_writel(cafe, column, NAND_ADDR1); |
| adrbytes = 2; |
| if (page_addr != -1) |
| goto write_adr2; |
| } else if (page_addr != -1) { |
| cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1); |
| page_addr >>= 16; |
| write_adr2: |
| cafe_writel(cafe, page_addr, NAND_ADDR2); |
| adrbytes += 2; |
| if (mtd->size > mtd->writesize << 16) |
| adrbytes++; |
| } |
| |
| cafe->data_pos = cafe->datalen = 0; |
| |
| /* Set command valid bit, mask in the chip select bit */ |
| ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT); |
| |
| /* Set RD or WR bits as appropriate */ |
| if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) { |
| ctl1 |= (1<<26); /* rd */ |
| /* Always 5 bytes, for now */ |
| cafe->datalen = 4; |
| /* And one address cycle -- even for STATUS, since the controller doesn't work without */ |
| adrbytes = 1; |
| } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || |
| command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) { |
| ctl1 |= 1<<26; /* rd */ |
| /* For now, assume just read to end of page */ |
| cafe->datalen = mtd->writesize + mtd->oobsize - column; |
| } else if (command == NAND_CMD_SEQIN) |
| ctl1 |= 1<<25; /* wr */ |
| |
| /* Set number of address bytes */ |
| if (adrbytes) |
| ctl1 |= ((adrbytes-1)|8) << 27; |
| |
| if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) { |
| /* Ignore the first command of a pair; the hardware |
| deals with them both at once, later */ |
| cafe->ctl1 = ctl1; |
| cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n", |
| cafe->ctl1, cafe->datalen); |
| return; |
| } |
| /* RNDOUT and READ0 commands need a following byte */ |
| if (command == NAND_CMD_RNDOUT) |
| cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2); |
| else if (command == NAND_CMD_READ0 && mtd->writesize > 512) |
| cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2); |
| |
| do_command: |
| cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n", |
| cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2)); |
| |
| /* NB: The datasheet lies -- we really should be subtracting 1 here */ |
| cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN); |
| cafe_writel(cafe, 0x90000000, NAND_IRQ); |
| if (usedma && (ctl1 & (3<<25))) { |
| uint32_t dmactl = 0xc0000000 + cafe->datalen; |
| /* If WR or RD bits set, set up DMA */ |
| if (ctl1 & (1<<26)) { |
| /* It's a read */ |
| dmactl |= (1<<29); |
| /* ... so it's done when the DMA is done, not just |
| the command. */ |
| doneint = 0x10000000; |
| } |
| cafe_writel(cafe, dmactl, NAND_DMA_CTRL); |
| } |
| cafe->datalen = 0; |
| |
| if (unlikely(regdebug)) { |
| int i; |
| printk("About to write command %08x to register 0\n", ctl1); |
| for (i=4; i< 0x5c; i+=4) |
| printk("Register %x: %08x\n", i, readl(cafe->mmio + i)); |
| } |
| |
| cafe_writel(cafe, ctl1, NAND_CTRL1); |
| /* Apply this short delay always to ensure that we do wait tWB in |
| * any case on any machine. */ |
| ndelay(100); |
| |
| if (1) { |
| int c; |
| uint32_t irqs; |
| |
| for (c = 500000; c != 0; c--) { |
| irqs = cafe_readl(cafe, NAND_IRQ); |
| if (irqs & doneint) |
| break; |
| udelay(1); |
| if (!(c % 100000)) |
| cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs); |
| cpu_relax(); |
| } |
| cafe_writel(cafe, doneint, NAND_IRQ); |
| cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n", |
| command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ)); |
| } |
| |
| WARN_ON(cafe->ctl2 & (1<<30)); |
| |
| switch (command) { |
| |
| case NAND_CMD_CACHEDPROG: |
| case NAND_CMD_PAGEPROG: |
| case NAND_CMD_ERASE1: |
| case NAND_CMD_ERASE2: |
| case NAND_CMD_SEQIN: |
| case NAND_CMD_RNDIN: |
| case NAND_CMD_STATUS: |
| case NAND_CMD_DEPLETE1: |
| case NAND_CMD_RNDOUT: |
| case NAND_CMD_STATUS_ERROR: |
| case NAND_CMD_STATUS_ERROR0: |
| case NAND_CMD_STATUS_ERROR1: |
| case NAND_CMD_STATUS_ERROR2: |
| case NAND_CMD_STATUS_ERROR3: |
| cafe_writel(cafe, cafe->ctl2, NAND_CTRL2); |
| return; |
| } |
| nand_wait_ready(mtd); |
| cafe_writel(cafe, cafe->ctl2, NAND_CTRL2); |
| } |
| |
| static void cafe_select_chip(struct mtd_info *mtd, int chipnr) |
| { |
| struct cafe_priv *cafe = mtd->priv; |
| |
| cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr); |
| |
| /* Mask the appropriate bit into the stored value of ctl1 |
| which will be used by cafe_nand_cmdfunc() */ |
| if (chipnr) |
| cafe->ctl1 |= CTRL1_CHIPSELECT; |
| else |
| cafe->ctl1 &= ~CTRL1_CHIPSELECT; |
| } |
| |
| static irqreturn_t cafe_nand_interrupt(int irq, void *id) |
| { |
| struct mtd_info *mtd = id; |
| struct cafe_priv *cafe = mtd->priv; |
| uint32_t irqs = cafe_readl(cafe, NAND_IRQ); |
| cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ); |
| if (!irqs) |
| return IRQ_NONE; |
| |
| cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ)); |
| return IRQ_HANDLED; |
| } |
| |
| static void cafe_nand_bug(struct mtd_info *mtd) |
| { |
| BUG(); |
| } |
| |
| static int cafe_nand_write_oob(struct mtd_info *mtd, |
| struct nand_chip *chip, int page) |
| { |
| int status = 0; |
| |
| chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); |
| chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| status = chip->waitfunc(mtd, chip); |
| |
| return status & NAND_STATUS_FAIL ? -EIO : 0; |
| } |
| |
| /* Don't use -- use nand_read_oob_std for now */ |
| static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page, int sndcmd) |
| { |
| chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); |
| chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| return 1; |
| } |
| /** |
| * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * |
| * The hw generator calculates the error syndrome automatically. Therefor |
| * we need a special oob layout and handling. |
| */ |
| static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int page) |
| { |
| struct cafe_priv *cafe = mtd->priv; |
| |
| cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n", |
| cafe_readl(cafe, NAND_ECC_RESULT), |
| cafe_readl(cafe, NAND_ECC_SYN01)); |
| |
| chip->read_buf(mtd, buf, mtd->writesize); |
| chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) { |
| unsigned short syn[8], pat[4]; |
| int pos[4]; |
| u8 *oob = chip->oob_poi; |
| int i, n; |
| |
| for (i=0; i<8; i+=2) { |
| uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2)); |
| syn[i] = cafe->rs->index_of[tmp & 0xfff]; |
| syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff]; |
| } |
| |
| n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0, |
| pat); |
| |
| for (i = 0; i < n; i++) { |
| int p = pos[i]; |
| |
| /* The 12-bit symbols are mapped to bytes here */ |
| |
| if (p > 1374) { |
| /* out of range */ |
| n = -1374; |
| } else if (p == 0) { |
| /* high four bits do not correspond to data */ |
| if (pat[i] > 0xff) |
| n = -2048; |
| else |
| buf[0] ^= pat[i]; |
| } else if (p == 1365) { |
| buf[2047] ^= pat[i] >> 4; |
| oob[0] ^= pat[i] << 4; |
| } else if (p > 1365) { |
| if ((p & 1) == 1) { |
| oob[3*p/2 - 2048] ^= pat[i] >> 4; |
| oob[3*p/2 - 2047] ^= pat[i] << 4; |
| } else { |
| oob[3*p/2 - 2049] ^= pat[i] >> 8; |
| oob[3*p/2 - 2048] ^= pat[i]; |
| } |
| } else if ((p & 1) == 1) { |
| buf[3*p/2] ^= pat[i] >> 4; |
| buf[3*p/2 + 1] ^= pat[i] << 4; |
| } else { |
| buf[3*p/2 - 1] ^= pat[i] >> 8; |
| buf[3*p/2] ^= pat[i]; |
| } |
| } |
| |
| if (n < 0) { |
| dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n", |
| cafe_readl(cafe, NAND_ADDR2) * 2048); |
| for (i = 0; i < 0x5c; i += 4) |
| printk("Register %x: %08x\n", i, readl(cafe->mmio + i)); |
| mtd->ecc_stats.failed++; |
| } else { |
| dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n); |
| mtd->ecc_stats.corrected += n; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static struct nand_ecclayout cafe_oobinfo_2048 = { |
| .eccbytes = 14, |
| .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, |
| .oobfree = {{14, 50}} |
| }; |
| |
| /* Ick. The BBT code really ought to be able to work this bit out |
| for itself from the above, at least for the 2KiB case */ |
| static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' }; |
| static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' }; |
| |
| static uint8_t cafe_bbt_pattern_512[] = { 0xBB }; |
| static uint8_t cafe_mirror_pattern_512[] = { 0xBC }; |
| |
| |
| static struct nand_bbt_descr cafe_bbt_main_descr_2048 = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION, |
| .offs = 14, |
| .len = 4, |
| .veroffs = 18, |
| .maxblocks = 4, |
| .pattern = cafe_bbt_pattern_2048 |
| }; |
| |
| static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION, |
| .offs = 14, |
| .len = 4, |
| .veroffs = 18, |
| .maxblocks = 4, |
| .pattern = cafe_mirror_pattern_2048 |
| }; |
| |
| static struct nand_ecclayout cafe_oobinfo_512 = { |
| .eccbytes = 14, |
| .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, |
| .oobfree = {{14, 2}} |
| }; |
| |
| static struct nand_bbt_descr cafe_bbt_main_descr_512 = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION, |
| .offs = 14, |
| .len = 1, |
| .veroffs = 15, |
| .maxblocks = 4, |
| .pattern = cafe_bbt_pattern_512 |
| }; |
| |
| static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION, |
| .offs = 14, |
| .len = 1, |
| .veroffs = 15, |
| .maxblocks = 4, |
| .pattern = cafe_mirror_pattern_512 |
| }; |
| |
| |
| static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd, |
| struct nand_chip *chip, const uint8_t *buf) |
| { |
| struct cafe_priv *cafe = mtd->priv; |
| |
| chip->write_buf(mtd, buf, mtd->writesize); |
| chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| /* Set up ECC autogeneration */ |
| cafe->ctl2 |= (1<<30); |
| } |
| |
| static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf, int page, int cached, int raw) |
| { |
| int status; |
| |
| chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); |
| |
| if (unlikely(raw)) |
| chip->ecc.write_page_raw(mtd, chip, buf); |
| else |
| chip->ecc.write_page(mtd, chip, buf); |
| |
| /* |
| * Cached progamming disabled for now, Not sure if its worth the |
| * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s) |
| */ |
| cached = 0; |
| |
| if (!cached || !(chip->options & NAND_CACHEPRG)) { |
| |
| chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| status = chip->waitfunc(mtd, chip); |
| /* |
| * See if operation failed and additional status checks are |
| * available |
| */ |
| if ((status & NAND_STATUS_FAIL) && (chip->errstat)) |
| status = chip->errstat(mtd, chip, FL_WRITING, status, |
| page); |
| |
| if (status & NAND_STATUS_FAIL) |
| return -EIO; |
| } else { |
| chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1); |
| status = chip->waitfunc(mtd, chip); |
| } |
| |
| #ifdef CONFIG_MTD_NAND_VERIFY_WRITE |
| /* Send command to read back the data */ |
| chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); |
| |
| if (chip->verify_buf(mtd, buf, mtd->writesize)) |
| return -EIO; |
| #endif |
| return 0; |
| } |
| |
| static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) |
| { |
| return 0; |
| } |
| |
| /* F_2[X]/(X**6+X+1) */ |
| static unsigned short __devinit gf64_mul(u8 a, u8 b) |
| { |
| u8 c; |
| unsigned int i; |
| |
| c = 0; |
| for (i = 0; i < 6; i++) { |
| if (a & 1) |
| c ^= b; |
| a >>= 1; |
| b <<= 1; |
| if ((b & 0x40) != 0) |
| b ^= 0x43; |
| } |
| |
| return c; |
| } |
| |
| /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */ |
| static u16 __devinit gf4096_mul(u16 a, u16 b) |
| { |
| u8 ah, al, bh, bl, ch, cl; |
| |
| ah = a >> 6; |
| al = a & 0x3f; |
| bh = b >> 6; |
| bl = b & 0x3f; |
| |
| ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl); |
| cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl); |
| |
| return (ch << 6) ^ cl; |
| } |
| |
| static int __devinit cafe_mul(int x) |
| { |
| if (x == 0) |
| return 1; |
| return gf4096_mul(x, 0xe01); |
| } |
| |
| static int __devinit cafe_nand_probe(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| struct mtd_info *mtd; |
| struct cafe_priv *cafe; |
| uint32_t ctrl; |
| int err = 0; |
| |
| /* Very old versions shared the same PCI ident for all three |
| functions on the chip. Verify the class too... */ |
| if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH) |
| return -ENODEV; |
| |
| err = pci_enable_device(pdev); |
| if (err) |
| return err; |
| |
| pci_set_master(pdev); |
| |
| mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL); |
| if (!mtd) { |
| dev_warn(&pdev->dev, "failed to alloc mtd_info\n"); |
| return -ENOMEM; |
| } |
| cafe = (void *)(&mtd[1]); |
| |
| mtd->dev.parent = &pdev->dev; |
| mtd->priv = cafe; |
| mtd->owner = THIS_MODULE; |
| |
| cafe->pdev = pdev; |
| cafe->mmio = pci_iomap(pdev, 0, 0); |
| if (!cafe->mmio) { |
| dev_warn(&pdev->dev, "failed to iomap\n"); |
| err = -ENOMEM; |
| goto out_free_mtd; |
| } |
| cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers), |
| &cafe->dmaaddr, GFP_KERNEL); |
| if (!cafe->dmabuf) { |
| err = -ENOMEM; |
| goto out_ior; |
| } |
| cafe->nand.buffers = (void *)cafe->dmabuf + 2112; |
| |
| cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8); |
| if (!cafe->rs) { |
| err = -ENOMEM; |
| goto out_ior; |
| } |
| |
| cafe->nand.cmdfunc = cafe_nand_cmdfunc; |
| cafe->nand.dev_ready = cafe_device_ready; |
| cafe->nand.read_byte = cafe_read_byte; |
| cafe->nand.read_buf = cafe_read_buf; |
| cafe->nand.write_buf = cafe_write_buf; |
| cafe->nand.select_chip = cafe_select_chip; |
| |
| cafe->nand.chip_delay = 0; |
| |
| /* Enable the following for a flash based bad block table */ |
| cafe->nand.bbt_options = NAND_BBT_USE_FLASH; |
| cafe->nand.options = NAND_NO_AUTOINCR | NAND_OWN_BUFFERS; |
| |
| if (skipbbt) { |
| cafe->nand.options |= NAND_SKIP_BBTSCAN; |
| cafe->nand.block_bad = cafe_nand_block_bad; |
| } |
| |
| if (numtimings && numtimings != 3) { |
| dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings); |
| } |
| |
| if (numtimings == 3) { |
| cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n", |
| timing[0], timing[1], timing[2]); |
| } else { |
| timing[0] = cafe_readl(cafe, NAND_TIMING1); |
| timing[1] = cafe_readl(cafe, NAND_TIMING2); |
| timing[2] = cafe_readl(cafe, NAND_TIMING3); |
| |
| if (timing[0] | timing[1] | timing[2]) { |
| cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n", |
| timing[0], timing[1], timing[2]); |
| } else { |
| dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n"); |
| timing[0] = timing[1] = timing[2] = 0xffffffff; |
| } |
| } |
| |
| /* Start off by resetting the NAND controller completely */ |
| cafe_writel(cafe, 1, NAND_RESET); |
| cafe_writel(cafe, 0, NAND_RESET); |
| |
| cafe_writel(cafe, timing[0], NAND_TIMING1); |
| cafe_writel(cafe, timing[1], NAND_TIMING2); |
| cafe_writel(cafe, timing[2], NAND_TIMING3); |
| |
| cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK); |
| err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED, |
| "CAFE NAND", mtd); |
| if (err) { |
| dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq); |
| goto out_free_dma; |
| } |
| |
| /* Disable master reset, enable NAND clock */ |
| ctrl = cafe_readl(cafe, GLOBAL_CTRL); |
| ctrl &= 0xffffeff0; |
| ctrl |= 0x00007000; |
| cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL); |
| cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL); |
| cafe_writel(cafe, 0, NAND_DMA_CTRL); |
| |
| cafe_writel(cafe, 0x7006, GLOBAL_CTRL); |
| cafe_writel(cafe, 0x700a, GLOBAL_CTRL); |
| |
| /* Set up DMA address */ |
| cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0); |
| if (sizeof(cafe->dmaaddr) > 4) |
| /* Shift in two parts to shut the compiler up */ |
| cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1); |
| else |
| cafe_writel(cafe, 0, NAND_DMA_ADDR1); |
| |
| cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n", |
| cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf); |
| |
| /* Enable NAND IRQ in global IRQ mask register */ |
| cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK); |
| cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n", |
| cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK)); |
| |
| /* Scan to find existence of the device */ |
| if (nand_scan_ident(mtd, 2, NULL)) { |
| err = -ENXIO; |
| goto out_irq; |
| } |
| |
| cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */ |
| if (mtd->writesize == 2048) |
| cafe->ctl2 |= 1<<29; /* 2KiB page size */ |
| |
| /* Set up ECC according to the type of chip we found */ |
| if (mtd->writesize == 2048) { |
| cafe->nand.ecc.layout = &cafe_oobinfo_2048; |
| cafe->nand.bbt_td = &cafe_bbt_main_descr_2048; |
| cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048; |
| } else if (mtd->writesize == 512) { |
| cafe->nand.ecc.layout = &cafe_oobinfo_512; |
| cafe->nand.bbt_td = &cafe_bbt_main_descr_512; |
| cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512; |
| } else { |
| printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n", |
| mtd->writesize); |
| goto out_irq; |
| } |
| cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME; |
| cafe->nand.ecc.size = mtd->writesize; |
| cafe->nand.ecc.bytes = 14; |
| cafe->nand.ecc.hwctl = (void *)cafe_nand_bug; |
| cafe->nand.ecc.calculate = (void *)cafe_nand_bug; |
| cafe->nand.ecc.correct = (void *)cafe_nand_bug; |
| cafe->nand.write_page = cafe_nand_write_page; |
| cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel; |
| cafe->nand.ecc.write_oob = cafe_nand_write_oob; |
| cafe->nand.ecc.read_page = cafe_nand_read_page; |
| cafe->nand.ecc.read_oob = cafe_nand_read_oob; |
| |
| err = nand_scan_tail(mtd); |
| if (err) |
| goto out_irq; |
| |
| pci_set_drvdata(pdev, mtd); |
| |
| mtd->name = "cafe_nand"; |
| mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); |
| |
| goto out; |
| |
| out_irq: |
| /* Disable NAND IRQ in global IRQ mask register */ |
| cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); |
| free_irq(pdev->irq, mtd); |
| out_free_dma: |
| dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); |
| out_ior: |
| pci_iounmap(pdev, cafe->mmio); |
| out_free_mtd: |
| kfree(mtd); |
| out: |
| return err; |
| } |
| |
| static void __devexit cafe_nand_remove(struct pci_dev *pdev) |
| { |
| struct mtd_info *mtd = pci_get_drvdata(pdev); |
| struct cafe_priv *cafe = mtd->priv; |
| |
| /* Disable NAND IRQ in global IRQ mask register */ |
| cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); |
| free_irq(pdev->irq, mtd); |
| nand_release(mtd); |
| free_rs(cafe->rs); |
| pci_iounmap(pdev, cafe->mmio); |
| dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); |
| kfree(mtd); |
| } |
| |
| static const struct pci_device_id cafe_nand_tbl[] = { |
| { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND, |
| PCI_ANY_ID, PCI_ANY_ID }, |
| { } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, cafe_nand_tbl); |
| |
| static int cafe_nand_resume(struct pci_dev *pdev) |
| { |
| uint32_t ctrl; |
| struct mtd_info *mtd = pci_get_drvdata(pdev); |
| struct cafe_priv *cafe = mtd->priv; |
| |
| /* Start off by resetting the NAND controller completely */ |
| cafe_writel(cafe, 1, NAND_RESET); |
| cafe_writel(cafe, 0, NAND_RESET); |
| cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK); |
| |
| /* Restore timing configuration */ |
| cafe_writel(cafe, timing[0], NAND_TIMING1); |
| cafe_writel(cafe, timing[1], NAND_TIMING2); |
| cafe_writel(cafe, timing[2], NAND_TIMING3); |
| |
| /* Disable master reset, enable NAND clock */ |
| ctrl = cafe_readl(cafe, GLOBAL_CTRL); |
| ctrl &= 0xffffeff0; |
| ctrl |= 0x00007000; |
| cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL); |
| cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL); |
| cafe_writel(cafe, 0, NAND_DMA_CTRL); |
| cafe_writel(cafe, 0x7006, GLOBAL_CTRL); |
| cafe_writel(cafe, 0x700a, GLOBAL_CTRL); |
| |
| /* Set up DMA address */ |
| cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0); |
| if (sizeof(cafe->dmaaddr) > 4) |
| /* Shift in two parts to shut the compiler up */ |
| cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1); |
| else |
| cafe_writel(cafe, 0, NAND_DMA_ADDR1); |
| |
| /* Enable NAND IRQ in global IRQ mask register */ |
| cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK); |
| return 0; |
| } |
| |
| static struct pci_driver cafe_nand_pci_driver = { |
| .name = "CAFÉ NAND", |
| .id_table = cafe_nand_tbl, |
| .probe = cafe_nand_probe, |
| .remove = __devexit_p(cafe_nand_remove), |
| .resume = cafe_nand_resume, |
| }; |
| |
| static int __init cafe_nand_init(void) |
| { |
| return pci_register_driver(&cafe_nand_pci_driver); |
| } |
| |
| static void __exit cafe_nand_exit(void) |
| { |
| pci_unregister_driver(&cafe_nand_pci_driver); |
| } |
| module_init(cafe_nand_init); |
| module_exit(cafe_nand_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); |
| MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip"); |