| /* |
| * fs/f2fs/data.c |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/fs.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/buffer_head.h> |
| #include <linux/mpage.h> |
| #include <linux/writeback.h> |
| #include <linux/backing-dev.h> |
| #include <linux/blkdev.h> |
| #include <linux/bio.h> |
| #include <linux/prefetch.h> |
| #include <linux/uio.h> |
| #include <linux/cleancache.h> |
| |
| #include "f2fs.h" |
| #include "node.h" |
| #include "segment.h" |
| #include "trace.h" |
| #include <trace/events/f2fs.h> |
| |
| static struct kmem_cache *extent_tree_slab; |
| static struct kmem_cache *extent_node_slab; |
| |
| static void f2fs_read_end_io(struct bio *bio) |
| { |
| struct bio_vec *bvec; |
| int i; |
| |
| if (f2fs_bio_encrypted(bio)) { |
| if (bio->bi_error) { |
| f2fs_release_crypto_ctx(bio->bi_private); |
| } else { |
| f2fs_end_io_crypto_work(bio->bi_private, bio); |
| return; |
| } |
| } |
| |
| bio_for_each_segment_all(bvec, bio, i) { |
| struct page *page = bvec->bv_page; |
| |
| if (!bio->bi_error) { |
| SetPageUptodate(page); |
| } else { |
| ClearPageUptodate(page); |
| SetPageError(page); |
| } |
| unlock_page(page); |
| } |
| bio_put(bio); |
| } |
| |
| static void f2fs_write_end_io(struct bio *bio) |
| { |
| struct f2fs_sb_info *sbi = bio->bi_private; |
| struct bio_vec *bvec; |
| int i; |
| |
| bio_for_each_segment_all(bvec, bio, i) { |
| struct page *page = bvec->bv_page; |
| |
| f2fs_restore_and_release_control_page(&page); |
| |
| if (unlikely(bio->bi_error)) { |
| set_page_dirty(page); |
| set_bit(AS_EIO, &page->mapping->flags); |
| f2fs_stop_checkpoint(sbi); |
| } |
| end_page_writeback(page); |
| dec_page_count(sbi, F2FS_WRITEBACK); |
| } |
| |
| if (!get_pages(sbi, F2FS_WRITEBACK) && |
| !list_empty(&sbi->cp_wait.task_list)) |
| wake_up(&sbi->cp_wait); |
| |
| bio_put(bio); |
| } |
| |
| /* |
| * Low-level block read/write IO operations. |
| */ |
| static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, |
| int npages, bool is_read) |
| { |
| struct bio *bio; |
| |
| /* No failure on bio allocation */ |
| bio = bio_alloc(GFP_NOIO, npages); |
| |
| bio->bi_bdev = sbi->sb->s_bdev; |
| bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); |
| bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; |
| bio->bi_private = is_read ? NULL : sbi; |
| |
| return bio; |
| } |
| |
| static void __submit_merged_bio(struct f2fs_bio_info *io) |
| { |
| struct f2fs_io_info *fio = &io->fio; |
| |
| if (!io->bio) |
| return; |
| |
| if (is_read_io(fio->rw)) |
| trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio); |
| else |
| trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio); |
| |
| submit_bio(fio->rw, io->bio); |
| io->bio = NULL; |
| } |
| |
| void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, |
| enum page_type type, int rw) |
| { |
| enum page_type btype = PAGE_TYPE_OF_BIO(type); |
| struct f2fs_bio_info *io; |
| |
| io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype]; |
| |
| down_write(&io->io_rwsem); |
| |
| /* change META to META_FLUSH in the checkpoint procedure */ |
| if (type >= META_FLUSH) { |
| io->fio.type = META_FLUSH; |
| if (test_opt(sbi, NOBARRIER)) |
| io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO; |
| else |
| io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO; |
| } |
| __submit_merged_bio(io); |
| up_write(&io->io_rwsem); |
| } |
| |
| /* |
| * Fill the locked page with data located in the block address. |
| * Return unlocked page. |
| */ |
| int f2fs_submit_page_bio(struct f2fs_io_info *fio) |
| { |
| struct bio *bio; |
| struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page; |
| |
| trace_f2fs_submit_page_bio(page, fio); |
| f2fs_trace_ios(fio, 0); |
| |
| /* Allocate a new bio */ |
| bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw)); |
| |
| if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) { |
| bio_put(bio); |
| f2fs_put_page(page, 1); |
| return -EFAULT; |
| } |
| |
| submit_bio(fio->rw, bio); |
| return 0; |
| } |
| |
| void f2fs_submit_page_mbio(struct f2fs_io_info *fio) |
| { |
| struct f2fs_sb_info *sbi = fio->sbi; |
| enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); |
| struct f2fs_bio_info *io; |
| bool is_read = is_read_io(fio->rw); |
| struct page *bio_page; |
| |
| io = is_read ? &sbi->read_io : &sbi->write_io[btype]; |
| |
| verify_block_addr(sbi, fio->blk_addr); |
| |
| down_write(&io->io_rwsem); |
| |
| if (!is_read) |
| inc_page_count(sbi, F2FS_WRITEBACK); |
| |
| if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 || |
| io->fio.rw != fio->rw)) |
| __submit_merged_bio(io); |
| alloc_new: |
| if (io->bio == NULL) { |
| int bio_blocks = MAX_BIO_BLOCKS(sbi); |
| |
| io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read); |
| io->fio = *fio; |
| } |
| |
| bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; |
| |
| if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) < |
| PAGE_CACHE_SIZE) { |
| __submit_merged_bio(io); |
| goto alloc_new; |
| } |
| |
| io->last_block_in_bio = fio->blk_addr; |
| f2fs_trace_ios(fio, 0); |
| |
| up_write(&io->io_rwsem); |
| trace_f2fs_submit_page_mbio(fio->page, fio); |
| } |
| |
| /* |
| * Lock ordering for the change of data block address: |
| * ->data_page |
| * ->node_page |
| * update block addresses in the node page |
| */ |
| void set_data_blkaddr(struct dnode_of_data *dn) |
| { |
| struct f2fs_node *rn; |
| __le32 *addr_array; |
| struct page *node_page = dn->node_page; |
| unsigned int ofs_in_node = dn->ofs_in_node; |
| |
| f2fs_wait_on_page_writeback(node_page, NODE); |
| |
| rn = F2FS_NODE(node_page); |
| |
| /* Get physical address of data block */ |
| addr_array = blkaddr_in_node(rn); |
| addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr); |
| set_page_dirty(node_page); |
| } |
| |
| int reserve_new_block(struct dnode_of_data *dn) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
| |
| if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) |
| return -EPERM; |
| if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1))) |
| return -ENOSPC; |
| |
| trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node); |
| |
| dn->data_blkaddr = NEW_ADDR; |
| set_data_blkaddr(dn); |
| mark_inode_dirty(dn->inode); |
| sync_inode_page(dn); |
| return 0; |
| } |
| |
| int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) |
| { |
| bool need_put = dn->inode_page ? false : true; |
| int err; |
| |
| err = get_dnode_of_data(dn, index, ALLOC_NODE); |
| if (err) |
| return err; |
| |
| if (dn->data_blkaddr == NULL_ADDR) |
| err = reserve_new_block(dn); |
| if (err || need_put) |
| f2fs_put_dnode(dn); |
| return err; |
| } |
| |
| static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs, |
| struct extent_info *ei) |
| { |
| struct f2fs_inode_info *fi = F2FS_I(inode); |
| pgoff_t start_fofs, end_fofs; |
| block_t start_blkaddr; |
| |
| read_lock(&fi->ext_lock); |
| if (fi->ext.len == 0) { |
| read_unlock(&fi->ext_lock); |
| return false; |
| } |
| |
| stat_inc_total_hit(inode->i_sb); |
| |
| start_fofs = fi->ext.fofs; |
| end_fofs = fi->ext.fofs + fi->ext.len - 1; |
| start_blkaddr = fi->ext.blk; |
| |
| if (pgofs >= start_fofs && pgofs <= end_fofs) { |
| *ei = fi->ext; |
| stat_inc_read_hit(inode->i_sb); |
| read_unlock(&fi->ext_lock); |
| return true; |
| } |
| read_unlock(&fi->ext_lock); |
| return false; |
| } |
| |
| static bool update_extent_info(struct inode *inode, pgoff_t fofs, |
| block_t blkaddr) |
| { |
| struct f2fs_inode_info *fi = F2FS_I(inode); |
| pgoff_t start_fofs, end_fofs; |
| block_t start_blkaddr, end_blkaddr; |
| int need_update = true; |
| |
| write_lock(&fi->ext_lock); |
| |
| start_fofs = fi->ext.fofs; |
| end_fofs = fi->ext.fofs + fi->ext.len - 1; |
| start_blkaddr = fi->ext.blk; |
| end_blkaddr = fi->ext.blk + fi->ext.len - 1; |
| |
| /* Drop and initialize the matched extent */ |
| if (fi->ext.len == 1 && fofs == start_fofs) |
| fi->ext.len = 0; |
| |
| /* Initial extent */ |
| if (fi->ext.len == 0) { |
| if (blkaddr != NULL_ADDR) { |
| fi->ext.fofs = fofs; |
| fi->ext.blk = blkaddr; |
| fi->ext.len = 1; |
| } |
| goto end_update; |
| } |
| |
| /* Front merge */ |
| if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) { |
| fi->ext.fofs--; |
| fi->ext.blk--; |
| fi->ext.len++; |
| goto end_update; |
| } |
| |
| /* Back merge */ |
| if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) { |
| fi->ext.len++; |
| goto end_update; |
| } |
| |
| /* Split the existing extent */ |
| if (fi->ext.len > 1 && |
| fofs >= start_fofs && fofs <= end_fofs) { |
| if ((end_fofs - fofs) < (fi->ext.len >> 1)) { |
| fi->ext.len = fofs - start_fofs; |
| } else { |
| fi->ext.fofs = fofs + 1; |
| fi->ext.blk = start_blkaddr + fofs - start_fofs + 1; |
| fi->ext.len -= fofs - start_fofs + 1; |
| } |
| } else { |
| need_update = false; |
| } |
| |
| /* Finally, if the extent is very fragmented, let's drop the cache. */ |
| if (fi->ext.len < F2FS_MIN_EXTENT_LEN) { |
| fi->ext.len = 0; |
| set_inode_flag(fi, FI_NO_EXTENT); |
| need_update = true; |
| } |
| end_update: |
| write_unlock(&fi->ext_lock); |
| return need_update; |
| } |
| |
| static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi, |
| struct extent_tree *et, struct extent_info *ei, |
| struct rb_node *parent, struct rb_node **p) |
| { |
| struct extent_node *en; |
| |
| en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC); |
| if (!en) |
| return NULL; |
| |
| en->ei = *ei; |
| INIT_LIST_HEAD(&en->list); |
| |
| rb_link_node(&en->rb_node, parent, p); |
| rb_insert_color(&en->rb_node, &et->root); |
| et->count++; |
| atomic_inc(&sbi->total_ext_node); |
| return en; |
| } |
| |
| static void __detach_extent_node(struct f2fs_sb_info *sbi, |
| struct extent_tree *et, struct extent_node *en) |
| { |
| rb_erase(&en->rb_node, &et->root); |
| et->count--; |
| atomic_dec(&sbi->total_ext_node); |
| |
| if (et->cached_en == en) |
| et->cached_en = NULL; |
| } |
| |
| static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi, |
| nid_t ino) |
| { |
| struct extent_tree *et; |
| |
| down_read(&sbi->extent_tree_lock); |
| et = radix_tree_lookup(&sbi->extent_tree_root, ino); |
| if (!et) { |
| up_read(&sbi->extent_tree_lock); |
| return NULL; |
| } |
| atomic_inc(&et->refcount); |
| up_read(&sbi->extent_tree_lock); |
| |
| return et; |
| } |
| |
| static struct extent_tree *__grab_extent_tree(struct inode *inode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct extent_tree *et; |
| nid_t ino = inode->i_ino; |
| |
| down_write(&sbi->extent_tree_lock); |
| et = radix_tree_lookup(&sbi->extent_tree_root, ino); |
| if (!et) { |
| et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS); |
| f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et); |
| memset(et, 0, sizeof(struct extent_tree)); |
| et->ino = ino; |
| et->root = RB_ROOT; |
| et->cached_en = NULL; |
| rwlock_init(&et->lock); |
| atomic_set(&et->refcount, 0); |
| et->count = 0; |
| sbi->total_ext_tree++; |
| } |
| atomic_inc(&et->refcount); |
| up_write(&sbi->extent_tree_lock); |
| |
| return et; |
| } |
| |
| static struct extent_node *__lookup_extent_tree(struct extent_tree *et, |
| unsigned int fofs) |
| { |
| struct rb_node *node = et->root.rb_node; |
| struct extent_node *en; |
| |
| if (et->cached_en) { |
| struct extent_info *cei = &et->cached_en->ei; |
| |
| if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) |
| return et->cached_en; |
| } |
| |
| while (node) { |
| en = rb_entry(node, struct extent_node, rb_node); |
| |
| if (fofs < en->ei.fofs) { |
| node = node->rb_left; |
| } else if (fofs >= en->ei.fofs + en->ei.len) { |
| node = node->rb_right; |
| } else { |
| et->cached_en = en; |
| return en; |
| } |
| } |
| return NULL; |
| } |
| |
| static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi, |
| struct extent_tree *et, struct extent_node *en) |
| { |
| struct extent_node *prev; |
| struct rb_node *node; |
| |
| node = rb_prev(&en->rb_node); |
| if (!node) |
| return NULL; |
| |
| prev = rb_entry(node, struct extent_node, rb_node); |
| if (__is_back_mergeable(&en->ei, &prev->ei)) { |
| en->ei.fofs = prev->ei.fofs; |
| en->ei.blk = prev->ei.blk; |
| en->ei.len += prev->ei.len; |
| __detach_extent_node(sbi, et, prev); |
| return prev; |
| } |
| return NULL; |
| } |
| |
| static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi, |
| struct extent_tree *et, struct extent_node *en) |
| { |
| struct extent_node *next; |
| struct rb_node *node; |
| |
| node = rb_next(&en->rb_node); |
| if (!node) |
| return NULL; |
| |
| next = rb_entry(node, struct extent_node, rb_node); |
| if (__is_front_mergeable(&en->ei, &next->ei)) { |
| en->ei.len += next->ei.len; |
| __detach_extent_node(sbi, et, next); |
| return next; |
| } |
| return NULL; |
| } |
| |
| static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi, |
| struct extent_tree *et, struct extent_info *ei, |
| struct extent_node **den) |
| { |
| struct rb_node **p = &et->root.rb_node; |
| struct rb_node *parent = NULL; |
| struct extent_node *en; |
| |
| while (*p) { |
| parent = *p; |
| en = rb_entry(parent, struct extent_node, rb_node); |
| |
| if (ei->fofs < en->ei.fofs) { |
| if (__is_front_mergeable(ei, &en->ei)) { |
| f2fs_bug_on(sbi, !den); |
| en->ei.fofs = ei->fofs; |
| en->ei.blk = ei->blk; |
| en->ei.len += ei->len; |
| *den = __try_back_merge(sbi, et, en); |
| return en; |
| } |
| p = &(*p)->rb_left; |
| } else if (ei->fofs >= en->ei.fofs + en->ei.len) { |
| if (__is_back_mergeable(ei, &en->ei)) { |
| f2fs_bug_on(sbi, !den); |
| en->ei.len += ei->len; |
| *den = __try_front_merge(sbi, et, en); |
| return en; |
| } |
| p = &(*p)->rb_right; |
| } else { |
| f2fs_bug_on(sbi, 1); |
| } |
| } |
| |
| return __attach_extent_node(sbi, et, ei, parent, p); |
| } |
| |
| static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi, |
| struct extent_tree *et, bool free_all) |
| { |
| struct rb_node *node, *next; |
| struct extent_node *en; |
| unsigned int count = et->count; |
| |
| node = rb_first(&et->root); |
| while (node) { |
| next = rb_next(node); |
| en = rb_entry(node, struct extent_node, rb_node); |
| |
| if (free_all) { |
| spin_lock(&sbi->extent_lock); |
| if (!list_empty(&en->list)) |
| list_del_init(&en->list); |
| spin_unlock(&sbi->extent_lock); |
| } |
| |
| if (free_all || list_empty(&en->list)) { |
| __detach_extent_node(sbi, et, en); |
| kmem_cache_free(extent_node_slab, en); |
| } |
| node = next; |
| } |
| |
| return count - et->count; |
| } |
| |
| static void f2fs_init_extent_tree(struct inode *inode, |
| struct f2fs_extent *i_ext) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct extent_tree *et; |
| struct extent_node *en; |
| struct extent_info ei; |
| |
| if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN) |
| return; |
| |
| et = __grab_extent_tree(inode); |
| |
| write_lock(&et->lock); |
| if (et->count) |
| goto out; |
| |
| set_extent_info(&ei, le32_to_cpu(i_ext->fofs), |
| le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len)); |
| |
| en = __insert_extent_tree(sbi, et, &ei, NULL); |
| if (en) { |
| et->cached_en = en; |
| |
| spin_lock(&sbi->extent_lock); |
| list_add_tail(&en->list, &sbi->extent_list); |
| spin_unlock(&sbi->extent_lock); |
| } |
| out: |
| write_unlock(&et->lock); |
| atomic_dec(&et->refcount); |
| } |
| |
| static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs, |
| struct extent_info *ei) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct extent_tree *et; |
| struct extent_node *en; |
| |
| trace_f2fs_lookup_extent_tree_start(inode, pgofs); |
| |
| et = __find_extent_tree(sbi, inode->i_ino); |
| if (!et) |
| return false; |
| |
| read_lock(&et->lock); |
| en = __lookup_extent_tree(et, pgofs); |
| if (en) { |
| *ei = en->ei; |
| spin_lock(&sbi->extent_lock); |
| if (!list_empty(&en->list)) |
| list_move_tail(&en->list, &sbi->extent_list); |
| spin_unlock(&sbi->extent_lock); |
| stat_inc_read_hit(sbi->sb); |
| } |
| stat_inc_total_hit(sbi->sb); |
| read_unlock(&et->lock); |
| |
| trace_f2fs_lookup_extent_tree_end(inode, pgofs, en); |
| |
| atomic_dec(&et->refcount); |
| return en ? true : false; |
| } |
| |
| static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs, |
| block_t blkaddr) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct extent_tree *et; |
| struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL; |
| struct extent_node *den = NULL; |
| struct extent_info ei, dei; |
| unsigned int endofs; |
| |
| trace_f2fs_update_extent_tree(inode, fofs, blkaddr); |
| |
| et = __grab_extent_tree(inode); |
| |
| write_lock(&et->lock); |
| |
| /* 1. lookup and remove existing extent info in cache */ |
| en = __lookup_extent_tree(et, fofs); |
| if (!en) |
| goto update_extent; |
| |
| dei = en->ei; |
| __detach_extent_node(sbi, et, en); |
| |
| /* 2. if extent can be split more, split and insert the left part */ |
| if (dei.len > 1) { |
| /* insert left part of split extent into cache */ |
| if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) { |
| set_extent_info(&ei, dei.fofs, dei.blk, |
| fofs - dei.fofs); |
| en1 = __insert_extent_tree(sbi, et, &ei, NULL); |
| } |
| |
| /* insert right part of split extent into cache */ |
| endofs = dei.fofs + dei.len - 1; |
| if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) { |
| set_extent_info(&ei, fofs + 1, |
| fofs - dei.fofs + dei.blk, endofs - fofs); |
| en2 = __insert_extent_tree(sbi, et, &ei, NULL); |
| } |
| } |
| |
| update_extent: |
| /* 3. update extent in extent cache */ |
| if (blkaddr) { |
| set_extent_info(&ei, fofs, blkaddr, 1); |
| en3 = __insert_extent_tree(sbi, et, &ei, &den); |
| } |
| |
| /* 4. update in global extent list */ |
| spin_lock(&sbi->extent_lock); |
| if (en && !list_empty(&en->list)) |
| list_del(&en->list); |
| /* |
| * en1 and en2 split from en, they will become more and more smaller |
| * fragments after splitting several times. So if the length is smaller |
| * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree. |
| */ |
| if (en1) |
| list_add_tail(&en1->list, &sbi->extent_list); |
| if (en2) |
| list_add_tail(&en2->list, &sbi->extent_list); |
| if (en3) { |
| if (list_empty(&en3->list)) |
| list_add_tail(&en3->list, &sbi->extent_list); |
| else |
| list_move_tail(&en3->list, &sbi->extent_list); |
| } |
| if (den && !list_empty(&den->list)) |
| list_del(&den->list); |
| spin_unlock(&sbi->extent_lock); |
| |
| /* 5. release extent node */ |
| if (en) |
| kmem_cache_free(extent_node_slab, en); |
| if (den) |
| kmem_cache_free(extent_node_slab, den); |
| |
| write_unlock(&et->lock); |
| atomic_dec(&et->refcount); |
| } |
| |
| void f2fs_preserve_extent_tree(struct inode *inode) |
| { |
| struct extent_tree *et; |
| struct extent_info *ext = &F2FS_I(inode)->ext; |
| bool sync = false; |
| |
| if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE)) |
| return; |
| |
| et = __find_extent_tree(F2FS_I_SB(inode), inode->i_ino); |
| if (!et) { |
| if (ext->len) { |
| ext->len = 0; |
| update_inode_page(inode); |
| } |
| return; |
| } |
| |
| read_lock(&et->lock); |
| if (et->count) { |
| struct extent_node *en; |
| |
| if (et->cached_en) { |
| en = et->cached_en; |
| } else { |
| struct rb_node *node = rb_first(&et->root); |
| |
| if (!node) |
| node = rb_last(&et->root); |
| en = rb_entry(node, struct extent_node, rb_node); |
| } |
| |
| if (__is_extent_same(ext, &en->ei)) |
| goto out; |
| |
| *ext = en->ei; |
| sync = true; |
| } else if (ext->len) { |
| ext->len = 0; |
| sync = true; |
| } |
| out: |
| read_unlock(&et->lock); |
| atomic_dec(&et->refcount); |
| |
| if (sync) |
| update_inode_page(inode); |
| } |
| |
| void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink) |
| { |
| struct extent_tree *treevec[EXT_TREE_VEC_SIZE]; |
| struct extent_node *en, *tmp; |
| unsigned long ino = F2FS_ROOT_INO(sbi); |
| struct radix_tree_iter iter; |
| void **slot; |
| unsigned int found; |
| unsigned int node_cnt = 0, tree_cnt = 0; |
| |
| if (!test_opt(sbi, EXTENT_CACHE)) |
| return; |
| |
| if (available_free_memory(sbi, EXTENT_CACHE)) |
| return; |
| |
| spin_lock(&sbi->extent_lock); |
| list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) { |
| if (!nr_shrink--) |
| break; |
| list_del_init(&en->list); |
| } |
| spin_unlock(&sbi->extent_lock); |
| |
| down_read(&sbi->extent_tree_lock); |
| while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root, |
| (void **)treevec, ino, EXT_TREE_VEC_SIZE))) { |
| unsigned i; |
| |
| ino = treevec[found - 1]->ino + 1; |
| for (i = 0; i < found; i++) { |
| struct extent_tree *et = treevec[i]; |
| |
| atomic_inc(&et->refcount); |
| write_lock(&et->lock); |
| node_cnt += __free_extent_tree(sbi, et, false); |
| write_unlock(&et->lock); |
| atomic_dec(&et->refcount); |
| } |
| } |
| up_read(&sbi->extent_tree_lock); |
| |
| down_write(&sbi->extent_tree_lock); |
| radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter, |
| F2FS_ROOT_INO(sbi)) { |
| struct extent_tree *et = (struct extent_tree *)*slot; |
| |
| if (!atomic_read(&et->refcount) && !et->count) { |
| radix_tree_delete(&sbi->extent_tree_root, et->ino); |
| kmem_cache_free(extent_tree_slab, et); |
| sbi->total_ext_tree--; |
| tree_cnt++; |
| } |
| } |
| up_write(&sbi->extent_tree_lock); |
| |
| trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt); |
| } |
| |
| void f2fs_destroy_extent_tree(struct inode *inode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct extent_tree *et; |
| unsigned int node_cnt = 0; |
| |
| if (!test_opt(sbi, EXTENT_CACHE)) |
| return; |
| |
| et = __find_extent_tree(sbi, inode->i_ino); |
| if (!et) |
| goto out; |
| |
| /* free all extent info belong to this extent tree */ |
| write_lock(&et->lock); |
| node_cnt = __free_extent_tree(sbi, et, true); |
| write_unlock(&et->lock); |
| |
| atomic_dec(&et->refcount); |
| |
| /* try to find and delete extent tree entry in radix tree */ |
| down_write(&sbi->extent_tree_lock); |
| et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino); |
| if (!et) { |
| up_write(&sbi->extent_tree_lock); |
| goto out; |
| } |
| f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count); |
| radix_tree_delete(&sbi->extent_tree_root, inode->i_ino); |
| kmem_cache_free(extent_tree_slab, et); |
| sbi->total_ext_tree--; |
| up_write(&sbi->extent_tree_lock); |
| out: |
| trace_f2fs_destroy_extent_tree(inode, node_cnt); |
| return; |
| } |
| |
| void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext) |
| { |
| if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE)) |
| f2fs_init_extent_tree(inode, i_ext); |
| |
| write_lock(&F2FS_I(inode)->ext_lock); |
| get_extent_info(&F2FS_I(inode)->ext, *i_ext); |
| write_unlock(&F2FS_I(inode)->ext_lock); |
| } |
| |
| static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, |
| struct extent_info *ei) |
| { |
| if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) |
| return false; |
| |
| if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE)) |
| return f2fs_lookup_extent_tree(inode, pgofs, ei); |
| |
| return lookup_extent_info(inode, pgofs, ei); |
| } |
| |
| void f2fs_update_extent_cache(struct dnode_of_data *dn) |
| { |
| struct f2fs_inode_info *fi = F2FS_I(dn->inode); |
| pgoff_t fofs; |
| |
| f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR); |
| |
| if (is_inode_flag_set(fi, FI_NO_EXTENT)) |
| return; |
| |
| fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) + |
| dn->ofs_in_node; |
| |
| if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE)) |
| return f2fs_update_extent_tree(dn->inode, fofs, |
| dn->data_blkaddr); |
| |
| if (update_extent_info(dn->inode, fofs, dn->data_blkaddr)) |
| sync_inode_page(dn); |
| } |
| |
| struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct dnode_of_data dn; |
| struct page *page; |
| struct extent_info ei; |
| int err; |
| struct f2fs_io_info fio = { |
| .sbi = F2FS_I_SB(inode), |
| .type = DATA, |
| .rw = rw, |
| .encrypted_page = NULL, |
| }; |
| |
| if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) |
| return read_mapping_page(mapping, index, NULL); |
| |
| page = grab_cache_page(mapping, index); |
| if (!page) |
| return ERR_PTR(-ENOMEM); |
| |
| if (f2fs_lookup_extent_cache(inode, index, &ei)) { |
| dn.data_blkaddr = ei.blk + index - ei.fofs; |
| goto got_it; |
| } |
| |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| err = get_dnode_of_data(&dn, index, LOOKUP_NODE); |
| if (err) { |
| f2fs_put_page(page, 1); |
| return ERR_PTR(err); |
| } |
| f2fs_put_dnode(&dn); |
| |
| if (unlikely(dn.data_blkaddr == NULL_ADDR)) { |
| f2fs_put_page(page, 1); |
| return ERR_PTR(-ENOENT); |
| } |
| got_it: |
| if (PageUptodate(page)) { |
| unlock_page(page); |
| return page; |
| } |
| |
| /* |
| * A new dentry page is allocated but not able to be written, since its |
| * new inode page couldn't be allocated due to -ENOSPC. |
| * In such the case, its blkaddr can be remained as NEW_ADDR. |
| * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. |
| */ |
| if (dn.data_blkaddr == NEW_ADDR) { |
| zero_user_segment(page, 0, PAGE_CACHE_SIZE); |
| SetPageUptodate(page); |
| unlock_page(page); |
| return page; |
| } |
| |
| fio.blk_addr = dn.data_blkaddr; |
| fio.page = page; |
| err = f2fs_submit_page_bio(&fio); |
| if (err) |
| return ERR_PTR(err); |
| return page; |
| } |
| |
| struct page *find_data_page(struct inode *inode, pgoff_t index) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct page *page; |
| |
| page = find_get_page(mapping, index); |
| if (page && PageUptodate(page)) |
| return page; |
| f2fs_put_page(page, 0); |
| |
| page = get_read_data_page(inode, index, READ_SYNC); |
| if (IS_ERR(page)) |
| return page; |
| |
| if (PageUptodate(page)) |
| return page; |
| |
| wait_on_page_locked(page); |
| if (unlikely(!PageUptodate(page))) { |
| f2fs_put_page(page, 0); |
| return ERR_PTR(-EIO); |
| } |
| return page; |
| } |
| |
| /* |
| * If it tries to access a hole, return an error. |
| * Because, the callers, functions in dir.c and GC, should be able to know |
| * whether this page exists or not. |
| */ |
| struct page *get_lock_data_page(struct inode *inode, pgoff_t index) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct page *page; |
| repeat: |
| page = get_read_data_page(inode, index, READ_SYNC); |
| if (IS_ERR(page)) |
| return page; |
| |
| /* wait for read completion */ |
| lock_page(page); |
| if (unlikely(!PageUptodate(page))) { |
| f2fs_put_page(page, 1); |
| return ERR_PTR(-EIO); |
| } |
| if (unlikely(page->mapping != mapping)) { |
| f2fs_put_page(page, 1); |
| goto repeat; |
| } |
| return page; |
| } |
| |
| /* |
| * Caller ensures that this data page is never allocated. |
| * A new zero-filled data page is allocated in the page cache. |
| * |
| * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and |
| * f2fs_unlock_op(). |
| * Note that, ipage is set only by make_empty_dir. |
| */ |
| struct page *get_new_data_page(struct inode *inode, |
| struct page *ipage, pgoff_t index, bool new_i_size) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct page *page; |
| struct dnode_of_data dn; |
| int err; |
| repeat: |
| page = grab_cache_page(mapping, index); |
| if (!page) |
| return ERR_PTR(-ENOMEM); |
| |
| set_new_dnode(&dn, inode, ipage, NULL, 0); |
| err = f2fs_reserve_block(&dn, index); |
| if (err) { |
| f2fs_put_page(page, 1); |
| return ERR_PTR(err); |
| } |
| if (!ipage) |
| f2fs_put_dnode(&dn); |
| |
| if (PageUptodate(page)) |
| goto got_it; |
| |
| if (dn.data_blkaddr == NEW_ADDR) { |
| zero_user_segment(page, 0, PAGE_CACHE_SIZE); |
| SetPageUptodate(page); |
| } else { |
| f2fs_put_page(page, 1); |
| |
| page = get_read_data_page(inode, index, READ_SYNC); |
| if (IS_ERR(page)) |
| goto repeat; |
| |
| /* wait for read completion */ |
| lock_page(page); |
| } |
| got_it: |
| if (new_i_size && |
| i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) { |
| i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT)); |
| /* Only the directory inode sets new_i_size */ |
| set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR); |
| } |
| return page; |
| } |
| |
| static int __allocate_data_block(struct dnode_of_data *dn) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
| struct f2fs_inode_info *fi = F2FS_I(dn->inode); |
| struct f2fs_summary sum; |
| struct node_info ni; |
| int seg = CURSEG_WARM_DATA; |
| pgoff_t fofs; |
| |
| if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) |
| return -EPERM; |
| |
| dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); |
| if (dn->data_blkaddr == NEW_ADDR) |
| goto alloc; |
| |
| if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1))) |
| return -ENOSPC; |
| |
| alloc: |
| get_node_info(sbi, dn->nid, &ni); |
| set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); |
| |
| if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page) |
| seg = CURSEG_DIRECT_IO; |
| |
| allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, |
| &sum, seg); |
| |
| /* direct IO doesn't use extent cache to maximize the performance */ |
| set_data_blkaddr(dn); |
| |
| /* update i_size */ |
| fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) + |
| dn->ofs_in_node; |
| if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT)) |
| i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT)); |
| |
| return 0; |
| } |
| |
| static void __allocate_data_blocks(struct inode *inode, loff_t offset, |
| size_t count) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct dnode_of_data dn; |
| u64 start = F2FS_BYTES_TO_BLK(offset); |
| u64 len = F2FS_BYTES_TO_BLK(count); |
| bool allocated; |
| u64 end_offset; |
| |
| while (len) { |
| f2fs_balance_fs(sbi); |
| f2fs_lock_op(sbi); |
| |
| /* When reading holes, we need its node page */ |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| if (get_dnode_of_data(&dn, start, ALLOC_NODE)) |
| goto out; |
| |
| allocated = false; |
| end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); |
| |
| while (dn.ofs_in_node < end_offset && len) { |
| block_t blkaddr; |
| |
| blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); |
| if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) { |
| if (__allocate_data_block(&dn)) |
| goto sync_out; |
| allocated = true; |
| } |
| len--; |
| start++; |
| dn.ofs_in_node++; |
| } |
| |
| if (allocated) |
| sync_inode_page(&dn); |
| |
| f2fs_put_dnode(&dn); |
| f2fs_unlock_op(sbi); |
| } |
| return; |
| |
| sync_out: |
| if (allocated) |
| sync_inode_page(&dn); |
| f2fs_put_dnode(&dn); |
| out: |
| f2fs_unlock_op(sbi); |
| return; |
| } |
| |
| /* |
| * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with |
| * f2fs_map_blocks structure. |
| * If original data blocks are allocated, then give them to blockdev. |
| * Otherwise, |
| * a. preallocate requested block addresses |
| * b. do not use extent cache for better performance |
| * c. give the block addresses to blockdev |
| */ |
| static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, |
| int create, bool fiemap) |
| { |
| unsigned int maxblocks = map->m_len; |
| struct dnode_of_data dn; |
| int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA; |
| pgoff_t pgofs, end_offset; |
| int err = 0, ofs = 1; |
| struct extent_info ei; |
| bool allocated = false; |
| |
| map->m_len = 0; |
| map->m_flags = 0; |
| |
| /* it only supports block size == page size */ |
| pgofs = (pgoff_t)map->m_lblk; |
| |
| if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) { |
| map->m_pblk = ei.blk + pgofs - ei.fofs; |
| map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); |
| map->m_flags = F2FS_MAP_MAPPED; |
| goto out; |
| } |
| |
| if (create) |
| f2fs_lock_op(F2FS_I_SB(inode)); |
| |
| /* When reading holes, we need its node page */ |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| err = get_dnode_of_data(&dn, pgofs, mode); |
| if (err) { |
| if (err == -ENOENT) |
| err = 0; |
| goto unlock_out; |
| } |
| if (dn.data_blkaddr == NEW_ADDR && !fiemap) |
| goto put_out; |
| |
| if (dn.data_blkaddr != NULL_ADDR) { |
| map->m_flags = F2FS_MAP_MAPPED; |
| map->m_pblk = dn.data_blkaddr; |
| if (dn.data_blkaddr == NEW_ADDR) |
| map->m_flags |= F2FS_MAP_UNWRITTEN; |
| } else if (create) { |
| err = __allocate_data_block(&dn); |
| if (err) |
| goto put_out; |
| allocated = true; |
| map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED; |
| map->m_pblk = dn.data_blkaddr; |
| } else { |
| goto put_out; |
| } |
| |
| end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); |
| map->m_len = 1; |
| dn.ofs_in_node++; |
| pgofs++; |
| |
| get_next: |
| if (dn.ofs_in_node >= end_offset) { |
| if (allocated) |
| sync_inode_page(&dn); |
| allocated = false; |
| f2fs_put_dnode(&dn); |
| |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| err = get_dnode_of_data(&dn, pgofs, mode); |
| if (err) { |
| if (err == -ENOENT) |
| err = 0; |
| goto unlock_out; |
| } |
| if (dn.data_blkaddr == NEW_ADDR && !fiemap) |
| goto put_out; |
| |
| end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); |
| } |
| |
| if (maxblocks > map->m_len) { |
| block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); |
| if (blkaddr == NULL_ADDR && create) { |
| err = __allocate_data_block(&dn); |
| if (err) |
| goto sync_out; |
| allocated = true; |
| map->m_flags |= F2FS_MAP_NEW; |
| blkaddr = dn.data_blkaddr; |
| } |
| /* Give more consecutive addresses for the readahead */ |
| if ((map->m_pblk != NEW_ADDR && |
| blkaddr == (map->m_pblk + ofs)) || |
| (map->m_pblk == NEW_ADDR && |
| blkaddr == NEW_ADDR)) { |
| ofs++; |
| dn.ofs_in_node++; |
| pgofs++; |
| map->m_len++; |
| goto get_next; |
| } |
| } |
| sync_out: |
| if (allocated) |
| sync_inode_page(&dn); |
| put_out: |
| f2fs_put_dnode(&dn); |
| unlock_out: |
| if (create) |
| f2fs_unlock_op(F2FS_I_SB(inode)); |
| out: |
| trace_f2fs_map_blocks(inode, map, err); |
| return err; |
| } |
| |
| static int __get_data_block(struct inode *inode, sector_t iblock, |
| struct buffer_head *bh, int create, bool fiemap) |
| { |
| struct f2fs_map_blocks map; |
| int ret; |
| |
| map.m_lblk = iblock; |
| map.m_len = bh->b_size >> inode->i_blkbits; |
| |
| ret = f2fs_map_blocks(inode, &map, create, fiemap); |
| if (!ret) { |
| map_bh(bh, inode->i_sb, map.m_pblk); |
| bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; |
| bh->b_size = map.m_len << inode->i_blkbits; |
| } |
| return ret; |
| } |
| |
| static int get_data_block(struct inode *inode, sector_t iblock, |
| struct buffer_head *bh_result, int create) |
| { |
| return __get_data_block(inode, iblock, bh_result, create, false); |
| } |
| |
| static int get_data_block_fiemap(struct inode *inode, sector_t iblock, |
| struct buffer_head *bh_result, int create) |
| { |
| return __get_data_block(inode, iblock, bh_result, create, true); |
| } |
| |
| static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) |
| { |
| return (offset >> inode->i_blkbits); |
| } |
| |
| static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) |
| { |
| return (blk << inode->i_blkbits); |
| } |
| |
| int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, |
| u64 start, u64 len) |
| { |
| struct buffer_head map_bh; |
| sector_t start_blk, last_blk; |
| loff_t isize = i_size_read(inode); |
| u64 logical = 0, phys = 0, size = 0; |
| u32 flags = 0; |
| bool past_eof = false, whole_file = false; |
| int ret = 0; |
| |
| ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&inode->i_mutex); |
| |
| if (len >= isize) { |
| whole_file = true; |
| len = isize; |
| } |
| |
| if (logical_to_blk(inode, len) == 0) |
| len = blk_to_logical(inode, 1); |
| |
| start_blk = logical_to_blk(inode, start); |
| last_blk = logical_to_blk(inode, start + len - 1); |
| next: |
| memset(&map_bh, 0, sizeof(struct buffer_head)); |
| map_bh.b_size = len; |
| |
| ret = get_data_block_fiemap(inode, start_blk, &map_bh, 0); |
| if (ret) |
| goto out; |
| |
| /* HOLE */ |
| if (!buffer_mapped(&map_bh)) { |
| start_blk++; |
| |
| if (!past_eof && blk_to_logical(inode, start_blk) >= isize) |
| past_eof = 1; |
| |
| if (past_eof && size) { |
| flags |= FIEMAP_EXTENT_LAST; |
| ret = fiemap_fill_next_extent(fieinfo, logical, |
| phys, size, flags); |
| } else if (size) { |
| ret = fiemap_fill_next_extent(fieinfo, logical, |
| phys, size, flags); |
| size = 0; |
| } |
| |
| /* if we have holes up to/past EOF then we're done */ |
| if (start_blk > last_blk || past_eof || ret) |
| goto out; |
| } else { |
| if (start_blk > last_blk && !whole_file) { |
| ret = fiemap_fill_next_extent(fieinfo, logical, |
| phys, size, flags); |
| goto out; |
| } |
| |
| /* |
| * if size != 0 then we know we already have an extent |
| * to add, so add it. |
| */ |
| if (size) { |
| ret = fiemap_fill_next_extent(fieinfo, logical, |
| phys, size, flags); |
| if (ret) |
| goto out; |
| } |
| |
| logical = blk_to_logical(inode, start_blk); |
| phys = blk_to_logical(inode, map_bh.b_blocknr); |
| size = map_bh.b_size; |
| flags = 0; |
| if (buffer_unwritten(&map_bh)) |
| flags = FIEMAP_EXTENT_UNWRITTEN; |
| |
| start_blk += logical_to_blk(inode, size); |
| |
| /* |
| * If we are past the EOF, then we need to make sure as |
| * soon as we find a hole that the last extent we found |
| * is marked with FIEMAP_EXTENT_LAST |
| */ |
| if (!past_eof && logical + size >= isize) |
| past_eof = true; |
| } |
| cond_resched(); |
| if (fatal_signal_pending(current)) |
| ret = -EINTR; |
| else |
| goto next; |
| out: |
| if (ret == 1) |
| ret = 0; |
| |
| mutex_unlock(&inode->i_mutex); |
| return ret; |
| } |
| |
| /* |
| * This function was originally taken from fs/mpage.c, and customized for f2fs. |
| * Major change was from block_size == page_size in f2fs by default. |
| */ |
| static int f2fs_mpage_readpages(struct address_space *mapping, |
| struct list_head *pages, struct page *page, |
| unsigned nr_pages) |
| { |
| struct bio *bio = NULL; |
| unsigned page_idx; |
| sector_t last_block_in_bio = 0; |
| struct inode *inode = mapping->host; |
| const unsigned blkbits = inode->i_blkbits; |
| const unsigned blocksize = 1 << blkbits; |
| sector_t block_in_file; |
| sector_t last_block; |
| sector_t last_block_in_file; |
| sector_t block_nr; |
| struct block_device *bdev = inode->i_sb->s_bdev; |
| struct f2fs_map_blocks map; |
| |
| map.m_pblk = 0; |
| map.m_lblk = 0; |
| map.m_len = 0; |
| map.m_flags = 0; |
| |
| for (page_idx = 0; nr_pages; page_idx++, nr_pages--) { |
| |
| prefetchw(&page->flags); |
| if (pages) { |
| page = list_entry(pages->prev, struct page, lru); |
| list_del(&page->lru); |
| if (add_to_page_cache_lru(page, mapping, |
| page->index, GFP_KERNEL)) |
| goto next_page; |
| } |
| |
| block_in_file = (sector_t)page->index; |
| last_block = block_in_file + nr_pages; |
| last_block_in_file = (i_size_read(inode) + blocksize - 1) >> |
| blkbits; |
| if (last_block > last_block_in_file) |
| last_block = last_block_in_file; |
| |
| /* |
| * Map blocks using the previous result first. |
| */ |
| if ((map.m_flags & F2FS_MAP_MAPPED) && |
| block_in_file > map.m_lblk && |
| block_in_file < (map.m_lblk + map.m_len)) |
| goto got_it; |
| |
| /* |
| * Then do more f2fs_map_blocks() calls until we are |
| * done with this page. |
| */ |
| map.m_flags = 0; |
| |
| if (block_in_file < last_block) { |
| map.m_lblk = block_in_file; |
| map.m_len = last_block - block_in_file; |
| |
| if (f2fs_map_blocks(inode, &map, 0, false)) |
| goto set_error_page; |
| } |
| got_it: |
| if ((map.m_flags & F2FS_MAP_MAPPED)) { |
| block_nr = map.m_pblk + block_in_file - map.m_lblk; |
| SetPageMappedToDisk(page); |
| |
| if (!PageUptodate(page) && !cleancache_get_page(page)) { |
| SetPageUptodate(page); |
| goto confused; |
| } |
| } else { |
| zero_user_segment(page, 0, PAGE_CACHE_SIZE); |
| SetPageUptodate(page); |
| unlock_page(page); |
| goto next_page; |
| } |
| |
| /* |
| * This page will go to BIO. Do we need to send this |
| * BIO off first? |
| */ |
| if (bio && (last_block_in_bio != block_nr - 1)) { |
| submit_and_realloc: |
| submit_bio(READ, bio); |
| bio = NULL; |
| } |
| if (bio == NULL) { |
| struct f2fs_crypto_ctx *ctx = NULL; |
| |
| if (f2fs_encrypted_inode(inode) && |
| S_ISREG(inode->i_mode)) { |
| struct page *cpage; |
| |
| ctx = f2fs_get_crypto_ctx(inode); |
| if (IS_ERR(ctx)) |
| goto set_error_page; |
| |
| /* wait the page to be moved by cleaning */ |
| cpage = find_lock_page( |
| META_MAPPING(F2FS_I_SB(inode)), |
| block_nr); |
| if (cpage) { |
| f2fs_wait_on_page_writeback(cpage, |
| DATA); |
| f2fs_put_page(cpage, 1); |
| } |
| } |
| |
| bio = bio_alloc(GFP_KERNEL, |
| min_t(int, nr_pages, bio_get_nr_vecs(bdev))); |
| if (!bio) { |
| if (ctx) |
| f2fs_release_crypto_ctx(ctx); |
| goto set_error_page; |
| } |
| bio->bi_bdev = bdev; |
| bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr); |
| bio->bi_end_io = f2fs_read_end_io; |
| bio->bi_private = ctx; |
| } |
| |
| if (bio_add_page(bio, page, blocksize, 0) < blocksize) |
| goto submit_and_realloc; |
| |
| last_block_in_bio = block_nr; |
| goto next_page; |
| set_error_page: |
| SetPageError(page); |
| zero_user_segment(page, 0, PAGE_CACHE_SIZE); |
| unlock_page(page); |
| goto next_page; |
| confused: |
| if (bio) { |
| submit_bio(READ, bio); |
| bio = NULL; |
| } |
| unlock_page(page); |
| next_page: |
| if (pages) |
| page_cache_release(page); |
| } |
| BUG_ON(pages && !list_empty(pages)); |
| if (bio) |
| submit_bio(READ, bio); |
| return 0; |
| } |
| |
| static int f2fs_read_data_page(struct file *file, struct page *page) |
| { |
| struct inode *inode = page->mapping->host; |
| int ret = -EAGAIN; |
| |
| trace_f2fs_readpage(page, DATA); |
| |
| /* If the file has inline data, try to read it directly */ |
| if (f2fs_has_inline_data(inode)) |
| ret = f2fs_read_inline_data(inode, page); |
| if (ret == -EAGAIN) |
| ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); |
| return ret; |
| } |
| |
| static int f2fs_read_data_pages(struct file *file, |
| struct address_space *mapping, |
| struct list_head *pages, unsigned nr_pages) |
| { |
| struct inode *inode = file->f_mapping->host; |
| |
| /* If the file has inline data, skip readpages */ |
| if (f2fs_has_inline_data(inode)) |
| return 0; |
| |
| return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); |
| } |
| |
| int do_write_data_page(struct f2fs_io_info *fio) |
| { |
| struct page *page = fio->page; |
| struct inode *inode = page->mapping->host; |
| struct dnode_of_data dn; |
| int err = 0; |
| |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); |
| if (err) |
| return err; |
| |
| fio->blk_addr = dn.data_blkaddr; |
| |
| /* This page is already truncated */ |
| if (fio->blk_addr == NULL_ADDR) { |
| ClearPageUptodate(page); |
| goto out_writepage; |
| } |
| |
| if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { |
| fio->encrypted_page = f2fs_encrypt(inode, fio->page); |
| if (IS_ERR(fio->encrypted_page)) { |
| err = PTR_ERR(fio->encrypted_page); |
| goto out_writepage; |
| } |
| } |
| |
| set_page_writeback(page); |
| |
| /* |
| * If current allocation needs SSR, |
| * it had better in-place writes for updated data. |
| */ |
| if (unlikely(fio->blk_addr != NEW_ADDR && |
| !is_cold_data(page) && |
| need_inplace_update(inode))) { |
| rewrite_data_page(fio); |
| set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE); |
| trace_f2fs_do_write_data_page(page, IPU); |
| } else { |
| write_data_page(&dn, fio); |
| set_data_blkaddr(&dn); |
| f2fs_update_extent_cache(&dn); |
| trace_f2fs_do_write_data_page(page, OPU); |
| set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE); |
| if (page->index == 0) |
| set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); |
| } |
| out_writepage: |
| f2fs_put_dnode(&dn); |
| return err; |
| } |
| |
| static int f2fs_write_data_page(struct page *page, |
| struct writeback_control *wbc) |
| { |
| struct inode *inode = page->mapping->host; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| loff_t i_size = i_size_read(inode); |
| const pgoff_t end_index = ((unsigned long long) i_size) |
| >> PAGE_CACHE_SHIFT; |
| unsigned offset = 0; |
| bool need_balance_fs = false; |
| int err = 0; |
| struct f2fs_io_info fio = { |
| .sbi = sbi, |
| .type = DATA, |
| .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE, |
| .page = page, |
| .encrypted_page = NULL, |
| }; |
| |
| trace_f2fs_writepage(page, DATA); |
| |
| if (page->index < end_index) |
| goto write; |
| |
| /* |
| * If the offset is out-of-range of file size, |
| * this page does not have to be written to disk. |
| */ |
| offset = i_size & (PAGE_CACHE_SIZE - 1); |
| if ((page->index >= end_index + 1) || !offset) |
| goto out; |
| |
| zero_user_segment(page, offset, PAGE_CACHE_SIZE); |
| write: |
| if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| goto redirty_out; |
| if (f2fs_is_drop_cache(inode)) |
| goto out; |
| if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim && |
| available_free_memory(sbi, BASE_CHECK)) |
| goto redirty_out; |
| |
| /* Dentry blocks are controlled by checkpoint */ |
| if (S_ISDIR(inode->i_mode)) { |
| if (unlikely(f2fs_cp_error(sbi))) |
| goto redirty_out; |
| err = do_write_data_page(&fio); |
| goto done; |
| } |
| |
| /* we should bypass data pages to proceed the kworkder jobs */ |
| if (unlikely(f2fs_cp_error(sbi))) { |
| SetPageError(page); |
| goto out; |
| } |
| |
| if (!wbc->for_reclaim) |
| need_balance_fs = true; |
| else if (has_not_enough_free_secs(sbi, 0)) |
| goto redirty_out; |
| |
| err = -EAGAIN; |
| f2fs_lock_op(sbi); |
| if (f2fs_has_inline_data(inode)) |
| err = f2fs_write_inline_data(inode, page); |
| if (err == -EAGAIN) |
| err = do_write_data_page(&fio); |
| f2fs_unlock_op(sbi); |
| done: |
| if (err && err != -ENOENT) |
| goto redirty_out; |
| |
| clear_cold_data(page); |
| out: |
| inode_dec_dirty_pages(inode); |
| if (err) |
| ClearPageUptodate(page); |
| unlock_page(page); |
| if (need_balance_fs) |
| f2fs_balance_fs(sbi); |
| if (wbc->for_reclaim) |
| f2fs_submit_merged_bio(sbi, DATA, WRITE); |
| return 0; |
| |
| redirty_out: |
| redirty_page_for_writepage(wbc, page); |
| return AOP_WRITEPAGE_ACTIVATE; |
| } |
| |
| static int __f2fs_writepage(struct page *page, struct writeback_control *wbc, |
| void *data) |
| { |
| struct address_space *mapping = data; |
| int ret = mapping->a_ops->writepage(page, wbc); |
| mapping_set_error(mapping, ret); |
| return ret; |
| } |
| |
| static int f2fs_write_data_pages(struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| struct inode *inode = mapping->host; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| bool locked = false; |
| int ret; |
| long diff; |
| |
| trace_f2fs_writepages(mapping->host, wbc, DATA); |
| |
| /* deal with chardevs and other special file */ |
| if (!mapping->a_ops->writepage) |
| return 0; |
| |
| if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && |
| get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && |
| available_free_memory(sbi, DIRTY_DENTS)) |
| goto skip_write; |
| |
| /* during POR, we don't need to trigger writepage at all. */ |
| if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| goto skip_write; |
| |
| diff = nr_pages_to_write(sbi, DATA, wbc); |
| |
| if (!S_ISDIR(inode->i_mode)) { |
| mutex_lock(&sbi->writepages); |
| locked = true; |
| } |
| ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping); |
| if (locked) |
| mutex_unlock(&sbi->writepages); |
| |
| f2fs_submit_merged_bio(sbi, DATA, WRITE); |
| |
| remove_dirty_dir_inode(inode); |
| |
| wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); |
| return ret; |
| |
| skip_write: |
| wbc->pages_skipped += get_dirty_pages(inode); |
| return 0; |
| } |
| |
| static void f2fs_write_failed(struct address_space *mapping, loff_t to) |
| { |
| struct inode *inode = mapping->host; |
| |
| if (to > inode->i_size) { |
| truncate_pagecache(inode, inode->i_size); |
| truncate_blocks(inode, inode->i_size, true); |
| } |
| } |
| |
| static int f2fs_write_begin(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned flags, |
| struct page **pagep, void **fsdata) |
| { |
| struct inode *inode = mapping->host; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct page *page, *ipage; |
| pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT; |
| struct dnode_of_data dn; |
| int err = 0; |
| |
| trace_f2fs_write_begin(inode, pos, len, flags); |
| |
| f2fs_balance_fs(sbi); |
| |
| /* |
| * We should check this at this moment to avoid deadlock on inode page |
| * and #0 page. The locking rule for inline_data conversion should be: |
| * lock_page(page #0) -> lock_page(inode_page) |
| */ |
| if (index != 0) { |
| err = f2fs_convert_inline_inode(inode); |
| if (err) |
| goto fail; |
| } |
| repeat: |
| page = grab_cache_page_write_begin(mapping, index, flags); |
| if (!page) { |
| err = -ENOMEM; |
| goto fail; |
| } |
| |
| *pagep = page; |
| |
| f2fs_lock_op(sbi); |
| |
| /* check inline_data */ |
| ipage = get_node_page(sbi, inode->i_ino); |
| if (IS_ERR(ipage)) { |
| err = PTR_ERR(ipage); |
| goto unlock_fail; |
| } |
| |
| set_new_dnode(&dn, inode, ipage, ipage, 0); |
| |
| if (f2fs_has_inline_data(inode)) { |
| if (pos + len <= MAX_INLINE_DATA) { |
| read_inline_data(page, ipage); |
| set_inode_flag(F2FS_I(inode), FI_DATA_EXIST); |
| sync_inode_page(&dn); |
| goto put_next; |
| } |
| err = f2fs_convert_inline_page(&dn, page); |
| if (err) |
| goto put_fail; |
| } |
| err = f2fs_reserve_block(&dn, index); |
| if (err) |
| goto put_fail; |
| put_next: |
| f2fs_put_dnode(&dn); |
| f2fs_unlock_op(sbi); |
| |
| if ((len == PAGE_CACHE_SIZE) || PageUptodate(page)) |
| return 0; |
| |
| f2fs_wait_on_page_writeback(page, DATA); |
| |
| if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) { |
| unsigned start = pos & (PAGE_CACHE_SIZE - 1); |
| unsigned end = start + len; |
| |
| /* Reading beyond i_size is simple: memset to zero */ |
| zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE); |
| goto out; |
| } |
| |
| if (dn.data_blkaddr == NEW_ADDR) { |
| zero_user_segment(page, 0, PAGE_CACHE_SIZE); |
| } else { |
| struct f2fs_io_info fio = { |
| .sbi = sbi, |
| .type = DATA, |
| .rw = READ_SYNC, |
| .blk_addr = dn.data_blkaddr, |
| .page = page, |
| .encrypted_page = NULL, |
| }; |
| err = f2fs_submit_page_bio(&fio); |
| if (err) |
| goto fail; |
| |
| lock_page(page); |
| if (unlikely(!PageUptodate(page))) { |
| f2fs_put_page(page, 1); |
| err = -EIO; |
| goto fail; |
| } |
| if (unlikely(page->mapping != mapping)) { |
| f2fs_put_page(page, 1); |
| goto repeat; |
| } |
| |
| /* avoid symlink page */ |
| if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { |
| err = f2fs_decrypt_one(inode, page); |
| if (err) { |
| f2fs_put_page(page, 1); |
| goto fail; |
| } |
| } |
| } |
| out: |
| SetPageUptodate(page); |
| clear_cold_data(page); |
| return 0; |
| |
| put_fail: |
| f2fs_put_dnode(&dn); |
| unlock_fail: |
| f2fs_unlock_op(sbi); |
| f2fs_put_page(page, 1); |
| fail: |
| f2fs_write_failed(mapping, pos + len); |
| return err; |
| } |
| |
| static int f2fs_write_end(struct file *file, |
| struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned copied, |
| struct page *page, void *fsdata) |
| { |
| struct inode *inode = page->mapping->host; |
| |
| trace_f2fs_write_end(inode, pos, len, copied); |
| |
| set_page_dirty(page); |
| |
| if (pos + copied > i_size_read(inode)) { |
| i_size_write(inode, pos + copied); |
| mark_inode_dirty(inode); |
| update_inode_page(inode); |
| } |
| |
| f2fs_put_page(page, 1); |
| return copied; |
| } |
| |
| static int check_direct_IO(struct inode *inode, struct iov_iter *iter, |
| loff_t offset) |
| { |
| unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; |
| |
| if (iov_iter_rw(iter) == READ) |
| return 0; |
| |
| if (offset & blocksize_mask) |
| return -EINVAL; |
| |
| if (iov_iter_alignment(iter) & blocksize_mask) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, |
| loff_t offset) |
| { |
| struct file *file = iocb->ki_filp; |
| struct address_space *mapping = file->f_mapping; |
| struct inode *inode = mapping->host; |
| size_t count = iov_iter_count(iter); |
| int err; |
| |
| /* we don't need to use inline_data strictly */ |
| if (f2fs_has_inline_data(inode)) { |
| err = f2fs_convert_inline_inode(inode); |
| if (err) |
| return err; |
| } |
| |
| if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) |
| return 0; |
| |
| if (check_direct_IO(inode, iter, offset)) |
| return 0; |
| |
| trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); |
| |
| if (iov_iter_rw(iter) == WRITE) |
| __allocate_data_blocks(inode, offset, count); |
| |
| err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block); |
| if (err < 0 && iov_iter_rw(iter) == WRITE) |
| f2fs_write_failed(mapping, offset + count); |
| |
| trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err); |
| |
| return err; |
| } |
| |
| void f2fs_invalidate_page(struct page *page, unsigned int offset, |
| unsigned int length) |
| { |
| struct inode *inode = page->mapping->host; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| |
| if (inode->i_ino >= F2FS_ROOT_INO(sbi) && |
| (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE)) |
| return; |
| |
| if (PageDirty(page)) { |
| if (inode->i_ino == F2FS_META_INO(sbi)) |
| dec_page_count(sbi, F2FS_DIRTY_META); |
| else if (inode->i_ino == F2FS_NODE_INO(sbi)) |
| dec_page_count(sbi, F2FS_DIRTY_NODES); |
| else |
| inode_dec_dirty_pages(inode); |
| } |
| ClearPagePrivate(page); |
| } |
| |
| int f2fs_release_page(struct page *page, gfp_t wait) |
| { |
| /* If this is dirty page, keep PagePrivate */ |
| if (PageDirty(page)) |
| return 0; |
| |
| ClearPagePrivate(page); |
| return 1; |
| } |
| |
| static int f2fs_set_data_page_dirty(struct page *page) |
| { |
| struct address_space *mapping = page->mapping; |
| struct inode *inode = mapping->host; |
| |
| trace_f2fs_set_page_dirty(page, DATA); |
| |
| SetPageUptodate(page); |
| |
| if (f2fs_is_atomic_file(inode)) { |
| register_inmem_page(inode, page); |
| return 1; |
| } |
| |
| mark_inode_dirty(inode); |
| |
| if (!PageDirty(page)) { |
| __set_page_dirty_nobuffers(page); |
| update_dirty_page(inode, page); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) |
| { |
| struct inode *inode = mapping->host; |
| |
| /* we don't need to use inline_data strictly */ |
| if (f2fs_has_inline_data(inode)) { |
| int err = f2fs_convert_inline_inode(inode); |
| if (err) |
| return err; |
| } |
| return generic_block_bmap(mapping, block, get_data_block); |
| } |
| |
| void init_extent_cache_info(struct f2fs_sb_info *sbi) |
| { |
| INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO); |
| init_rwsem(&sbi->extent_tree_lock); |
| INIT_LIST_HEAD(&sbi->extent_list); |
| spin_lock_init(&sbi->extent_lock); |
| sbi->total_ext_tree = 0; |
| atomic_set(&sbi->total_ext_node, 0); |
| } |
| |
| int __init create_extent_cache(void) |
| { |
| extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree", |
| sizeof(struct extent_tree)); |
| if (!extent_tree_slab) |
| return -ENOMEM; |
| extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node", |
| sizeof(struct extent_node)); |
| if (!extent_node_slab) { |
| kmem_cache_destroy(extent_tree_slab); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| void destroy_extent_cache(void) |
| { |
| kmem_cache_destroy(extent_node_slab); |
| kmem_cache_destroy(extent_tree_slab); |
| } |
| |
| const struct address_space_operations f2fs_dblock_aops = { |
| .readpage = f2fs_read_data_page, |
| .readpages = f2fs_read_data_pages, |
| .writepage = f2fs_write_data_page, |
| .writepages = f2fs_write_data_pages, |
| .write_begin = f2fs_write_begin, |
| .write_end = f2fs_write_end, |
| .set_page_dirty = f2fs_set_data_page_dirty, |
| .invalidatepage = f2fs_invalidate_page, |
| .releasepage = f2fs_release_page, |
| .direct_IO = f2fs_direct_IO, |
| .bmap = f2fs_bmap, |
| }; |