| /* |
| Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> |
| <http://rt2x00.serialmonkey.com> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the |
| Free Software Foundation, Inc., |
| 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* |
| Module: rt73usb |
| Abstract: rt73usb device specific routines. |
| Supported chipsets: rt2571W & rt2671. |
| */ |
| |
| #include <linux/crc-itu-t.h> |
| #include <linux/delay.h> |
| #include <linux/etherdevice.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/usb.h> |
| |
| #include "rt2x00.h" |
| #include "rt2x00usb.h" |
| #include "rt73usb.h" |
| |
| /* |
| * Allow hardware encryption to be disabled. |
| */ |
| static bool modparam_nohwcrypt; |
| module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); |
| MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); |
| |
| /* |
| * Register access. |
| * All access to the CSR registers will go through the methods |
| * rt2x00usb_register_read and rt2x00usb_register_write. |
| * BBP and RF register require indirect register access, |
| * and use the CSR registers BBPCSR and RFCSR to achieve this. |
| * These indirect registers work with busy bits, |
| * and we will try maximal REGISTER_BUSY_COUNT times to access |
| * the register while taking a REGISTER_BUSY_DELAY us delay |
| * between each attampt. When the busy bit is still set at that time, |
| * the access attempt is considered to have failed, |
| * and we will print an error. |
| * The _lock versions must be used if you already hold the csr_mutex |
| */ |
| #define WAIT_FOR_BBP(__dev, __reg) \ |
| rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg)) |
| #define WAIT_FOR_RF(__dev, __reg) \ |
| rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg)) |
| |
| static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, const u8 value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the BBP becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_BBP(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, PHY_CSR3_VALUE, value); |
| rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); |
| rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); |
| rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0); |
| |
| rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, u8 *value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the BBP becomes available, afterwards we |
| * can safely write the read request into the register. |
| * After the data has been written, we wait until hardware |
| * returns the correct value, if at any time the register |
| * doesn't become available in time, reg will be 0xffffffff |
| * which means we return 0xff to the caller. |
| */ |
| if (WAIT_FOR_BBP(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); |
| rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); |
| rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1); |
| |
| rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg); |
| |
| WAIT_FOR_BBP(rt2x00dev, ®); |
| } |
| |
| *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE); |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, const u32 value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the RF becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_RF(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, PHY_CSR4_VALUE, value); |
| /* |
| * RF5225 and RF2527 contain 21 bits per RF register value, |
| * all others contain 20 bits. |
| */ |
| rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, |
| 20 + (rt2x00_rf(rt2x00dev, RF5225) || |
| rt2x00_rf(rt2x00dev, RF2527))); |
| rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0); |
| rt2x00_set_field32(®, PHY_CSR4_BUSY, 1); |
| |
| rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg); |
| rt2x00_rf_write(rt2x00dev, word, value); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS |
| static const struct rt2x00debug rt73usb_rt2x00debug = { |
| .owner = THIS_MODULE, |
| .csr = { |
| .read = rt2x00usb_register_read, |
| .write = rt2x00usb_register_write, |
| .flags = RT2X00DEBUGFS_OFFSET, |
| .word_base = CSR_REG_BASE, |
| .word_size = sizeof(u32), |
| .word_count = CSR_REG_SIZE / sizeof(u32), |
| }, |
| .eeprom = { |
| .read = rt2x00_eeprom_read, |
| .write = rt2x00_eeprom_write, |
| .word_base = EEPROM_BASE, |
| .word_size = sizeof(u16), |
| .word_count = EEPROM_SIZE / sizeof(u16), |
| }, |
| .bbp = { |
| .read = rt73usb_bbp_read, |
| .write = rt73usb_bbp_write, |
| .word_base = BBP_BASE, |
| .word_size = sizeof(u8), |
| .word_count = BBP_SIZE / sizeof(u8), |
| }, |
| .rf = { |
| .read = rt2x00_rf_read, |
| .write = rt73usb_rf_write, |
| .word_base = RF_BASE, |
| .word_size = sizeof(u32), |
| .word_count = RF_SIZE / sizeof(u32), |
| }, |
| }; |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ |
| |
| static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| rt2x00usb_register_read(rt2x00dev, MAC_CSR13, ®); |
| return rt2x00_get_field32(reg, MAC_CSR13_BIT7); |
| } |
| |
| #ifdef CONFIG_RT2X00_LIB_LEDS |
| static void rt73usb_brightness_set(struct led_classdev *led_cdev, |
| enum led_brightness brightness) |
| { |
| struct rt2x00_led *led = |
| container_of(led_cdev, struct rt2x00_led, led_dev); |
| unsigned int enabled = brightness != LED_OFF; |
| unsigned int a_mode = |
| (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ); |
| unsigned int bg_mode = |
| (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); |
| |
| if (led->type == LED_TYPE_RADIO) { |
| rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, |
| MCU_LEDCS_RADIO_STATUS, enabled); |
| |
| rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, |
| 0, led->rt2x00dev->led_mcu_reg, |
| REGISTER_TIMEOUT); |
| } else if (led->type == LED_TYPE_ASSOC) { |
| rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, |
| MCU_LEDCS_LINK_BG_STATUS, bg_mode); |
| rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, |
| MCU_LEDCS_LINK_A_STATUS, a_mode); |
| |
| rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, |
| 0, led->rt2x00dev->led_mcu_reg, |
| REGISTER_TIMEOUT); |
| } else if (led->type == LED_TYPE_QUALITY) { |
| /* |
| * The brightness is divided into 6 levels (0 - 5), |
| * this means we need to convert the brightness |
| * argument into the matching level within that range. |
| */ |
| rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, |
| brightness / (LED_FULL / 6), |
| led->rt2x00dev->led_mcu_reg, |
| REGISTER_TIMEOUT); |
| } |
| } |
| |
| static int rt73usb_blink_set(struct led_classdev *led_cdev, |
| unsigned long *delay_on, |
| unsigned long *delay_off) |
| { |
| struct rt2x00_led *led = |
| container_of(led_cdev, struct rt2x00_led, led_dev); |
| u32 reg; |
| |
| rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, ®); |
| rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on); |
| rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off); |
| rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg); |
| |
| return 0; |
| } |
| |
| static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00_led *led, |
| enum led_type type) |
| { |
| led->rt2x00dev = rt2x00dev; |
| led->type = type; |
| led->led_dev.brightness_set = rt73usb_brightness_set; |
| led->led_dev.blink_set = rt73usb_blink_set; |
| led->flags = LED_INITIALIZED; |
| } |
| #endif /* CONFIG_RT2X00_LIB_LEDS */ |
| |
| /* |
| * Configuration handlers. |
| */ |
| static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_crypto *crypto, |
| struct ieee80211_key_conf *key) |
| { |
| struct hw_key_entry key_entry; |
| struct rt2x00_field32 field; |
| u32 mask; |
| u32 reg; |
| |
| if (crypto->cmd == SET_KEY) { |
| /* |
| * rt2x00lib can't determine the correct free |
| * key_idx for shared keys. We have 1 register |
| * with key valid bits. The goal is simple, read |
| * the register, if that is full we have no slots |
| * left. |
| * Note that each BSS is allowed to have up to 4 |
| * shared keys, so put a mask over the allowed |
| * entries. |
| */ |
| mask = (0xf << crypto->bssidx); |
| |
| rt2x00usb_register_read(rt2x00dev, SEC_CSR0, ®); |
| reg &= mask; |
| |
| if (reg && reg == mask) |
| return -ENOSPC; |
| |
| key->hw_key_idx += reg ? ffz(reg) : 0; |
| |
| /* |
| * Upload key to hardware |
| */ |
| memcpy(key_entry.key, crypto->key, |
| sizeof(key_entry.key)); |
| memcpy(key_entry.tx_mic, crypto->tx_mic, |
| sizeof(key_entry.tx_mic)); |
| memcpy(key_entry.rx_mic, crypto->rx_mic, |
| sizeof(key_entry.rx_mic)); |
| |
| reg = SHARED_KEY_ENTRY(key->hw_key_idx); |
| rt2x00usb_register_multiwrite(rt2x00dev, reg, |
| &key_entry, sizeof(key_entry)); |
| |
| /* |
| * The cipher types are stored over 2 registers. |
| * bssidx 0 and 1 keys are stored in SEC_CSR1 and |
| * bssidx 1 and 2 keys are stored in SEC_CSR5. |
| * Using the correct defines correctly will cause overhead, |
| * so just calculate the correct offset. |
| */ |
| if (key->hw_key_idx < 8) { |
| field.bit_offset = (3 * key->hw_key_idx); |
| field.bit_mask = 0x7 << field.bit_offset; |
| |
| rt2x00usb_register_read(rt2x00dev, SEC_CSR1, ®); |
| rt2x00_set_field32(®, field, crypto->cipher); |
| rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg); |
| } else { |
| field.bit_offset = (3 * (key->hw_key_idx - 8)); |
| field.bit_mask = 0x7 << field.bit_offset; |
| |
| rt2x00usb_register_read(rt2x00dev, SEC_CSR5, ®); |
| rt2x00_set_field32(®, field, crypto->cipher); |
| rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg); |
| } |
| |
| /* |
| * The driver does not support the IV/EIV generation |
| * in hardware. However it doesn't support the IV/EIV |
| * inside the ieee80211 frame either, but requires it |
| * to be provided separately for the descriptor. |
| * rt2x00lib will cut the IV/EIV data out of all frames |
| * given to us by mac80211, but we must tell mac80211 |
| * to generate the IV/EIV data. |
| */ |
| key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; |
| } |
| |
| /* |
| * SEC_CSR0 contains only single-bit fields to indicate |
| * a particular key is valid. Because using the FIELD32() |
| * defines directly will cause a lot of overhead we use |
| * a calculation to determine the correct bit directly. |
| */ |
| mask = 1 << key->hw_key_idx; |
| |
| rt2x00usb_register_read(rt2x00dev, SEC_CSR0, ®); |
| if (crypto->cmd == SET_KEY) |
| reg |= mask; |
| else if (crypto->cmd == DISABLE_KEY) |
| reg &= ~mask; |
| rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg); |
| |
| return 0; |
| } |
| |
| static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_crypto *crypto, |
| struct ieee80211_key_conf *key) |
| { |
| struct hw_pairwise_ta_entry addr_entry; |
| struct hw_key_entry key_entry; |
| u32 mask; |
| u32 reg; |
| |
| if (crypto->cmd == SET_KEY) { |
| /* |
| * rt2x00lib can't determine the correct free |
| * key_idx for pairwise keys. We have 2 registers |
| * with key valid bits. The goal is simple, read |
| * the first register, if that is full move to |
| * the next register. |
| * When both registers are full, we drop the key, |
| * otherwise we use the first invalid entry. |
| */ |
| rt2x00usb_register_read(rt2x00dev, SEC_CSR2, ®); |
| if (reg && reg == ~0) { |
| key->hw_key_idx = 32; |
| rt2x00usb_register_read(rt2x00dev, SEC_CSR3, ®); |
| if (reg && reg == ~0) |
| return -ENOSPC; |
| } |
| |
| key->hw_key_idx += reg ? ffz(reg) : 0; |
| |
| /* |
| * Upload key to hardware |
| */ |
| memcpy(key_entry.key, crypto->key, |
| sizeof(key_entry.key)); |
| memcpy(key_entry.tx_mic, crypto->tx_mic, |
| sizeof(key_entry.tx_mic)); |
| memcpy(key_entry.rx_mic, crypto->rx_mic, |
| sizeof(key_entry.rx_mic)); |
| |
| reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx); |
| rt2x00usb_register_multiwrite(rt2x00dev, reg, |
| &key_entry, sizeof(key_entry)); |
| |
| /* |
| * Send the address and cipher type to the hardware register. |
| */ |
| memset(&addr_entry, 0, sizeof(addr_entry)); |
| memcpy(&addr_entry, crypto->address, ETH_ALEN); |
| addr_entry.cipher = crypto->cipher; |
| |
| reg = PAIRWISE_TA_ENTRY(key->hw_key_idx); |
| rt2x00usb_register_multiwrite(rt2x00dev, reg, |
| &addr_entry, sizeof(addr_entry)); |
| |
| /* |
| * Enable pairwise lookup table for given BSS idx, |
| * without this received frames will not be decrypted |
| * by the hardware. |
| */ |
| rt2x00usb_register_read(rt2x00dev, SEC_CSR4, ®); |
| reg |= (1 << crypto->bssidx); |
| rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg); |
| |
| /* |
| * The driver does not support the IV/EIV generation |
| * in hardware. However it doesn't support the IV/EIV |
| * inside the ieee80211 frame either, but requires it |
| * to be provided separately for the descriptor. |
| * rt2x00lib will cut the IV/EIV data out of all frames |
| * given to us by mac80211, but we must tell mac80211 |
| * to generate the IV/EIV data. |
| */ |
| key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; |
| } |
| |
| /* |
| * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate |
| * a particular key is valid. Because using the FIELD32() |
| * defines directly will cause a lot of overhead we use |
| * a calculation to determine the correct bit directly. |
| */ |
| if (key->hw_key_idx < 32) { |
| mask = 1 << key->hw_key_idx; |
| |
| rt2x00usb_register_read(rt2x00dev, SEC_CSR2, ®); |
| if (crypto->cmd == SET_KEY) |
| reg |= mask; |
| else if (crypto->cmd == DISABLE_KEY) |
| reg &= ~mask; |
| rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg); |
| } else { |
| mask = 1 << (key->hw_key_idx - 32); |
| |
| rt2x00usb_register_read(rt2x00dev, SEC_CSR3, ®); |
| if (crypto->cmd == SET_KEY) |
| reg |= mask; |
| else if (crypto->cmd == DISABLE_KEY) |
| reg &= ~mask; |
| rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg); |
| } |
| |
| return 0; |
| } |
| |
| static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev, |
| const unsigned int filter_flags) |
| { |
| u32 reg; |
| |
| /* |
| * Start configuration steps. |
| * Note that the version error will always be dropped |
| * and broadcast frames will always be accepted since |
| * there is no filter for it at this time. |
| */ |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC, |
| !(filter_flags & FIF_FCSFAIL)); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, |
| !(filter_flags & FIF_PLCPFAIL)); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, |
| !(filter_flags & (FIF_CONTROL | FIF_PSPOLL))); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME, |
| !(filter_flags & FIF_PROMISC_IN_BSS)); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, |
| !(filter_flags & FIF_PROMISC_IN_BSS) && |
| !rt2x00dev->intf_ap_count); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST, |
| !(filter_flags & FIF_ALLMULTI)); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0); |
| rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, |
| !(filter_flags & FIF_CONTROL)); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); |
| } |
| |
| static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00_intf *intf, |
| struct rt2x00intf_conf *conf, |
| const unsigned int flags) |
| { |
| u32 reg; |
| |
| if (flags & CONFIG_UPDATE_TYPE) { |
| /* |
| * Enable synchronisation. |
| */ |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); |
| rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); |
| } |
| |
| if (flags & CONFIG_UPDATE_MAC) { |
| reg = le32_to_cpu(conf->mac[1]); |
| rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff); |
| conf->mac[1] = cpu_to_le32(reg); |
| |
| rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2, |
| conf->mac, sizeof(conf->mac)); |
| } |
| |
| if (flags & CONFIG_UPDATE_BSSID) { |
| reg = le32_to_cpu(conf->bssid[1]); |
| rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3); |
| conf->bssid[1] = cpu_to_le32(reg); |
| |
| rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4, |
| conf->bssid, sizeof(conf->bssid)); |
| } |
| } |
| |
| static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_erp *erp, |
| u32 changed) |
| { |
| u32 reg; |
| |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); |
| rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32); |
| rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); |
| |
| if (changed & BSS_CHANGED_ERP_PREAMBLE) { |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, ®); |
| rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1); |
| rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, |
| !!erp->short_preamble); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg); |
| } |
| |
| if (changed & BSS_CHANGED_BASIC_RATES) |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR5, |
| erp->basic_rates); |
| |
| if (changed & BSS_CHANGED_BEACON_INT) { |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); |
| rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, |
| erp->beacon_int * 16); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); |
| } |
| |
| if (changed & BSS_CHANGED_ERP_SLOT) { |
| rt2x00usb_register_read(rt2x00dev, MAC_CSR9, ®); |
| rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time); |
| rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg); |
| |
| rt2x00usb_register_read(rt2x00dev, MAC_CSR8, ®); |
| rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs); |
| rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3); |
| rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs); |
| rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg); |
| } |
| } |
| |
| static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev, |
| struct antenna_setup *ant) |
| { |
| u8 r3; |
| u8 r4; |
| u8 r77; |
| u8 temp; |
| |
| rt73usb_bbp_read(rt2x00dev, 3, &r3); |
| rt73usb_bbp_read(rt2x00dev, 4, &r4); |
| rt73usb_bbp_read(rt2x00dev, 77, &r77); |
| |
| rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); |
| |
| /* |
| * Configure the RX antenna. |
| */ |
| switch (ant->rx) { |
| case ANTENNA_HW_DIVERSITY: |
| rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); |
| temp = !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags) |
| && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ); |
| rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp); |
| break; |
| case ANTENNA_A: |
| rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); |
| rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); |
| if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) |
| rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); |
| else |
| rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); |
| break; |
| case ANTENNA_B: |
| default: |
| rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); |
| rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); |
| if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) |
| rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); |
| else |
| rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); |
| break; |
| } |
| |
| rt73usb_bbp_write(rt2x00dev, 77, r77); |
| rt73usb_bbp_write(rt2x00dev, 3, r3); |
| rt73usb_bbp_write(rt2x00dev, 4, r4); |
| } |
| |
| static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev, |
| struct antenna_setup *ant) |
| { |
| u8 r3; |
| u8 r4; |
| u8 r77; |
| |
| rt73usb_bbp_read(rt2x00dev, 3, &r3); |
| rt73usb_bbp_read(rt2x00dev, 4, &r4); |
| rt73usb_bbp_read(rt2x00dev, 77, &r77); |
| |
| rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); |
| rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, |
| !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags)); |
| |
| /* |
| * Configure the RX antenna. |
| */ |
| switch (ant->rx) { |
| case ANTENNA_HW_DIVERSITY: |
| rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); |
| break; |
| case ANTENNA_A: |
| rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); |
| rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); |
| break; |
| case ANTENNA_B: |
| default: |
| rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); |
| rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); |
| break; |
| } |
| |
| rt73usb_bbp_write(rt2x00dev, 77, r77); |
| rt73usb_bbp_write(rt2x00dev, 3, r3); |
| rt73usb_bbp_write(rt2x00dev, 4, r4); |
| } |
| |
| struct antenna_sel { |
| u8 word; |
| /* |
| * value[0] -> non-LNA |
| * value[1] -> LNA |
| */ |
| u8 value[2]; |
| }; |
| |
| static const struct antenna_sel antenna_sel_a[] = { |
| { 96, { 0x58, 0x78 } }, |
| { 104, { 0x38, 0x48 } }, |
| { 75, { 0xfe, 0x80 } }, |
| { 86, { 0xfe, 0x80 } }, |
| { 88, { 0xfe, 0x80 } }, |
| { 35, { 0x60, 0x60 } }, |
| { 97, { 0x58, 0x58 } }, |
| { 98, { 0x58, 0x58 } }, |
| }; |
| |
| static const struct antenna_sel antenna_sel_bg[] = { |
| { 96, { 0x48, 0x68 } }, |
| { 104, { 0x2c, 0x3c } }, |
| { 75, { 0xfe, 0x80 } }, |
| { 86, { 0xfe, 0x80 } }, |
| { 88, { 0xfe, 0x80 } }, |
| { 35, { 0x50, 0x50 } }, |
| { 97, { 0x48, 0x48 } }, |
| { 98, { 0x48, 0x48 } }, |
| }; |
| |
| static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev, |
| struct antenna_setup *ant) |
| { |
| const struct antenna_sel *sel; |
| unsigned int lna; |
| unsigned int i; |
| u32 reg; |
| |
| /* |
| * We should never come here because rt2x00lib is supposed |
| * to catch this and send us the correct antenna explicitely. |
| */ |
| BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || |
| ant->tx == ANTENNA_SW_DIVERSITY); |
| |
| if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { |
| sel = antenna_sel_a; |
| lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); |
| } else { |
| sel = antenna_sel_bg; |
| lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++) |
| rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]); |
| |
| rt2x00usb_register_read(rt2x00dev, PHY_CSR0, ®); |
| |
| rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, |
| (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ)); |
| rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, |
| (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)); |
| |
| rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg); |
| |
| if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225)) |
| rt73usb_config_antenna_5x(rt2x00dev, ant); |
| else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527)) |
| rt73usb_config_antenna_2x(rt2x00dev, ant); |
| } |
| |
| static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf) |
| { |
| u16 eeprom; |
| short lna_gain = 0; |
| |
| if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) { |
| if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) |
| lna_gain += 14; |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom); |
| lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1); |
| } else { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom); |
| lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1); |
| } |
| |
| rt2x00dev->lna_gain = lna_gain; |
| } |
| |
| static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev, |
| struct rf_channel *rf, const int txpower) |
| { |
| u8 r3; |
| u8 r94; |
| u8 smart; |
| |
| rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); |
| rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); |
| |
| smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)); |
| |
| rt73usb_bbp_read(rt2x00dev, 3, &r3); |
| rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart); |
| rt73usb_bbp_write(rt2x00dev, 3, r3); |
| |
| r94 = 6; |
| if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94)) |
| r94 += txpower - MAX_TXPOWER; |
| else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94)) |
| r94 += txpower; |
| rt73usb_bbp_write(rt2x00dev, 94, r94); |
| |
| rt73usb_rf_write(rt2x00dev, 1, rf->rf1); |
| rt73usb_rf_write(rt2x00dev, 2, rf->rf2); |
| rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); |
| rt73usb_rf_write(rt2x00dev, 4, rf->rf4); |
| |
| rt73usb_rf_write(rt2x00dev, 1, rf->rf1); |
| rt73usb_rf_write(rt2x00dev, 2, rf->rf2); |
| rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); |
| rt73usb_rf_write(rt2x00dev, 4, rf->rf4); |
| |
| rt73usb_rf_write(rt2x00dev, 1, rf->rf1); |
| rt73usb_rf_write(rt2x00dev, 2, rf->rf2); |
| rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); |
| rt73usb_rf_write(rt2x00dev, 4, rf->rf4); |
| |
| udelay(10); |
| } |
| |
| static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev, |
| const int txpower) |
| { |
| struct rf_channel rf; |
| |
| rt2x00_rf_read(rt2x00dev, 1, &rf.rf1); |
| rt2x00_rf_read(rt2x00dev, 2, &rf.rf2); |
| rt2x00_rf_read(rt2x00dev, 3, &rf.rf3); |
| rt2x00_rf_read(rt2x00dev, 4, &rf.rf4); |
| |
| rt73usb_config_channel(rt2x00dev, &rf, txpower); |
| } |
| |
| static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf) |
| { |
| u32 reg; |
| |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, ®); |
| rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1); |
| rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_STEP, 0); |
| rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0); |
| rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, |
| libconf->conf->long_frame_max_tx_count); |
| rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, |
| libconf->conf->short_frame_max_tx_count); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg); |
| } |
| |
| static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf) |
| { |
| enum dev_state state = |
| (libconf->conf->flags & IEEE80211_CONF_PS) ? |
| STATE_SLEEP : STATE_AWAKE; |
| u32 reg; |
| |
| if (state == STATE_SLEEP) { |
| rt2x00usb_register_read(rt2x00dev, MAC_CSR11, ®); |
| rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, |
| rt2x00dev->beacon_int - 10); |
| rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, |
| libconf->conf->listen_interval - 1); |
| rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5); |
| |
| /* We must first disable autowake before it can be enabled */ |
| rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); |
| rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); |
| |
| rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1); |
| rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); |
| |
| rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, |
| USB_MODE_SLEEP, REGISTER_TIMEOUT); |
| } else { |
| rt2x00usb_register_read(rt2x00dev, MAC_CSR11, ®); |
| rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0); |
| rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0); |
| rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); |
| rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0); |
| rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); |
| |
| rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, |
| USB_MODE_WAKEUP, REGISTER_TIMEOUT); |
| } |
| } |
| |
| static void rt73usb_config(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf, |
| const unsigned int flags) |
| { |
| /* Always recalculate LNA gain before changing configuration */ |
| rt73usb_config_lna_gain(rt2x00dev, libconf); |
| |
| if (flags & IEEE80211_CONF_CHANGE_CHANNEL) |
| rt73usb_config_channel(rt2x00dev, &libconf->rf, |
| libconf->conf->power_level); |
| if ((flags & IEEE80211_CONF_CHANGE_POWER) && |
| !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) |
| rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level); |
| if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) |
| rt73usb_config_retry_limit(rt2x00dev, libconf); |
| if (flags & IEEE80211_CONF_CHANGE_PS) |
| rt73usb_config_ps(rt2x00dev, libconf); |
| } |
| |
| /* |
| * Link tuning |
| */ |
| static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual) |
| { |
| u32 reg; |
| |
| /* |
| * Update FCS error count from register. |
| */ |
| rt2x00usb_register_read(rt2x00dev, STA_CSR0, ®); |
| qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR); |
| |
| /* |
| * Update False CCA count from register. |
| */ |
| rt2x00usb_register_read(rt2x00dev, STA_CSR1, ®); |
| qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR); |
| } |
| |
| static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual, u8 vgc_level) |
| { |
| if (qual->vgc_level != vgc_level) { |
| rt73usb_bbp_write(rt2x00dev, 17, vgc_level); |
| qual->vgc_level = vgc_level; |
| qual->vgc_level_reg = vgc_level; |
| } |
| } |
| |
| static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual) |
| { |
| rt73usb_set_vgc(rt2x00dev, qual, 0x20); |
| } |
| |
| static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual, const u32 count) |
| { |
| u8 up_bound; |
| u8 low_bound; |
| |
| /* |
| * Determine r17 bounds. |
| */ |
| if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { |
| low_bound = 0x28; |
| up_bound = 0x48; |
| |
| if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) { |
| low_bound += 0x10; |
| up_bound += 0x10; |
| } |
| } else { |
| if (qual->rssi > -82) { |
| low_bound = 0x1c; |
| up_bound = 0x40; |
| } else if (qual->rssi > -84) { |
| low_bound = 0x1c; |
| up_bound = 0x20; |
| } else { |
| low_bound = 0x1c; |
| up_bound = 0x1c; |
| } |
| |
| if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) { |
| low_bound += 0x14; |
| up_bound += 0x10; |
| } |
| } |
| |
| /* |
| * If we are not associated, we should go straight to the |
| * dynamic CCA tuning. |
| */ |
| if (!rt2x00dev->intf_associated) |
| goto dynamic_cca_tune; |
| |
| /* |
| * Special big-R17 for very short distance |
| */ |
| if (qual->rssi > -35) { |
| rt73usb_set_vgc(rt2x00dev, qual, 0x60); |
| return; |
| } |
| |
| /* |
| * Special big-R17 for short distance |
| */ |
| if (qual->rssi >= -58) { |
| rt73usb_set_vgc(rt2x00dev, qual, up_bound); |
| return; |
| } |
| |
| /* |
| * Special big-R17 for middle-short distance |
| */ |
| if (qual->rssi >= -66) { |
| rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10); |
| return; |
| } |
| |
| /* |
| * Special mid-R17 for middle distance |
| */ |
| if (qual->rssi >= -74) { |
| rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08); |
| return; |
| } |
| |
| /* |
| * Special case: Change up_bound based on the rssi. |
| * Lower up_bound when rssi is weaker then -74 dBm. |
| */ |
| up_bound -= 2 * (-74 - qual->rssi); |
| if (low_bound > up_bound) |
| up_bound = low_bound; |
| |
| if (qual->vgc_level > up_bound) { |
| rt73usb_set_vgc(rt2x00dev, qual, up_bound); |
| return; |
| } |
| |
| dynamic_cca_tune: |
| |
| /* |
| * r17 does not yet exceed upper limit, continue and base |
| * the r17 tuning on the false CCA count. |
| */ |
| if ((qual->false_cca > 512) && (qual->vgc_level < up_bound)) |
| rt73usb_set_vgc(rt2x00dev, qual, |
| min_t(u8, qual->vgc_level + 4, up_bound)); |
| else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound)) |
| rt73usb_set_vgc(rt2x00dev, qual, |
| max_t(u8, qual->vgc_level - 4, low_bound)); |
| } |
| |
| /* |
| * Queue handlers. |
| */ |
| static void rt73usb_start_queue(struct data_queue *queue) |
| { |
| struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| u32 reg; |
| |
| switch (queue->qid) { |
| case QID_RX: |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); |
| rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); |
| break; |
| case QID_BEACON: |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); |
| rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); |
| rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); |
| rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void rt73usb_stop_queue(struct data_queue *queue) |
| { |
| struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| u32 reg; |
| |
| switch (queue->qid) { |
| case QID_RX: |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); |
| rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 1); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); |
| break; |
| case QID_BEACON: |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); |
| rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); |
| rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); |
| rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* |
| * Firmware functions |
| */ |
| static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev) |
| { |
| return FIRMWARE_RT2571; |
| } |
| |
| static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev, |
| const u8 *data, const size_t len) |
| { |
| u16 fw_crc; |
| u16 crc; |
| |
| /* |
| * Only support 2kb firmware files. |
| */ |
| if (len != 2048) |
| return FW_BAD_LENGTH; |
| |
| /* |
| * The last 2 bytes in the firmware array are the crc checksum itself, |
| * this means that we should never pass those 2 bytes to the crc |
| * algorithm. |
| */ |
| fw_crc = (data[len - 2] << 8 | data[len - 1]); |
| |
| /* |
| * Use the crc itu-t algorithm. |
| */ |
| crc = crc_itu_t(0, data, len - 2); |
| crc = crc_itu_t_byte(crc, 0); |
| crc = crc_itu_t_byte(crc, 0); |
| |
| return (fw_crc == crc) ? FW_OK : FW_BAD_CRC; |
| } |
| |
| static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev, |
| const u8 *data, const size_t len) |
| { |
| unsigned int i; |
| int status; |
| u32 reg; |
| |
| /* |
| * Wait for stable hardware. |
| */ |
| for (i = 0; i < 100; i++) { |
| rt2x00usb_register_read(rt2x00dev, MAC_CSR0, ®); |
| if (reg) |
| break; |
| msleep(1); |
| } |
| |
| if (!reg) { |
| ERROR(rt2x00dev, "Unstable hardware.\n"); |
| return -EBUSY; |
| } |
| |
| /* |
| * Write firmware to device. |
| */ |
| rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len); |
| |
| /* |
| * Send firmware request to device to load firmware, |
| * we need to specify a long timeout time. |
| */ |
| status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, |
| 0, USB_MODE_FIRMWARE, |
| REGISTER_TIMEOUT_FIRMWARE); |
| if (status < 0) { |
| ERROR(rt2x00dev, "Failed to write Firmware to device.\n"); |
| return status; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Initialization functions. |
| */ |
| static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); |
| rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1); |
| rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); |
| rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); |
| |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, ®); |
| rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */ |
| rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1); |
| rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */ |
| rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1); |
| rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */ |
| rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1); |
| rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */ |
| rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg); |
| |
| /* |
| * CCK TXD BBP registers |
| */ |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, ®); |
| rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13); |
| rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1); |
| rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12); |
| rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1); |
| rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11); |
| rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1); |
| rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10); |
| rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg); |
| |
| /* |
| * OFDM TXD BBP registers |
| */ |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, ®); |
| rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7); |
| rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1); |
| rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6); |
| rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1); |
| rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5); |
| rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg); |
| |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, ®); |
| rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59); |
| rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53); |
| rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49); |
| rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg); |
| |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, ®); |
| rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44); |
| rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42); |
| rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42); |
| rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg); |
| |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); |
| rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0); |
| rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); |
| rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0); |
| rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); |
| rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); |
| rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); |
| |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f); |
| |
| rt2x00usb_register_read(rt2x00dev, MAC_CSR6, ®); |
| rt2x00_set_field32(®, MAC_CSR6_MAX_FRAME_UNIT, 0xfff); |
| rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg); |
| |
| rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718); |
| |
| if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) |
| return -EBUSY; |
| |
| rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00); |
| |
| /* |
| * Invalidate all Shared Keys (SEC_CSR0), |
| * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5) |
| */ |
| rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000); |
| rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000); |
| rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000); |
| |
| reg = 0x000023b0; |
| if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)) |
| rt2x00_set_field32(®, PHY_CSR1_RF_RPI, 1); |
| rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg); |
| |
| rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06); |
| rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606); |
| rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408); |
| |
| rt2x00usb_register_read(rt2x00dev, MAC_CSR9, ®); |
| rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0); |
| rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg); |
| |
| /* |
| * Clear all beacons |
| * For the Beacon base registers we only need to clear |
| * the first byte since that byte contains the VALID and OWNER |
| * bits which (when set to 0) will invalidate the entire beacon. |
| */ |
| rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0); |
| rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0); |
| rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0); |
| rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0); |
| |
| /* |
| * We must clear the error counters. |
| * These registers are cleared on read, |
| * so we may pass a useless variable to store the value. |
| */ |
| rt2x00usb_register_read(rt2x00dev, STA_CSR0, ®); |
| rt2x00usb_register_read(rt2x00dev, STA_CSR1, ®); |
| rt2x00usb_register_read(rt2x00dev, STA_CSR2, ®); |
| |
| /* |
| * Reset MAC and BBP registers. |
| */ |
| rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®); |
| rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); |
| rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); |
| rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); |
| |
| rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®); |
| rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); |
| rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); |
| rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); |
| |
| rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®); |
| rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); |
| rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); |
| |
| return 0; |
| } |
| |
| static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u8 value; |
| |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt73usb_bbp_read(rt2x00dev, 0, &value); |
| if ((value != 0xff) && (value != 0x00)) |
| return 0; |
| udelay(REGISTER_BUSY_DELAY); |
| } |
| |
| ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); |
| return -EACCES; |
| } |
| |
| static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u16 eeprom; |
| u8 reg_id; |
| u8 value; |
| |
| if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev))) |
| return -EACCES; |
| |
| rt73usb_bbp_write(rt2x00dev, 3, 0x80); |
| rt73usb_bbp_write(rt2x00dev, 15, 0x30); |
| rt73usb_bbp_write(rt2x00dev, 21, 0xc8); |
| rt73usb_bbp_write(rt2x00dev, 22, 0x38); |
| rt73usb_bbp_write(rt2x00dev, 23, 0x06); |
| rt73usb_bbp_write(rt2x00dev, 24, 0xfe); |
| rt73usb_bbp_write(rt2x00dev, 25, 0x0a); |
| rt73usb_bbp_write(rt2x00dev, 26, 0x0d); |
| rt73usb_bbp_write(rt2x00dev, 32, 0x0b); |
| rt73usb_bbp_write(rt2x00dev, 34, 0x12); |
| rt73usb_bbp_write(rt2x00dev, 37, 0x07); |
| rt73usb_bbp_write(rt2x00dev, 39, 0xf8); |
| rt73usb_bbp_write(rt2x00dev, 41, 0x60); |
| rt73usb_bbp_write(rt2x00dev, 53, 0x10); |
| rt73usb_bbp_write(rt2x00dev, 54, 0x18); |
| rt73usb_bbp_write(rt2x00dev, 60, 0x10); |
| rt73usb_bbp_write(rt2x00dev, 61, 0x04); |
| rt73usb_bbp_write(rt2x00dev, 62, 0x04); |
| rt73usb_bbp_write(rt2x00dev, 75, 0xfe); |
| rt73usb_bbp_write(rt2x00dev, 86, 0xfe); |
| rt73usb_bbp_write(rt2x00dev, 88, 0xfe); |
| rt73usb_bbp_write(rt2x00dev, 90, 0x0f); |
| rt73usb_bbp_write(rt2x00dev, 99, 0x00); |
| rt73usb_bbp_write(rt2x00dev, 102, 0x16); |
| rt73usb_bbp_write(rt2x00dev, 107, 0x04); |
| |
| for (i = 0; i < EEPROM_BBP_SIZE; i++) { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); |
| |
| if (eeprom != 0xffff && eeprom != 0x0000) { |
| reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); |
| value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); |
| rt73usb_bbp_write(rt2x00dev, reg_id, value); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Device state switch handlers. |
| */ |
| static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| /* |
| * Initialize all registers. |
| */ |
| if (unlikely(rt73usb_init_registers(rt2x00dev) || |
| rt73usb_init_bbp(rt2x00dev))) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818); |
| |
| /* |
| * Disable synchronisation. |
| */ |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0); |
| |
| rt2x00usb_disable_radio(rt2x00dev); |
| } |
| |
| static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) |
| { |
| u32 reg, reg2; |
| unsigned int i; |
| char put_to_sleep; |
| |
| put_to_sleep = (state != STATE_AWAKE); |
| |
| rt2x00usb_register_read(rt2x00dev, MAC_CSR12, ®); |
| rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep); |
| rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep); |
| rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg); |
| |
| /* |
| * Device is not guaranteed to be in the requested state yet. |
| * We must wait until the register indicates that the |
| * device has entered the correct state. |
| */ |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2x00usb_register_read(rt2x00dev, MAC_CSR12, ®2); |
| state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE); |
| if (state == !put_to_sleep) |
| return 0; |
| rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg); |
| msleep(10); |
| } |
| |
| return -EBUSY; |
| } |
| |
| static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| int retval = 0; |
| |
| switch (state) { |
| case STATE_RADIO_ON: |
| retval = rt73usb_enable_radio(rt2x00dev); |
| break; |
| case STATE_RADIO_OFF: |
| rt73usb_disable_radio(rt2x00dev); |
| break; |
| case STATE_RADIO_IRQ_ON: |
| case STATE_RADIO_IRQ_OFF: |
| /* No support, but no error either */ |
| break; |
| case STATE_DEEP_SLEEP: |
| case STATE_SLEEP: |
| case STATE_STANDBY: |
| case STATE_AWAKE: |
| retval = rt73usb_set_state(rt2x00dev, state); |
| break; |
| default: |
| retval = -ENOTSUPP; |
| break; |
| } |
| |
| if (unlikely(retval)) |
| ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n", |
| state, retval); |
| |
| return retval; |
| } |
| |
| /* |
| * TX descriptor initialization |
| */ |
| static void rt73usb_write_tx_desc(struct queue_entry *entry, |
| struct txentry_desc *txdesc) |
| { |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| __le32 *txd = (__le32 *) entry->skb->data; |
| u32 word; |
| |
| /* |
| * Start writing the descriptor words. |
| */ |
| rt2x00_desc_read(txd, 0, &word); |
| rt2x00_set_field32(&word, TXD_W0_BURST, |
| test_bit(ENTRY_TXD_BURST, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_VALID, 1); |
| rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, |
| test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_ACK, |
| test_bit(ENTRY_TXD_ACK, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, |
| test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_OFDM, |
| (txdesc->rate_mode == RATE_MODE_OFDM)); |
| rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); |
| rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, |
| test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, |
| test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_KEY_TABLE, |
| test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx); |
| rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); |
| rt2x00_set_field32(&word, TXD_W0_BURST2, |
| test_bit(ENTRY_TXD_BURST, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher); |
| rt2x00_desc_write(txd, 0, word); |
| |
| rt2x00_desc_read(txd, 1, &word); |
| rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid); |
| rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs); |
| rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); |
| rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); |
| rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); |
| rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, |
| test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); |
| rt2x00_desc_write(txd, 1, word); |
| |
| rt2x00_desc_read(txd, 2, &word); |
| rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); |
| rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); |
| rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, |
| txdesc->u.plcp.length_low); |
| rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, |
| txdesc->u.plcp.length_high); |
| rt2x00_desc_write(txd, 2, word); |
| |
| if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { |
| _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); |
| _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); |
| } |
| |
| rt2x00_desc_read(txd, 5, &word); |
| rt2x00_set_field32(&word, TXD_W5_TX_POWER, |
| TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power)); |
| rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1); |
| rt2x00_desc_write(txd, 5, word); |
| |
| /* |
| * Register descriptor details in skb frame descriptor. |
| */ |
| skbdesc->flags |= SKBDESC_DESC_IN_SKB; |
| skbdesc->desc = txd; |
| skbdesc->desc_len = TXD_DESC_SIZE; |
| } |
| |
| /* |
| * TX data initialization |
| */ |
| static void rt73usb_write_beacon(struct queue_entry *entry, |
| struct txentry_desc *txdesc) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| unsigned int beacon_base; |
| unsigned int padding_len; |
| u32 orig_reg, reg; |
| |
| /* |
| * Disable beaconing while we are reloading the beacon data, |
| * otherwise we might be sending out invalid data. |
| */ |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); |
| orig_reg = reg; |
| rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); |
| |
| /* |
| * Add space for the descriptor in front of the skb. |
| */ |
| skb_push(entry->skb, TXD_DESC_SIZE); |
| memset(entry->skb->data, 0, TXD_DESC_SIZE); |
| |
| /* |
| * Write the TX descriptor for the beacon. |
| */ |
| rt73usb_write_tx_desc(entry, txdesc); |
| |
| /* |
| * Dump beacon to userspace through debugfs. |
| */ |
| rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); |
| |
| /* |
| * Write entire beacon with descriptor and padding to register. |
| */ |
| padding_len = roundup(entry->skb->len, 4) - entry->skb->len; |
| if (padding_len && skb_pad(entry->skb, padding_len)) { |
| ERROR(rt2x00dev, "Failure padding beacon, aborting\n"); |
| /* skb freed by skb_pad() on failure */ |
| entry->skb = NULL; |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg); |
| return; |
| } |
| |
| beacon_base = HW_BEACON_OFFSET(entry->entry_idx); |
| rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data, |
| entry->skb->len + padding_len); |
| |
| /* |
| * Enable beaconing again. |
| * |
| * For Wi-Fi faily generated beacons between participating stations. |
| * Set TBTT phase adaptive adjustment step to 8us (default 16us) |
| */ |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008); |
| |
| rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); |
| |
| /* |
| * Clean up the beacon skb. |
| */ |
| dev_kfree_skb(entry->skb); |
| entry->skb = NULL; |
| } |
| |
| static void rt73usb_clear_beacon(struct queue_entry *entry) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| unsigned int beacon_base; |
| u32 reg; |
| |
| /* |
| * Disable beaconing while we are reloading the beacon data, |
| * otherwise we might be sending out invalid data. |
| */ |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); |
| rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); |
| |
| /* |
| * Clear beacon. |
| */ |
| beacon_base = HW_BEACON_OFFSET(entry->entry_idx); |
| rt2x00usb_register_write(rt2x00dev, beacon_base, 0); |
| |
| /* |
| * Enable beaconing again. |
| */ |
| rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); |
| rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); |
| } |
| |
| static int rt73usb_get_tx_data_len(struct queue_entry *entry) |
| { |
| int length; |
| |
| /* |
| * The length _must_ be a multiple of 4, |
| * but it must _not_ be a multiple of the USB packet size. |
| */ |
| length = roundup(entry->skb->len, 4); |
| length += (4 * !(length % entry->queue->usb_maxpacket)); |
| |
| return length; |
| } |
| |
| /* |
| * RX control handlers |
| */ |
| static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1) |
| { |
| u8 offset = rt2x00dev->lna_gain; |
| u8 lna; |
| |
| lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA); |
| switch (lna) { |
| case 3: |
| offset += 90; |
| break; |
| case 2: |
| offset += 74; |
| break; |
| case 1: |
| offset += 64; |
| break; |
| default: |
| return 0; |
| } |
| |
| if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { |
| if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) { |
| if (lna == 3 || lna == 2) |
| offset += 10; |
| } else { |
| if (lna == 3) |
| offset += 6; |
| else if (lna == 2) |
| offset += 8; |
| } |
| } |
| |
| return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset; |
| } |
| |
| static void rt73usb_fill_rxdone(struct queue_entry *entry, |
| struct rxdone_entry_desc *rxdesc) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| __le32 *rxd = (__le32 *)entry->skb->data; |
| u32 word0; |
| u32 word1; |
| |
| /* |
| * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of |
| * frame data in rt2x00usb. |
| */ |
| memcpy(skbdesc->desc, rxd, skbdesc->desc_len); |
| rxd = (__le32 *)skbdesc->desc; |
| |
| /* |
| * It is now safe to read the descriptor on all architectures. |
| */ |
| rt2x00_desc_read(rxd, 0, &word0); |
| rt2x00_desc_read(rxd, 1, &word1); |
| |
| if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) |
| rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; |
| |
| rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG); |
| rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR); |
| |
| if (rxdesc->cipher != CIPHER_NONE) { |
| _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]); |
| _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]); |
| rxdesc->dev_flags |= RXDONE_CRYPTO_IV; |
| |
| _rt2x00_desc_read(rxd, 4, &rxdesc->icv); |
| rxdesc->dev_flags |= RXDONE_CRYPTO_ICV; |
| |
| /* |
| * Hardware has stripped IV/EIV data from 802.11 frame during |
| * decryption. It has provided the data separately but rt2x00lib |
| * should decide if it should be reinserted. |
| */ |
| rxdesc->flags |= RX_FLAG_IV_STRIPPED; |
| |
| /* |
| * The hardware has already checked the Michael Mic and has |
| * stripped it from the frame. Signal this to mac80211. |
| */ |
| rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; |
| |
| if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) |
| rxdesc->flags |= RX_FLAG_DECRYPTED; |
| else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) |
| rxdesc->flags |= RX_FLAG_MMIC_ERROR; |
| } |
| |
| /* |
| * Obtain the status about this packet. |
| * When frame was received with an OFDM bitrate, |
| * the signal is the PLCP value. If it was received with |
| * a CCK bitrate the signal is the rate in 100kbit/s. |
| */ |
| rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); |
| rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1); |
| rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); |
| |
| if (rt2x00_get_field32(word0, RXD_W0_OFDM)) |
| rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; |
| else |
| rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; |
| if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) |
| rxdesc->dev_flags |= RXDONE_MY_BSS; |
| |
| /* |
| * Set skb pointers, and update frame information. |
| */ |
| skb_pull(entry->skb, entry->queue->desc_size); |
| skb_trim(entry->skb, rxdesc->size); |
| } |
| |
| /* |
| * Device probe functions. |
| */ |
| static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev) |
| { |
| u16 word; |
| u8 *mac; |
| s8 value; |
| |
| rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE); |
| |
| /* |
| * Start validation of the data that has been read. |
| */ |
| mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); |
| if (!is_valid_ether_addr(mac)) { |
| eth_random_addr(mac); |
| EEPROM(rt2x00dev, "MAC: %pM\n", mac); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, |
| ANTENNA_B); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, |
| ANTENNA_B); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); |
| EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); |
| EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0); |
| rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0); |
| rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0); |
| rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0); |
| rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0); |
| rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0); |
| rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0); |
| rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0); |
| rt2x00_set_field16(&word, EEPROM_LED_LED_MODE, |
| LED_MODE_DEFAULT); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word); |
| EEPROM(rt2x00dev, "Led: 0x%04x\n", word); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); |
| rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); |
| EEPROM(rt2x00dev, "Freq: 0x%04x\n", word); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); |
| rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); |
| EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); |
| } else { |
| value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1); |
| if (value < -10 || value > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); |
| value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2); |
| if (value < -10 || value > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); |
| rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); |
| EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word); |
| } else { |
| value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1); |
| if (value < -10 || value > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); |
| value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2); |
| if (value < -10 || value > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); |
| } |
| |
| return 0; |
| } |
| |
| static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| u16 value; |
| u16 eeprom; |
| |
| /* |
| * Read EEPROM word for configuration. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); |
| |
| /* |
| * Identify RF chipset. |
| */ |
| value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); |
| rt2x00usb_register_read(rt2x00dev, MAC_CSR0, ®); |
| rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET), |
| value, rt2x00_get_field32(reg, MAC_CSR0_REVISION)); |
| |
| if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) { |
| ERROR(rt2x00dev, "Invalid RT chipset detected.\n"); |
| return -ENODEV; |
| } |
| |
| if (!rt2x00_rf(rt2x00dev, RF5226) && |
| !rt2x00_rf(rt2x00dev, RF2528) && |
| !rt2x00_rf(rt2x00dev, RF5225) && |
| !rt2x00_rf(rt2x00dev, RF2527)) { |
| ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * Identify default antenna configuration. |
| */ |
| rt2x00dev->default_ant.tx = |
| rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); |
| rt2x00dev->default_ant.rx = |
| rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); |
| |
| /* |
| * Read the Frame type. |
| */ |
| if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE)) |
| __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags); |
| |
| /* |
| * Detect if this device has an hardware controlled radio. |
| */ |
| if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) |
| __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); |
| |
| /* |
| * Read frequency offset. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); |
| rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); |
| |
| /* |
| * Read external LNA informations. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); |
| |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) { |
| __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); |
| __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); |
| } |
| |
| /* |
| * Store led settings, for correct led behaviour. |
| */ |
| #ifdef CONFIG_RT2X00_LIB_LEDS |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom); |
| |
| rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); |
| rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); |
| if (value == LED_MODE_SIGNAL_STRENGTH) |
| rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual, |
| LED_TYPE_QUALITY); |
| |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value); |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0, |
| rt2x00_get_field16(eeprom, |
| EEPROM_LED_POLARITY_GPIO_0)); |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1, |
| rt2x00_get_field16(eeprom, |
| EEPROM_LED_POLARITY_GPIO_1)); |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2, |
| rt2x00_get_field16(eeprom, |
| EEPROM_LED_POLARITY_GPIO_2)); |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3, |
| rt2x00_get_field16(eeprom, |
| EEPROM_LED_POLARITY_GPIO_3)); |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4, |
| rt2x00_get_field16(eeprom, |
| EEPROM_LED_POLARITY_GPIO_4)); |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT, |
| rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT)); |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG, |
| rt2x00_get_field16(eeprom, |
| EEPROM_LED_POLARITY_RDY_G)); |
| rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A, |
| rt2x00_get_field16(eeprom, |
| EEPROM_LED_POLARITY_RDY_A)); |
| #endif /* CONFIG_RT2X00_LIB_LEDS */ |
| |
| return 0; |
| } |
| |
| /* |
| * RF value list for RF2528 |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_bg_2528[] = { |
| { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b }, |
| { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f }, |
| { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b }, |
| { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f }, |
| { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b }, |
| { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f }, |
| { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b }, |
| { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f }, |
| { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b }, |
| { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f }, |
| { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b }, |
| { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f }, |
| { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b }, |
| { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 }, |
| }; |
| |
| /* |
| * RF value list for RF5226 |
| * Supports: 2.4 GHz & 5.2 GHz |
| */ |
| static const struct rf_channel rf_vals_5226[] = { |
| { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b }, |
| { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f }, |
| { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b }, |
| { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f }, |
| { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b }, |
| { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f }, |
| { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b }, |
| { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f }, |
| { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b }, |
| { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f }, |
| { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b }, |
| { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f }, |
| { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b }, |
| { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 }, |
| |
| /* 802.11 UNI / HyperLan 2 */ |
| { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 }, |
| { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 }, |
| { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b }, |
| { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 }, |
| { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b }, |
| { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 }, |
| { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 }, |
| { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b }, |
| |
| /* 802.11 HyperLan 2 */ |
| { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 }, |
| { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b }, |
| { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 }, |
| { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b }, |
| { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 }, |
| { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 }, |
| { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b }, |
| { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 }, |
| { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b }, |
| { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 }, |
| |
| /* 802.11 UNII */ |
| { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 }, |
| { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f }, |
| { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 }, |
| { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 }, |
| { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f }, |
| { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 }, |
| |
| /* MMAC(Japan)J52 ch 34,38,42,46 */ |
| { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b }, |
| { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 }, |
| { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b }, |
| { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 }, |
| }; |
| |
| /* |
| * RF value list for RF5225 & RF2527 |
| * Supports: 2.4 GHz & 5.2 GHz |
| */ |
| static const struct rf_channel rf_vals_5225_2527[] = { |
| { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, |
| { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, |
| { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, |
| { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, |
| { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, |
| { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, |
| { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, |
| { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, |
| { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, |
| { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, |
| { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, |
| { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, |
| { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, |
| { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, |
| |
| /* 802.11 UNI / HyperLan 2 */ |
| { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 }, |
| { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 }, |
| { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b }, |
| { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 }, |
| { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b }, |
| { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 }, |
| { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 }, |
| { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b }, |
| |
| /* 802.11 HyperLan 2 */ |
| { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 }, |
| { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b }, |
| { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 }, |
| { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b }, |
| { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 }, |
| { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 }, |
| { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b }, |
| { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 }, |
| { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b }, |
| { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 }, |
| |
| /* 802.11 UNII */ |
| { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 }, |
| { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f }, |
| { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 }, |
| { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 }, |
| { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f }, |
| { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 }, |
| |
| /* MMAC(Japan)J52 ch 34,38,42,46 */ |
| { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b }, |
| { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 }, |
| { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b }, |
| { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 }, |
| }; |
| |
| |
| static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev) |
| { |
| struct hw_mode_spec *spec = &rt2x00dev->spec; |
| struct channel_info *info; |
| char *tx_power; |
| unsigned int i; |
| |
| /* |
| * Initialize all hw fields. |
| * |
| * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are |
| * capable of sending the buffered frames out after the DTIM |
| * transmission using rt2x00lib_beacondone. This will send out |
| * multicast and broadcast traffic immediately instead of buffering it |
| * infinitly and thus dropping it after some time. |
| */ |
| rt2x00dev->hw->flags = |
| IEEE80211_HW_SIGNAL_DBM | |
| IEEE80211_HW_SUPPORTS_PS | |
| IEEE80211_HW_PS_NULLFUNC_STACK; |
| |
| SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); |
| SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, |
| rt2x00_eeprom_addr(rt2x00dev, |
| EEPROM_MAC_ADDR_0)); |
| |
| /* |
| * Initialize hw_mode information. |
| */ |
| spec->supported_bands = SUPPORT_BAND_2GHZ; |
| spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; |
| |
| if (rt2x00_rf(rt2x00dev, RF2528)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528); |
| spec->channels = rf_vals_bg_2528; |
| } else if (rt2x00_rf(rt2x00dev, RF5226)) { |
| spec->supported_bands |= SUPPORT_BAND_5GHZ; |
| spec->num_channels = ARRAY_SIZE(rf_vals_5226); |
| spec->channels = rf_vals_5226; |
| } else if (rt2x00_rf(rt2x00dev, RF2527)) { |
| spec->num_channels = 14; |
| spec->channels = rf_vals_5225_2527; |
| } else if (rt2x00_rf(rt2x00dev, RF5225)) { |
| spec->supported_bands |= SUPPORT_BAND_5GHZ; |
| spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527); |
| spec->channels = rf_vals_5225_2527; |
| } |
| |
| /* |
| * Create channel information array |
| */ |
| info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| spec->channels_info = info; |
| |
| tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START); |
| for (i = 0; i < 14; i++) { |
| info[i].max_power = MAX_TXPOWER; |
| info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); |
| } |
| |
| if (spec->num_channels > 14) { |
| tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START); |
| for (i = 14; i < spec->num_channels; i++) { |
| info[i].max_power = MAX_TXPOWER; |
| info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev) |
| { |
| int retval; |
| |
| /* |
| * Allocate eeprom data. |
| */ |
| retval = rt73usb_validate_eeprom(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| retval = rt73usb_init_eeprom(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * Initialize hw specifications. |
| */ |
| retval = rt73usb_probe_hw_mode(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * This device has multiple filters for control frames, |
| * but has no a separate filter for PS Poll frames. |
| */ |
| __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags); |
| |
| /* |
| * This device requires firmware. |
| */ |
| __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags); |
| if (!modparam_nohwcrypt) |
| __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); |
| __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); |
| __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags); |
| |
| /* |
| * Set the rssi offset. |
| */ |
| rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; |
| |
| return 0; |
| } |
| |
| /* |
| * IEEE80211 stack callback functions. |
| */ |
| static int rt73usb_conf_tx(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif, u16 queue_idx, |
| const struct ieee80211_tx_queue_params *params) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| struct data_queue *queue; |
| struct rt2x00_field32 field; |
| int retval; |
| u32 reg; |
| u32 offset; |
| |
| /* |
| * First pass the configuration through rt2x00lib, that will |
| * update the queue settings and validate the input. After that |
| * we are free to update the registers based on the value |
| * in the queue parameter. |
| */ |
| retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params); |
| if (retval) |
| return retval; |
| |
| /* |
| * We only need to perform additional register initialization |
| * for WMM queues/ |
| */ |
| if (queue_idx >= 4) |
| return 0; |
| |
| queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); |
| |
| /* Update WMM TXOP register */ |
| offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2))); |
| field.bit_offset = (queue_idx & 1) * 16; |
| field.bit_mask = 0xffff << field.bit_offset; |
| |
| rt2x00usb_register_read(rt2x00dev, offset, ®); |
| rt2x00_set_field32(®, field, queue->txop); |
| rt2x00usb_register_write(rt2x00dev, offset, reg); |
| |
| /* Update WMM registers */ |
| field.bit_offset = queue_idx * 4; |
| field.bit_mask = 0xf << field.bit_offset; |
| |
| rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, ®); |
| rt2x00_set_field32(®, field, queue->aifs); |
| rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg); |
| |
| rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, ®); |
| rt2x00_set_field32(®, field, queue->cw_min); |
| rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg); |
| |
| rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, ®); |
| rt2x00_set_field32(®, field, queue->cw_max); |
| rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg); |
| |
| return 0; |
| } |
| |
| static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| u64 tsf; |
| u32 reg; |
| |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, ®); |
| tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32; |
| rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, ®); |
| tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER); |
| |
| return tsf; |
| } |
| |
| static const struct ieee80211_ops rt73usb_mac80211_ops = { |
| .tx = rt2x00mac_tx, |
| .start = rt2x00mac_start, |
| .stop = rt2x00mac_stop, |
| .add_interface = rt2x00mac_add_interface, |
| .remove_interface = rt2x00mac_remove_interface, |
| .config = rt2x00mac_config, |
| .configure_filter = rt2x00mac_configure_filter, |
| .set_tim = rt2x00mac_set_tim, |
| .set_key = rt2x00mac_set_key, |
| .sw_scan_start = rt2x00mac_sw_scan_start, |
| .sw_scan_complete = rt2x00mac_sw_scan_complete, |
| .get_stats = rt2x00mac_get_stats, |
| .bss_info_changed = rt2x00mac_bss_info_changed, |
| .conf_tx = rt73usb_conf_tx, |
| .get_tsf = rt73usb_get_tsf, |
| .rfkill_poll = rt2x00mac_rfkill_poll, |
| .flush = rt2x00mac_flush, |
| .set_antenna = rt2x00mac_set_antenna, |
| .get_antenna = rt2x00mac_get_antenna, |
| .get_ringparam = rt2x00mac_get_ringparam, |
| .tx_frames_pending = rt2x00mac_tx_frames_pending, |
| }; |
| |
| static const struct rt2x00lib_ops rt73usb_rt2x00_ops = { |
| .probe_hw = rt73usb_probe_hw, |
| .get_firmware_name = rt73usb_get_firmware_name, |
| .check_firmware = rt73usb_check_firmware, |
| .load_firmware = rt73usb_load_firmware, |
| .initialize = rt2x00usb_initialize, |
| .uninitialize = rt2x00usb_uninitialize, |
| .clear_entry = rt2x00usb_clear_entry, |
| .set_device_state = rt73usb_set_device_state, |
| .rfkill_poll = rt73usb_rfkill_poll, |
| .link_stats = rt73usb_link_stats, |
| .reset_tuner = rt73usb_reset_tuner, |
| .link_tuner = rt73usb_link_tuner, |
| .watchdog = rt2x00usb_watchdog, |
| .start_queue = rt73usb_start_queue, |
| .kick_queue = rt2x00usb_kick_queue, |
| .stop_queue = rt73usb_stop_queue, |
| .flush_queue = rt2x00usb_flush_queue, |
| .write_tx_desc = rt73usb_write_tx_desc, |
| .write_beacon = rt73usb_write_beacon, |
| .clear_beacon = rt73usb_clear_beacon, |
| .get_tx_data_len = rt73usb_get_tx_data_len, |
| .fill_rxdone = rt73usb_fill_rxdone, |
| .config_shared_key = rt73usb_config_shared_key, |
| .config_pairwise_key = rt73usb_config_pairwise_key, |
| .config_filter = rt73usb_config_filter, |
| .config_intf = rt73usb_config_intf, |
| .config_erp = rt73usb_config_erp, |
| .config_ant = rt73usb_config_ant, |
| .config = rt73usb_config, |
| }; |
| |
| static const struct data_queue_desc rt73usb_queue_rx = { |
| .entry_num = 32, |
| .data_size = DATA_FRAME_SIZE, |
| .desc_size = RXD_DESC_SIZE, |
| .priv_size = sizeof(struct queue_entry_priv_usb), |
| }; |
| |
| static const struct data_queue_desc rt73usb_queue_tx = { |
| .entry_num = 32, |
| .data_size = DATA_FRAME_SIZE, |
| .desc_size = TXD_DESC_SIZE, |
| .priv_size = sizeof(struct queue_entry_priv_usb), |
| }; |
| |
| static const struct data_queue_desc rt73usb_queue_bcn = { |
| .entry_num = 4, |
| .data_size = MGMT_FRAME_SIZE, |
| .desc_size = TXINFO_SIZE, |
| .priv_size = sizeof(struct queue_entry_priv_usb), |
| }; |
| |
| static const struct rt2x00_ops rt73usb_ops = { |
| .name = KBUILD_MODNAME, |
| .max_sta_intf = 1, |
| .max_ap_intf = 4, |
| .eeprom_size = EEPROM_SIZE, |
| .rf_size = RF_SIZE, |
| .tx_queues = NUM_TX_QUEUES, |
| .extra_tx_headroom = TXD_DESC_SIZE, |
| .rx = &rt73usb_queue_rx, |
| .tx = &rt73usb_queue_tx, |
| .bcn = &rt73usb_queue_bcn, |
| .lib = &rt73usb_rt2x00_ops, |
| .hw = &rt73usb_mac80211_ops, |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS |
| .debugfs = &rt73usb_rt2x00debug, |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ |
| }; |
| |
| /* |
| * rt73usb module information. |
| */ |
| static struct usb_device_id rt73usb_device_table[] = { |
| /* AboCom */ |
| { USB_DEVICE(0x07b8, 0xb21b) }, |
| { USB_DEVICE(0x07b8, 0xb21c) }, |
| { USB_DEVICE(0x07b8, 0xb21d) }, |
| { USB_DEVICE(0x07b8, 0xb21e) }, |
| { USB_DEVICE(0x07b8, 0xb21f) }, |
| /* AL */ |
| { USB_DEVICE(0x14b2, 0x3c10) }, |
| /* Amigo */ |
| { USB_DEVICE(0x148f, 0x9021) }, |
| { USB_DEVICE(0x0eb0, 0x9021) }, |
| /* AMIT */ |
| { USB_DEVICE(0x18c5, 0x0002) }, |
| /* Askey */ |
| { USB_DEVICE(0x1690, 0x0722) }, |
| /* ASUS */ |
| { USB_DEVICE(0x0b05, 0x1723) }, |
| { USB_DEVICE(0x0b05, 0x1724) }, |
| /* Belkin */ |
| { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050B ver. 3.x */ |
| { USB_DEVICE(0x050d, 0x705a) }, |
| { USB_DEVICE(0x050d, 0x905b) }, |
| { USB_DEVICE(0x050d, 0x905c) }, |
| /* Billionton */ |
| { USB_DEVICE(0x1631, 0xc019) }, |
| { USB_DEVICE(0x08dd, 0x0120) }, |
| /* Buffalo */ |
| { USB_DEVICE(0x0411, 0x00d8) }, |
| { USB_DEVICE(0x0411, 0x00d9) }, |
| { USB_DEVICE(0x0411, 0x00e6) }, |
| { USB_DEVICE(0x0411, 0x00f4) }, |
| { USB_DEVICE(0x0411, 0x0116) }, |
| { USB_DEVICE(0x0411, 0x0119) }, |
| { USB_DEVICE(0x0411, 0x0137) }, |
| /* CEIVA */ |
| { USB_DEVICE(0x178d, 0x02be) }, |
| /* CNet */ |
| { USB_DEVICE(0x1371, 0x9022) }, |
| { USB_DEVICE(0x1371, 0x9032) }, |
| /* Conceptronic */ |
| { USB_DEVICE(0x14b2, 0x3c22) }, |
| /* Corega */ |
| { USB_DEVICE(0x07aa, 0x002e) }, |
| /* D-Link */ |
| { USB_DEVICE(0x07d1, 0x3c03) }, |
| { USB_DEVICE(0x07d1, 0x3c04) }, |
| { USB_DEVICE(0x07d1, 0x3c06) }, |
| { USB_DEVICE(0x07d1, 0x3c07) }, |
| /* Edimax */ |
| { USB_DEVICE(0x7392, 0x7318) }, |
| { USB_DEVICE(0x7392, 0x7618) }, |
| /* EnGenius */ |
| { USB_DEVICE(0x1740, 0x3701) }, |
| /* Gemtek */ |
| { USB_DEVICE(0x15a9, 0x0004) }, |
| /* Gigabyte */ |
| { USB_DEVICE(0x1044, 0x8008) }, |
| { USB_DEVICE(0x1044, 0x800a) }, |
| /* Huawei-3Com */ |
| { USB_DEVICE(0x1472, 0x0009) }, |
| /* Hercules */ |
| { USB_DEVICE(0x06f8, 0xe002) }, |
| { USB_DEVICE(0x06f8, 0xe010) }, |
| { USB_DEVICE(0x06f8, 0xe020) }, |
| /* Linksys */ |
| { USB_DEVICE(0x13b1, 0x0020) }, |
| { USB_DEVICE(0x13b1, 0x0023) }, |
| { USB_DEVICE(0x13b1, 0x0028) }, |
| /* MSI */ |
| { USB_DEVICE(0x0db0, 0x4600) }, |
| { USB_DEVICE(0x0db0, 0x6877) }, |
| { USB_DEVICE(0x0db0, 0x6874) }, |
| { USB_DEVICE(0x0db0, 0xa861) }, |
| { USB_DEVICE(0x0db0, 0xa874) }, |
| /* Ovislink */ |
| { USB_DEVICE(0x1b75, 0x7318) }, |
| /* Ralink */ |
| { USB_DEVICE(0x04bb, 0x093d) }, |
| { USB_DEVICE(0x148f, 0x2573) }, |
| { USB_DEVICE(0x148f, 0x2671) }, |
| { USB_DEVICE(0x0812, 0x3101) }, |
| /* Qcom */ |
| { USB_DEVICE(0x18e8, 0x6196) }, |
| { USB_DEVICE(0x18e8, 0x6229) }, |
| { USB_DEVICE(0x18e8, 0x6238) }, |
| /* Samsung */ |
| { USB_DEVICE(0x04e8, 0x4471) }, |
| /* Senao */ |
| { USB_DEVICE(0x1740, 0x7100) }, |
| /* Sitecom */ |
| { USB_DEVICE(0x0df6, 0x0024) }, |
| { USB_DEVICE(0x0df6, 0x0027) }, |
| { USB_DEVICE(0x0df6, 0x002f) }, |
| { USB_DEVICE(0x0df6, 0x90ac) }, |
| { USB_DEVICE(0x0df6, 0x9712) }, |
| /* Surecom */ |
| { USB_DEVICE(0x0769, 0x31f3) }, |
| /* Tilgin */ |
| { USB_DEVICE(0x6933, 0x5001) }, |
| /* Philips */ |
| { USB_DEVICE(0x0471, 0x200a) }, |
| /* Planex */ |
| { USB_DEVICE(0x2019, 0xab01) }, |
| { USB_DEVICE(0x2019, 0xab50) }, |
| /* WideTell */ |
| { USB_DEVICE(0x7167, 0x3840) }, |
| /* Zcom */ |
| { USB_DEVICE(0x0cde, 0x001c) }, |
| /* ZyXEL */ |
| { USB_DEVICE(0x0586, 0x3415) }, |
| { 0, } |
| }; |
| |
| MODULE_AUTHOR(DRV_PROJECT); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver."); |
| MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards"); |
| MODULE_DEVICE_TABLE(usb, rt73usb_device_table); |
| MODULE_FIRMWARE(FIRMWARE_RT2571); |
| MODULE_LICENSE("GPL"); |
| |
| static int rt73usb_probe(struct usb_interface *usb_intf, |
| const struct usb_device_id *id) |
| { |
| return rt2x00usb_probe(usb_intf, &rt73usb_ops); |
| } |
| |
| static struct usb_driver rt73usb_driver = { |
| .name = KBUILD_MODNAME, |
| .id_table = rt73usb_device_table, |
| .probe = rt73usb_probe, |
| .disconnect = rt2x00usb_disconnect, |
| .suspend = rt2x00usb_suspend, |
| .resume = rt2x00usb_resume, |
| .disable_hub_initiated_lpm = 1, |
| }; |
| |
| module_usb_driver(rt73usb_driver); |