| /* |
| * Copyright (C) 2009 Red Hat, Inc. |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/mm.h> |
| #include <linux/sched.h> |
| #include <linux/highmem.h> |
| #include <linux/hugetlb.h> |
| #include <linux/mmu_notifier.h> |
| #include <linux/rmap.h> |
| #include <linux/swap.h> |
| #include <linux/shrinker.h> |
| #include <linux/mm_inline.h> |
| #include <linux/swapops.h> |
| #include <linux/dax.h> |
| #include <linux/khugepaged.h> |
| #include <linux/freezer.h> |
| #include <linux/pfn_t.h> |
| #include <linux/mman.h> |
| #include <linux/memremap.h> |
| #include <linux/pagemap.h> |
| #include <linux/debugfs.h> |
| #include <linux/migrate.h> |
| #include <linux/hashtable.h> |
| #include <linux/userfaultfd_k.h> |
| #include <linux/page_idle.h> |
| #include <linux/shmem_fs.h> |
| |
| #include <asm/tlb.h> |
| #include <asm/pgalloc.h> |
| #include "internal.h" |
| |
| /* |
| * By default transparent hugepage support is disabled in order that avoid |
| * to risk increase the memory footprint of applications without a guaranteed |
| * benefit. When transparent hugepage support is enabled, is for all mappings, |
| * and khugepaged scans all mappings. |
| * Defrag is invoked by khugepaged hugepage allocations and by page faults |
| * for all hugepage allocations. |
| */ |
| unsigned long transparent_hugepage_flags __read_mostly = |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS |
| (1<<TRANSPARENT_HUGEPAGE_FLAG)| |
| #endif |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE |
| (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| |
| #endif |
| (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| |
| (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| |
| (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); |
| |
| static struct shrinker deferred_split_shrinker; |
| |
| static atomic_t huge_zero_refcount; |
| struct page *huge_zero_page __read_mostly; |
| |
| static struct page *get_huge_zero_page(void) |
| { |
| struct page *zero_page; |
| retry: |
| if (likely(atomic_inc_not_zero(&huge_zero_refcount))) |
| return READ_ONCE(huge_zero_page); |
| |
| zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, |
| HPAGE_PMD_ORDER); |
| if (!zero_page) { |
| count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); |
| return NULL; |
| } |
| count_vm_event(THP_ZERO_PAGE_ALLOC); |
| preempt_disable(); |
| if (cmpxchg(&huge_zero_page, NULL, zero_page)) { |
| preempt_enable(); |
| __free_pages(zero_page, compound_order(zero_page)); |
| goto retry; |
| } |
| |
| /* We take additional reference here. It will be put back by shrinker */ |
| atomic_set(&huge_zero_refcount, 2); |
| preempt_enable(); |
| return READ_ONCE(huge_zero_page); |
| } |
| |
| static void put_huge_zero_page(void) |
| { |
| /* |
| * Counter should never go to zero here. Only shrinker can put |
| * last reference. |
| */ |
| BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); |
| } |
| |
| struct page *mm_get_huge_zero_page(struct mm_struct *mm) |
| { |
| if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) |
| return READ_ONCE(huge_zero_page); |
| |
| if (!get_huge_zero_page()) |
| return NULL; |
| |
| if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) |
| put_huge_zero_page(); |
| |
| return READ_ONCE(huge_zero_page); |
| } |
| |
| void mm_put_huge_zero_page(struct mm_struct *mm) |
| { |
| if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) |
| put_huge_zero_page(); |
| } |
| |
| static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| /* we can free zero page only if last reference remains */ |
| return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; |
| } |
| |
| static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { |
| struct page *zero_page = xchg(&huge_zero_page, NULL); |
| BUG_ON(zero_page == NULL); |
| __free_pages(zero_page, compound_order(zero_page)); |
| return HPAGE_PMD_NR; |
| } |
| |
| return 0; |
| } |
| |
| static struct shrinker huge_zero_page_shrinker = { |
| .count_objects = shrink_huge_zero_page_count, |
| .scan_objects = shrink_huge_zero_page_scan, |
| .seeks = DEFAULT_SEEKS, |
| }; |
| |
| #ifdef CONFIG_SYSFS |
| |
| static ssize_t triple_flag_store(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count, |
| enum transparent_hugepage_flag enabled, |
| enum transparent_hugepage_flag deferred, |
| enum transparent_hugepage_flag req_madv) |
| { |
| if (!memcmp("defer", buf, |
| min(sizeof("defer")-1, count))) { |
| if (enabled == deferred) |
| return -EINVAL; |
| clear_bit(enabled, &transparent_hugepage_flags); |
| clear_bit(req_madv, &transparent_hugepage_flags); |
| set_bit(deferred, &transparent_hugepage_flags); |
| } else if (!memcmp("always", buf, |
| min(sizeof("always")-1, count))) { |
| clear_bit(deferred, &transparent_hugepage_flags); |
| clear_bit(req_madv, &transparent_hugepage_flags); |
| set_bit(enabled, &transparent_hugepage_flags); |
| } else if (!memcmp("madvise", buf, |
| min(sizeof("madvise")-1, count))) { |
| clear_bit(enabled, &transparent_hugepage_flags); |
| clear_bit(deferred, &transparent_hugepage_flags); |
| set_bit(req_madv, &transparent_hugepage_flags); |
| } else if (!memcmp("never", buf, |
| min(sizeof("never")-1, count))) { |
| clear_bit(enabled, &transparent_hugepage_flags); |
| clear_bit(req_madv, &transparent_hugepage_flags); |
| clear_bit(deferred, &transparent_hugepage_flags); |
| } else |
| return -EINVAL; |
| |
| return count; |
| } |
| |
| static ssize_t enabled_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) |
| return sprintf(buf, "[always] madvise never\n"); |
| else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) |
| return sprintf(buf, "always [madvise] never\n"); |
| else |
| return sprintf(buf, "always madvise [never]\n"); |
| } |
| |
| static ssize_t enabled_store(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count) |
| { |
| ssize_t ret; |
| |
| ret = triple_flag_store(kobj, attr, buf, count, |
| TRANSPARENT_HUGEPAGE_FLAG, |
| TRANSPARENT_HUGEPAGE_FLAG, |
| TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); |
| |
| if (ret > 0) { |
| int err = start_stop_khugepaged(); |
| if (err) |
| ret = err; |
| } |
| |
| return ret; |
| } |
| static struct kobj_attribute enabled_attr = |
| __ATTR(enabled, 0644, enabled_show, enabled_store); |
| |
| ssize_t single_hugepage_flag_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf, |
| enum transparent_hugepage_flag flag) |
| { |
| return sprintf(buf, "%d\n", |
| !!test_bit(flag, &transparent_hugepage_flags)); |
| } |
| |
| ssize_t single_hugepage_flag_store(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count, |
| enum transparent_hugepage_flag flag) |
| { |
| unsigned long value; |
| int ret; |
| |
| ret = kstrtoul(buf, 10, &value); |
| if (ret < 0) |
| return ret; |
| if (value > 1) |
| return -EINVAL; |
| |
| if (value) |
| set_bit(flag, &transparent_hugepage_flags); |
| else |
| clear_bit(flag, &transparent_hugepage_flags); |
| |
| return count; |
| } |
| |
| /* |
| * Currently defrag only disables __GFP_NOWAIT for allocation. A blind |
| * __GFP_REPEAT is too aggressive, it's never worth swapping tons of |
| * memory just to allocate one more hugepage. |
| */ |
| static ssize_t defrag_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) |
| return sprintf(buf, "[always] defer madvise never\n"); |
| if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) |
| return sprintf(buf, "always [defer] madvise never\n"); |
| else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) |
| return sprintf(buf, "always defer [madvise] never\n"); |
| else |
| return sprintf(buf, "always defer madvise [never]\n"); |
| |
| } |
| static ssize_t defrag_store(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count) |
| { |
| return triple_flag_store(kobj, attr, buf, count, |
| TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, |
| TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, |
| TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); |
| } |
| static struct kobj_attribute defrag_attr = |
| __ATTR(defrag, 0644, defrag_show, defrag_store); |
| |
| static ssize_t use_zero_page_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| return single_hugepage_flag_show(kobj, attr, buf, |
| TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); |
| } |
| static ssize_t use_zero_page_store(struct kobject *kobj, |
| struct kobj_attribute *attr, const char *buf, size_t count) |
| { |
| return single_hugepage_flag_store(kobj, attr, buf, count, |
| TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); |
| } |
| static struct kobj_attribute use_zero_page_attr = |
| __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); |
| #ifdef CONFIG_DEBUG_VM |
| static ssize_t debug_cow_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| return single_hugepage_flag_show(kobj, attr, buf, |
| TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); |
| } |
| static ssize_t debug_cow_store(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count) |
| { |
| return single_hugepage_flag_store(kobj, attr, buf, count, |
| TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); |
| } |
| static struct kobj_attribute debug_cow_attr = |
| __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); |
| #endif /* CONFIG_DEBUG_VM */ |
| |
| static struct attribute *hugepage_attr[] = { |
| &enabled_attr.attr, |
| &defrag_attr.attr, |
| &use_zero_page_attr.attr, |
| #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) |
| &shmem_enabled_attr.attr, |
| #endif |
| #ifdef CONFIG_DEBUG_VM |
| &debug_cow_attr.attr, |
| #endif |
| NULL, |
| }; |
| |
| static struct attribute_group hugepage_attr_group = { |
| .attrs = hugepage_attr, |
| }; |
| |
| static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) |
| { |
| int err; |
| |
| *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); |
| if (unlikely(!*hugepage_kobj)) { |
| pr_err("failed to create transparent hugepage kobject\n"); |
| return -ENOMEM; |
| } |
| |
| err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); |
| if (err) { |
| pr_err("failed to register transparent hugepage group\n"); |
| goto delete_obj; |
| } |
| |
| err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); |
| if (err) { |
| pr_err("failed to register transparent hugepage group\n"); |
| goto remove_hp_group; |
| } |
| |
| return 0; |
| |
| remove_hp_group: |
| sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); |
| delete_obj: |
| kobject_put(*hugepage_kobj); |
| return err; |
| } |
| |
| static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) |
| { |
| sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); |
| sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); |
| kobject_put(hugepage_kobj); |
| } |
| #else |
| static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) |
| { |
| return 0; |
| } |
| |
| static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) |
| { |
| } |
| #endif /* CONFIG_SYSFS */ |
| |
| static int __init hugepage_init(void) |
| { |
| int err; |
| struct kobject *hugepage_kobj; |
| |
| if (!has_transparent_hugepage()) { |
| transparent_hugepage_flags = 0; |
| return -EINVAL; |
| } |
| |
| /* |
| * hugepages can't be allocated by the buddy allocator |
| */ |
| MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); |
| /* |
| * we use page->mapping and page->index in second tail page |
| * as list_head: assuming THP order >= 2 |
| */ |
| MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); |
| |
| err = hugepage_init_sysfs(&hugepage_kobj); |
| if (err) |
| goto err_sysfs; |
| |
| err = khugepaged_init(); |
| if (err) |
| goto err_slab; |
| |
| err = register_shrinker(&huge_zero_page_shrinker); |
| if (err) |
| goto err_hzp_shrinker; |
| err = register_shrinker(&deferred_split_shrinker); |
| if (err) |
| goto err_split_shrinker; |
| |
| /* |
| * By default disable transparent hugepages on smaller systems, |
| * where the extra memory used could hurt more than TLB overhead |
| * is likely to save. The admin can still enable it through /sys. |
| */ |
| if (totalram_pages < (512 << (20 - PAGE_SHIFT))) { |
| transparent_hugepage_flags = 0; |
| return 0; |
| } |
| |
| err = start_stop_khugepaged(); |
| if (err) |
| goto err_khugepaged; |
| |
| return 0; |
| err_khugepaged: |
| unregister_shrinker(&deferred_split_shrinker); |
| err_split_shrinker: |
| unregister_shrinker(&huge_zero_page_shrinker); |
| err_hzp_shrinker: |
| khugepaged_destroy(); |
| err_slab: |
| hugepage_exit_sysfs(hugepage_kobj); |
| err_sysfs: |
| return err; |
| } |
| subsys_initcall(hugepage_init); |
| |
| static int __init setup_transparent_hugepage(char *str) |
| { |
| int ret = 0; |
| if (!str) |
| goto out; |
| if (!strcmp(str, "always")) { |
| set_bit(TRANSPARENT_HUGEPAGE_FLAG, |
| &transparent_hugepage_flags); |
| clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
| &transparent_hugepage_flags); |
| ret = 1; |
| } else if (!strcmp(str, "madvise")) { |
| clear_bit(TRANSPARENT_HUGEPAGE_FLAG, |
| &transparent_hugepage_flags); |
| set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
| &transparent_hugepage_flags); |
| ret = 1; |
| } else if (!strcmp(str, "never")) { |
| clear_bit(TRANSPARENT_HUGEPAGE_FLAG, |
| &transparent_hugepage_flags); |
| clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
| &transparent_hugepage_flags); |
| ret = 1; |
| } |
| out: |
| if (!ret) |
| pr_warn("transparent_hugepage= cannot parse, ignored\n"); |
| return ret; |
| } |
| __setup("transparent_hugepage=", setup_transparent_hugepage); |
| |
| pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) |
| { |
| if (likely(vma->vm_flags & VM_WRITE)) |
| pmd = pmd_mkwrite(pmd); |
| return pmd; |
| } |
| |
| static inline struct list_head *page_deferred_list(struct page *page) |
| { |
| /* |
| * ->lru in the tail pages is occupied by compound_head. |
| * Let's use ->mapping + ->index in the second tail page as list_head. |
| */ |
| return (struct list_head *)&page[2].mapping; |
| } |
| |
| void prep_transhuge_page(struct page *page) |
| { |
| /* |
| * we use page->mapping and page->indexlru in second tail page |
| * as list_head: assuming THP order >= 2 |
| */ |
| |
| INIT_LIST_HEAD(page_deferred_list(page)); |
| set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); |
| } |
| |
| unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len, |
| loff_t off, unsigned long flags, unsigned long size) |
| { |
| unsigned long addr; |
| loff_t off_end = off + len; |
| loff_t off_align = round_up(off, size); |
| unsigned long len_pad; |
| |
| if (off_end <= off_align || (off_end - off_align) < size) |
| return 0; |
| |
| len_pad = len + size; |
| if (len_pad < len || (off + len_pad) < off) |
| return 0; |
| |
| addr = current->mm->get_unmapped_area(filp, 0, len_pad, |
| off >> PAGE_SHIFT, flags); |
| if (IS_ERR_VALUE(addr)) |
| return 0; |
| |
| addr += (off - addr) & (size - 1); |
| return addr; |
| } |
| |
| unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, |
| unsigned long len, unsigned long pgoff, unsigned long flags) |
| { |
| loff_t off = (loff_t)pgoff << PAGE_SHIFT; |
| |
| if (addr) |
| goto out; |
| if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) |
| goto out; |
| |
| addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE); |
| if (addr) |
| return addr; |
| |
| out: |
| return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); |
| } |
| EXPORT_SYMBOL_GPL(thp_get_unmapped_area); |
| |
| static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page, |
| gfp_t gfp) |
| { |
| struct vm_area_struct *vma = fe->vma; |
| struct mem_cgroup *memcg; |
| pgtable_t pgtable; |
| unsigned long haddr = fe->address & HPAGE_PMD_MASK; |
| |
| VM_BUG_ON_PAGE(!PageCompound(page), page); |
| |
| if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) { |
| put_page(page); |
| count_vm_event(THP_FAULT_FALLBACK); |
| return VM_FAULT_FALLBACK; |
| } |
| |
| pgtable = pte_alloc_one(vma->vm_mm, haddr); |
| if (unlikely(!pgtable)) { |
| mem_cgroup_cancel_charge(page, memcg, true); |
| put_page(page); |
| return VM_FAULT_OOM; |
| } |
| |
| clear_huge_page(page, haddr, HPAGE_PMD_NR); |
| /* |
| * The memory barrier inside __SetPageUptodate makes sure that |
| * clear_huge_page writes become visible before the set_pmd_at() |
| * write. |
| */ |
| __SetPageUptodate(page); |
| |
| fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); |
| if (unlikely(!pmd_none(*fe->pmd))) { |
| spin_unlock(fe->ptl); |
| mem_cgroup_cancel_charge(page, memcg, true); |
| put_page(page); |
| pte_free(vma->vm_mm, pgtable); |
| } else { |
| pmd_t entry; |
| |
| /* Deliver the page fault to userland */ |
| if (userfaultfd_missing(vma)) { |
| int ret; |
| |
| spin_unlock(fe->ptl); |
| mem_cgroup_cancel_charge(page, memcg, true); |
| put_page(page); |
| pte_free(vma->vm_mm, pgtable); |
| ret = handle_userfault(fe, VM_UFFD_MISSING); |
| VM_BUG_ON(ret & VM_FAULT_FALLBACK); |
| return ret; |
| } |
| |
| entry = mk_huge_pmd(page, vma->vm_page_prot); |
| entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
| page_add_new_anon_rmap(page, vma, haddr, true); |
| mem_cgroup_commit_charge(page, memcg, false, true); |
| lru_cache_add_active_or_unevictable(page, vma); |
| pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable); |
| set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry); |
| add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); |
| atomic_long_inc(&vma->vm_mm->nr_ptes); |
| spin_unlock(fe->ptl); |
| count_vm_event(THP_FAULT_ALLOC); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * If THP defrag is set to always then directly reclaim/compact as necessary |
| * If set to defer then do only background reclaim/compact and defer to khugepaged |
| * If set to madvise and the VMA is flagged then directly reclaim/compact |
| * When direct reclaim/compact is allowed, don't retry except for flagged VMA's |
| */ |
| static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) |
| { |
| bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); |
| |
| if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, |
| &transparent_hugepage_flags) && vma_madvised) |
| return GFP_TRANSHUGE; |
| else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, |
| &transparent_hugepage_flags)) |
| return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; |
| else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, |
| &transparent_hugepage_flags)) |
| return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); |
| |
| return GFP_TRANSHUGE_LIGHT; |
| } |
| |
| /* Caller must hold page table lock. */ |
| static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, |
| struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, |
| struct page *zero_page) |
| { |
| pmd_t entry; |
| if (!pmd_none(*pmd)) |
| return false; |
| entry = mk_pmd(zero_page, vma->vm_page_prot); |
| entry = pmd_mkhuge(entry); |
| if (pgtable) |
| pgtable_trans_huge_deposit(mm, pmd, pgtable); |
| set_pmd_at(mm, haddr, pmd, entry); |
| atomic_long_inc(&mm->nr_ptes); |
| return true; |
| } |
| |
| int do_huge_pmd_anonymous_page(struct fault_env *fe) |
| { |
| struct vm_area_struct *vma = fe->vma; |
| gfp_t gfp; |
| struct page *page; |
| unsigned long haddr = fe->address & HPAGE_PMD_MASK; |
| |
| if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) |
| return VM_FAULT_FALLBACK; |
| if (unlikely(anon_vma_prepare(vma))) |
| return VM_FAULT_OOM; |
| if (unlikely(khugepaged_enter(vma, vma->vm_flags))) |
| return VM_FAULT_OOM; |
| if (!(fe->flags & FAULT_FLAG_WRITE) && |
| !mm_forbids_zeropage(vma->vm_mm) && |
| transparent_hugepage_use_zero_page()) { |
| pgtable_t pgtable; |
| struct page *zero_page; |
| bool set; |
| int ret; |
| pgtable = pte_alloc_one(vma->vm_mm, haddr); |
| if (unlikely(!pgtable)) |
| return VM_FAULT_OOM; |
| zero_page = mm_get_huge_zero_page(vma->vm_mm); |
| if (unlikely(!zero_page)) { |
| pte_free(vma->vm_mm, pgtable); |
| count_vm_event(THP_FAULT_FALLBACK); |
| return VM_FAULT_FALLBACK; |
| } |
| fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); |
| ret = 0; |
| set = false; |
| if (pmd_none(*fe->pmd)) { |
| if (userfaultfd_missing(vma)) { |
| spin_unlock(fe->ptl); |
| ret = handle_userfault(fe, VM_UFFD_MISSING); |
| VM_BUG_ON(ret & VM_FAULT_FALLBACK); |
| } else { |
| set_huge_zero_page(pgtable, vma->vm_mm, vma, |
| haddr, fe->pmd, zero_page); |
| spin_unlock(fe->ptl); |
| set = true; |
| } |
| } else |
| spin_unlock(fe->ptl); |
| if (!set) |
| pte_free(vma->vm_mm, pgtable); |
| return ret; |
| } |
| gfp = alloc_hugepage_direct_gfpmask(vma); |
| page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); |
| if (unlikely(!page)) { |
| count_vm_event(THP_FAULT_FALLBACK); |
| return VM_FAULT_FALLBACK; |
| } |
| prep_transhuge_page(page); |
| return __do_huge_pmd_anonymous_page(fe, page, gfp); |
| } |
| |
| static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, |
| pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| pmd_t entry; |
| spinlock_t *ptl; |
| |
| ptl = pmd_lock(mm, pmd); |
| entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); |
| if (pfn_t_devmap(pfn)) |
| entry = pmd_mkdevmap(entry); |
| if (write) { |
| entry = pmd_mkyoung(pmd_mkdirty(entry)); |
| entry = maybe_pmd_mkwrite(entry, vma); |
| } |
| set_pmd_at(mm, addr, pmd, entry); |
| update_mmu_cache_pmd(vma, addr, pmd); |
| spin_unlock(ptl); |
| } |
| |
| int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, |
| pmd_t *pmd, pfn_t pfn, bool write) |
| { |
| pgprot_t pgprot = vma->vm_page_prot; |
| /* |
| * If we had pmd_special, we could avoid all these restrictions, |
| * but we need to be consistent with PTEs and architectures that |
| * can't support a 'special' bit. |
| */ |
| BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); |
| BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == |
| (VM_PFNMAP|VM_MIXEDMAP)); |
| BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); |
| BUG_ON(!pfn_t_devmap(pfn)); |
| |
| if (addr < vma->vm_start || addr >= vma->vm_end) |
| return VM_FAULT_SIGBUS; |
| |
| track_pfn_insert(vma, &pgprot, pfn); |
| |
| insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write); |
| return VM_FAULT_NOPAGE; |
| } |
| EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); |
| |
| static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, |
| pmd_t *pmd) |
| { |
| pmd_t _pmd; |
| |
| /* |
| * We should set the dirty bit only for FOLL_WRITE but for now |
| * the dirty bit in the pmd is meaningless. And if the dirty |
| * bit will become meaningful and we'll only set it with |
| * FOLL_WRITE, an atomic set_bit will be required on the pmd to |
| * set the young bit, instead of the current set_pmd_at. |
| */ |
| _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); |
| if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, |
| pmd, _pmd, 1)) |
| update_mmu_cache_pmd(vma, addr, pmd); |
| } |
| |
| struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, |
| pmd_t *pmd, int flags) |
| { |
| unsigned long pfn = pmd_pfn(*pmd); |
| struct mm_struct *mm = vma->vm_mm; |
| struct dev_pagemap *pgmap; |
| struct page *page; |
| |
| assert_spin_locked(pmd_lockptr(mm, pmd)); |
| |
| if (flags & FOLL_WRITE && !pmd_write(*pmd)) |
| return NULL; |
| |
| if (pmd_present(*pmd) && pmd_devmap(*pmd)) |
| /* pass */; |
| else |
| return NULL; |
| |
| if (flags & FOLL_TOUCH) |
| touch_pmd(vma, addr, pmd); |
| |
| /* |
| * device mapped pages can only be returned if the |
| * caller will manage the page reference count. |
| */ |
| if (!(flags & FOLL_GET)) |
| return ERR_PTR(-EEXIST); |
| |
| pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; |
| pgmap = get_dev_pagemap(pfn, NULL); |
| if (!pgmap) |
| return ERR_PTR(-EFAULT); |
| page = pfn_to_page(pfn); |
| get_page(page); |
| put_dev_pagemap(pgmap); |
| |
| return page; |
| } |
| |
| int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
| pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, |
| struct vm_area_struct *vma) |
| { |
| spinlock_t *dst_ptl, *src_ptl; |
| struct page *src_page; |
| pmd_t pmd; |
| pgtable_t pgtable = NULL; |
| int ret = -ENOMEM; |
| |
| /* Skip if can be re-fill on fault */ |
| if (!vma_is_anonymous(vma)) |
| return 0; |
| |
| pgtable = pte_alloc_one(dst_mm, addr); |
| if (unlikely(!pgtable)) |
| goto out; |
| |
| dst_ptl = pmd_lock(dst_mm, dst_pmd); |
| src_ptl = pmd_lockptr(src_mm, src_pmd); |
| spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
| |
| ret = -EAGAIN; |
| pmd = *src_pmd; |
| if (unlikely(!pmd_trans_huge(pmd))) { |
| pte_free(dst_mm, pgtable); |
| goto out_unlock; |
| } |
| /* |
| * When page table lock is held, the huge zero pmd should not be |
| * under splitting since we don't split the page itself, only pmd to |
| * a page table. |
| */ |
| if (is_huge_zero_pmd(pmd)) { |
| struct page *zero_page; |
| /* |
| * get_huge_zero_page() will never allocate a new page here, |
| * since we already have a zero page to copy. It just takes a |
| * reference. |
| */ |
| zero_page = mm_get_huge_zero_page(dst_mm); |
| set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, |
| zero_page); |
| ret = 0; |
| goto out_unlock; |
| } |
| |
| src_page = pmd_page(pmd); |
| VM_BUG_ON_PAGE(!PageHead(src_page), src_page); |
| get_page(src_page); |
| page_dup_rmap(src_page, true); |
| add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); |
| atomic_long_inc(&dst_mm->nr_ptes); |
| pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); |
| |
| pmdp_set_wrprotect(src_mm, addr, src_pmd); |
| pmd = pmd_mkold(pmd_wrprotect(pmd)); |
| set_pmd_at(dst_mm, addr, dst_pmd, pmd); |
| |
| ret = 0; |
| out_unlock: |
| spin_unlock(src_ptl); |
| spin_unlock(dst_ptl); |
| out: |
| return ret; |
| } |
| |
| void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd) |
| { |
| pmd_t entry; |
| unsigned long haddr; |
| |
| fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd); |
| if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) |
| goto unlock; |
| |
| entry = pmd_mkyoung(orig_pmd); |
| haddr = fe->address & HPAGE_PMD_MASK; |
| if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry, |
| fe->flags & FAULT_FLAG_WRITE)) |
| update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd); |
| |
| unlock: |
| spin_unlock(fe->ptl); |
| } |
| |
| static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd, |
| struct page *page) |
| { |
| struct vm_area_struct *vma = fe->vma; |
| unsigned long haddr = fe->address & HPAGE_PMD_MASK; |
| struct mem_cgroup *memcg; |
| pgtable_t pgtable; |
| pmd_t _pmd; |
| int ret = 0, i; |
| struct page **pages; |
| unsigned long mmun_start; /* For mmu_notifiers */ |
| unsigned long mmun_end; /* For mmu_notifiers */ |
| |
| pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, |
| GFP_KERNEL); |
| if (unlikely(!pages)) { |
| ret |= VM_FAULT_OOM; |
| goto out; |
| } |
| |
| for (i = 0; i < HPAGE_PMD_NR; i++) { |
| pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | |
| __GFP_OTHER_NODE, vma, |
| fe->address, page_to_nid(page)); |
| if (unlikely(!pages[i] || |
| mem_cgroup_try_charge(pages[i], vma->vm_mm, |
| GFP_KERNEL, &memcg, false))) { |
| if (pages[i]) |
| put_page(pages[i]); |
| while (--i >= 0) { |
| memcg = (void *)page_private(pages[i]); |
| set_page_private(pages[i], 0); |
| mem_cgroup_cancel_charge(pages[i], memcg, |
| false); |
| put_page(pages[i]); |
| } |
| kfree(pages); |
| ret |= VM_FAULT_OOM; |
| goto out; |
| } |
| set_page_private(pages[i], (unsigned long)memcg); |
| } |
| |
| for (i = 0; i < HPAGE_PMD_NR; i++) { |
| copy_user_highpage(pages[i], page + i, |
| haddr + PAGE_SIZE * i, vma); |
| __SetPageUptodate(pages[i]); |
| cond_resched(); |
| } |
| |
| mmun_start = haddr; |
| mmun_end = haddr + HPAGE_PMD_SIZE; |
| mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); |
| |
| fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); |
| if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) |
| goto out_free_pages; |
| VM_BUG_ON_PAGE(!PageHead(page), page); |
| |
| pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd); |
| /* leave pmd empty until pte is filled */ |
| |
| pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd); |
| pmd_populate(vma->vm_mm, &_pmd, pgtable); |
| |
| for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { |
| pte_t entry; |
| entry = mk_pte(pages[i], vma->vm_page_prot); |
| entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
| memcg = (void *)page_private(pages[i]); |
| set_page_private(pages[i], 0); |
| page_add_new_anon_rmap(pages[i], fe->vma, haddr, false); |
| mem_cgroup_commit_charge(pages[i], memcg, false, false); |
| lru_cache_add_active_or_unevictable(pages[i], vma); |
| fe->pte = pte_offset_map(&_pmd, haddr); |
| VM_BUG_ON(!pte_none(*fe->pte)); |
| set_pte_at(vma->vm_mm, haddr, fe->pte, entry); |
| pte_unmap(fe->pte); |
| } |
| kfree(pages); |
| |
| smp_wmb(); /* make pte visible before pmd */ |
| pmd_populate(vma->vm_mm, fe->pmd, pgtable); |
| page_remove_rmap(page, true); |
| spin_unlock(fe->ptl); |
| |
| mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); |
| |
| ret |= VM_FAULT_WRITE; |
| put_page(page); |
| |
| out: |
| return ret; |
| |
| out_free_pages: |
| spin_unlock(fe->ptl); |
| mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); |
| for (i = 0; i < HPAGE_PMD_NR; i++) { |
| memcg = (void *)page_private(pages[i]); |
| set_page_private(pages[i], 0); |
| mem_cgroup_cancel_charge(pages[i], memcg, false); |
| put_page(pages[i]); |
| } |
| kfree(pages); |
| goto out; |
| } |
| |
| int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd) |
| { |
| struct vm_area_struct *vma = fe->vma; |
| struct page *page = NULL, *new_page; |
| struct mem_cgroup *memcg; |
| unsigned long haddr = fe->address & HPAGE_PMD_MASK; |
| unsigned long mmun_start; /* For mmu_notifiers */ |
| unsigned long mmun_end; /* For mmu_notifiers */ |
| gfp_t huge_gfp; /* for allocation and charge */ |
| int ret = 0; |
| |
| fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd); |
| VM_BUG_ON_VMA(!vma->anon_vma, vma); |
| if (is_huge_zero_pmd(orig_pmd)) |
| goto alloc; |
| spin_lock(fe->ptl); |
| if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) |
| goto out_unlock; |
| |
| page = pmd_page(orig_pmd); |
| VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); |
| /* |
| * We can only reuse the page if nobody else maps the huge page or it's |
| * part. |
| */ |
| if (page_trans_huge_mapcount(page, NULL) == 1) { |
| pmd_t entry; |
| entry = pmd_mkyoung(orig_pmd); |
| entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
| if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1)) |
| update_mmu_cache_pmd(vma, fe->address, fe->pmd); |
| ret |= VM_FAULT_WRITE; |
| goto out_unlock; |
| } |
| get_page(page); |
| spin_unlock(fe->ptl); |
| alloc: |
| if (transparent_hugepage_enabled(vma) && |
| !transparent_hugepage_debug_cow()) { |
| huge_gfp = alloc_hugepage_direct_gfpmask(vma); |
| new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); |
| } else |
| new_page = NULL; |
| |
| if (likely(new_page)) { |
| prep_transhuge_page(new_page); |
| } else { |
| if (!page) { |
| split_huge_pmd(vma, fe->pmd, fe->address); |
| ret |= VM_FAULT_FALLBACK; |
| } else { |
| ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page); |
| if (ret & VM_FAULT_OOM) { |
| split_huge_pmd(vma, fe->pmd, fe->address); |
| ret |= VM_FAULT_FALLBACK; |
| } |
| put_page(page); |
| } |
| count_vm_event(THP_FAULT_FALLBACK); |
| goto out; |
| } |
| |
| if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm, |
| huge_gfp, &memcg, true))) { |
| put_page(new_page); |
| split_huge_pmd(vma, fe->pmd, fe->address); |
| if (page) |
| put_page(page); |
| ret |= VM_FAULT_FALLBACK; |
| count_vm_event(THP_FAULT_FALLBACK); |
| goto out; |
| } |
| |
| count_vm_event(THP_FAULT_ALLOC); |
| |
| if (!page) |
| clear_huge_page(new_page, haddr, HPAGE_PMD_NR); |
| else |
| copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); |
| __SetPageUptodate(new_page); |
| |
| mmun_start = haddr; |
| mmun_end = haddr + HPAGE_PMD_SIZE; |
| mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); |
| |
| spin_lock(fe->ptl); |
| if (page) |
| put_page(page); |
| if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) { |
| spin_unlock(fe->ptl); |
| mem_cgroup_cancel_charge(new_page, memcg, true); |
| put_page(new_page); |
| goto out_mn; |
| } else { |
| pmd_t entry; |
| entry = mk_huge_pmd(new_page, vma->vm_page_prot); |
| entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
| pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd); |
| page_add_new_anon_rmap(new_page, vma, haddr, true); |
| mem_cgroup_commit_charge(new_page, memcg, false, true); |
| lru_cache_add_active_or_unevictable(new_page, vma); |
| set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry); |
| update_mmu_cache_pmd(vma, fe->address, fe->pmd); |
| if (!page) { |
| add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); |
| } else { |
| VM_BUG_ON_PAGE(!PageHead(page), page); |
| page_remove_rmap(page, true); |
| put_page(page); |
| } |
| ret |= VM_FAULT_WRITE; |
| } |
| spin_unlock(fe->ptl); |
| out_mn: |
| mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); |
| out: |
| return ret; |
| out_unlock: |
| spin_unlock(fe->ptl); |
| return ret; |
| } |
| |
| struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, |
| unsigned long addr, |
| pmd_t *pmd, |
| unsigned int flags) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| struct page *page = NULL; |
| |
| assert_spin_locked(pmd_lockptr(mm, pmd)); |
| |
| if (flags & FOLL_WRITE && !pmd_write(*pmd)) |
| goto out; |
| |
| /* Avoid dumping huge zero page */ |
| if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) |
| return ERR_PTR(-EFAULT); |
| |
| /* Full NUMA hinting faults to serialise migration in fault paths */ |
| if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) |
| goto out; |
| |
| page = pmd_page(*pmd); |
| VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); |
| if (flags & FOLL_TOUCH) |
| touch_pmd(vma, addr, pmd); |
| if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { |
| /* |
| * We don't mlock() pte-mapped THPs. This way we can avoid |
| * leaking mlocked pages into non-VM_LOCKED VMAs. |
| * |
| * For anon THP: |
| * |
| * In most cases the pmd is the only mapping of the page as we |
| * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for |
| * writable private mappings in populate_vma_page_range(). |
| * |
| * The only scenario when we have the page shared here is if we |
| * mlocking read-only mapping shared over fork(). We skip |
| * mlocking such pages. |
| * |
| * For file THP: |
| * |
| * We can expect PageDoubleMap() to be stable under page lock: |
| * for file pages we set it in page_add_file_rmap(), which |
| * requires page to be locked. |
| */ |
| |
| if (PageAnon(page) && compound_mapcount(page) != 1) |
| goto skip_mlock; |
| if (PageDoubleMap(page) || !page->mapping) |
| goto skip_mlock; |
| if (!trylock_page(page)) |
| goto skip_mlock; |
| lru_add_drain(); |
| if (page->mapping && !PageDoubleMap(page)) |
| mlock_vma_page(page); |
| unlock_page(page); |
| } |
| skip_mlock: |
| page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; |
| VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); |
| if (flags & FOLL_GET) |
| get_page(page); |
| |
| out: |
| return page; |
| } |
| |
| /* NUMA hinting page fault entry point for trans huge pmds */ |
| int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd) |
| { |
| struct vm_area_struct *vma = fe->vma; |
| struct anon_vma *anon_vma = NULL; |
| struct page *page; |
| unsigned long haddr = fe->address & HPAGE_PMD_MASK; |
| int page_nid = -1, this_nid = numa_node_id(); |
| int target_nid, last_cpupid = -1; |
| bool page_locked; |
| bool migrated = false; |
| bool was_writable; |
| int flags = 0; |
| |
| fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); |
| if (unlikely(!pmd_same(pmd, *fe->pmd))) |
| goto out_unlock; |
| |
| /* |
| * If there are potential migrations, wait for completion and retry |
| * without disrupting NUMA hinting information. Do not relock and |
| * check_same as the page may no longer be mapped. |
| */ |
| if (unlikely(pmd_trans_migrating(*fe->pmd))) { |
| page = pmd_page(*fe->pmd); |
| spin_unlock(fe->ptl); |
| wait_on_page_locked(page); |
| goto out; |
| } |
| |
| page = pmd_page(pmd); |
| BUG_ON(is_huge_zero_page(page)); |
| page_nid = page_to_nid(page); |
| last_cpupid = page_cpupid_last(page); |
| count_vm_numa_event(NUMA_HINT_FAULTS); |
| if (page_nid == this_nid) { |
| count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); |
| flags |= TNF_FAULT_LOCAL; |
| } |
| |
| /* See similar comment in do_numa_page for explanation */ |
| if (!pmd_write(pmd)) |
| flags |= TNF_NO_GROUP; |
| |
| /* |
| * Acquire the page lock to serialise THP migrations but avoid dropping |
| * page_table_lock if at all possible |
| */ |
| page_locked = trylock_page(page); |
| target_nid = mpol_misplaced(page, vma, haddr); |
| if (target_nid == -1) { |
| /* If the page was locked, there are no parallel migrations */ |
| if (page_locked) |
| goto clear_pmdnuma; |
| } |
| |
| /* Migration could have started since the pmd_trans_migrating check */ |
| if (!page_locked) { |
| spin_unlock(fe->ptl); |
| wait_on_page_locked(page); |
| page_nid = -1; |
| goto out; |
| } |
| |
| /* |
| * Page is misplaced. Page lock serialises migrations. Acquire anon_vma |
| * to serialises splits |
| */ |
| get_page(page); |
| spin_unlock(fe->ptl); |
| anon_vma = page_lock_anon_vma_read(page); |
| |
| /* Confirm the PMD did not change while page_table_lock was released */ |
| spin_lock(fe->ptl); |
| if (unlikely(!pmd_same(pmd, *fe->pmd))) { |
| unlock_page(page); |
| put_page(page); |
| page_nid = -1; |
| goto out_unlock; |
| } |
| |
| /* Bail if we fail to protect against THP splits for any reason */ |
| if (unlikely(!anon_vma)) { |
| put_page(page); |
| page_nid = -1; |
| goto clear_pmdnuma; |
| } |
| |
| /* |
| * Migrate the THP to the requested node, returns with page unlocked |
| * and access rights restored. |
| */ |
| spin_unlock(fe->ptl); |
| migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, |
| fe->pmd, pmd, fe->address, page, target_nid); |
| if (migrated) { |
| flags |= TNF_MIGRATED; |
| page_nid = target_nid; |
| } else |
| flags |= TNF_MIGRATE_FAIL; |
| |
| goto out; |
| clear_pmdnuma: |
| BUG_ON(!PageLocked(page)); |
| was_writable = pmd_write(pmd); |
| pmd = pmd_modify(pmd, vma->vm_page_prot); |
| pmd = pmd_mkyoung(pmd); |
| if (was_writable) |
| pmd = pmd_mkwrite(pmd); |
| set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd); |
| update_mmu_cache_pmd(vma, fe->address, fe->pmd); |
| unlock_page(page); |
| out_unlock: |
| spin_unlock(fe->ptl); |
| |
| out: |
| if (anon_vma) |
| page_unlock_anon_vma_read(anon_vma); |
| |
| if (page_nid != -1) |
| task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags); |
| |
| return 0; |
| } |
| |
| /* |
| * Return true if we do MADV_FREE successfully on entire pmd page. |
| * Otherwise, return false. |
| */ |
| bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, |
| pmd_t *pmd, unsigned long addr, unsigned long next) |
| { |
| spinlock_t *ptl; |
| pmd_t orig_pmd; |
| struct page *page; |
| struct mm_struct *mm = tlb->mm; |
| bool ret = false; |
| |
| ptl = pmd_trans_huge_lock(pmd, vma); |
| if (!ptl) |
| goto out_unlocked; |
| |
| orig_pmd = *pmd; |
| if (is_huge_zero_pmd(orig_pmd)) |
| goto out; |
| |
| page = pmd_page(orig_pmd); |
| /* |
| * If other processes are mapping this page, we couldn't discard |
| * the page unless they all do MADV_FREE so let's skip the page. |
| */ |
| if (page_mapcount(page) != 1) |
| goto out; |
| |
| if (!trylock_page(page)) |
| goto out; |
| |
| /* |
| * If user want to discard part-pages of THP, split it so MADV_FREE |
| * will deactivate only them. |
| */ |
| if (next - addr != HPAGE_PMD_SIZE) { |
| get_page(page); |
| spin_unlock(ptl); |
| split_huge_page(page); |
| put_page(page); |
| unlock_page(page); |
| goto out_unlocked; |
| } |
| |
| if (PageDirty(page)) |
| ClearPageDirty(page); |
| unlock_page(page); |
| |
| if (PageActive(page)) |
| deactivate_page(page); |
| |
| if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { |
| orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, |
| tlb->fullmm); |
| orig_pmd = pmd_mkold(orig_pmd); |
| orig_pmd = pmd_mkclean(orig_pmd); |
| |
| set_pmd_at(mm, addr, pmd, orig_pmd); |
| tlb_remove_pmd_tlb_entry(tlb, pmd, addr); |
| } |
| ret = true; |
| out: |
| spin_unlock(ptl); |
| out_unlocked: |
| return ret; |
| } |
| |
| int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, |
| pmd_t *pmd, unsigned long addr) |
| { |
| pmd_t orig_pmd; |
| spinlock_t *ptl; |
| |
| ptl = __pmd_trans_huge_lock(pmd, vma); |
| if (!ptl) |
| return 0; |
| /* |
| * For architectures like ppc64 we look at deposited pgtable |
| * when calling pmdp_huge_get_and_clear. So do the |
| * pgtable_trans_huge_withdraw after finishing pmdp related |
| * operations. |
| */ |
| orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, |
| tlb->fullmm); |
| tlb_remove_pmd_tlb_entry(tlb, pmd, addr); |
| if (vma_is_dax(vma)) { |
| spin_unlock(ptl); |
| if (is_huge_zero_pmd(orig_pmd)) |
| tlb_remove_page(tlb, pmd_page(orig_pmd)); |
| } else if (is_huge_zero_pmd(orig_pmd)) { |
| pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd)); |
| atomic_long_dec(&tlb->mm->nr_ptes); |
| spin_unlock(ptl); |
| tlb_remove_page(tlb, pmd_page(orig_pmd)); |
| } else { |
| struct page *page = pmd_page(orig_pmd); |
| page_remove_rmap(page, true); |
| VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); |
| VM_BUG_ON_PAGE(!PageHead(page), page); |
| if (PageAnon(page)) { |
| pgtable_t pgtable; |
| pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); |
| pte_free(tlb->mm, pgtable); |
| atomic_long_dec(&tlb->mm->nr_ptes); |
| add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); |
| } else { |
| add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR); |
| } |
| spin_unlock(ptl); |
| tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); |
| } |
| return 1; |
| } |
| |
| bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, |
| unsigned long new_addr, unsigned long old_end, |
| pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush) |
| { |
| spinlock_t *old_ptl, *new_ptl; |
| pmd_t pmd; |
| struct mm_struct *mm = vma->vm_mm; |
| bool force_flush = false; |
| |
| if ((old_addr & ~HPAGE_PMD_MASK) || |
| (new_addr & ~HPAGE_PMD_MASK) || |
| old_end - old_addr < HPAGE_PMD_SIZE) |
| return false; |
| |
| /* |
| * The destination pmd shouldn't be established, free_pgtables() |
| * should have release it. |
| */ |
| if (WARN_ON(!pmd_none(*new_pmd))) { |
| VM_BUG_ON(pmd_trans_huge(*new_pmd)); |
| return false; |
| } |
| |
| /* |
| * We don't have to worry about the ordering of src and dst |
| * ptlocks because exclusive mmap_sem prevents deadlock. |
| */ |
| old_ptl = __pmd_trans_huge_lock(old_pmd, vma); |
| if (old_ptl) { |
| new_ptl = pmd_lockptr(mm, new_pmd); |
| if (new_ptl != old_ptl) |
| spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); |
| pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); |
| if (pmd_present(pmd) && pmd_dirty(pmd)) |
| force_flush = true; |
| VM_BUG_ON(!pmd_none(*new_pmd)); |
| |
| if (pmd_move_must_withdraw(new_ptl, old_ptl) && |
| vma_is_anonymous(vma)) { |
| pgtable_t pgtable; |
| pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); |
| pgtable_trans_huge_deposit(mm, new_pmd, pgtable); |
| } |
| set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); |
| if (new_ptl != old_ptl) |
| spin_unlock(new_ptl); |
| if (force_flush) |
| flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); |
| else |
| *need_flush = true; |
| spin_unlock(old_ptl); |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Returns |
| * - 0 if PMD could not be locked |
| * - 1 if PMD was locked but protections unchange and TLB flush unnecessary |
| * - HPAGE_PMD_NR is protections changed and TLB flush necessary |
| */ |
| int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, |
| unsigned long addr, pgprot_t newprot, int prot_numa) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| spinlock_t *ptl; |
| int ret = 0; |
| |
| ptl = __pmd_trans_huge_lock(pmd, vma); |
| if (ptl) { |
| pmd_t entry; |
| bool preserve_write = prot_numa && pmd_write(*pmd); |
| ret = 1; |
| |
| /* |
| * Avoid trapping faults against the zero page. The read-only |
| * data is likely to be read-cached on the local CPU and |
| * local/remote hits to the zero page are not interesting. |
| */ |
| if (prot_numa && is_huge_zero_pmd(*pmd)) { |
| spin_unlock(ptl); |
| return ret; |
| } |
| |
| if (!prot_numa || !pmd_protnone(*pmd)) { |
| entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd); |
| entry = pmd_modify(entry, newprot); |
| if (preserve_write) |
| entry = pmd_mkwrite(entry); |
| ret = HPAGE_PMD_NR; |
| set_pmd_at(mm, addr, pmd, entry); |
| BUG_ON(vma_is_anonymous(vma) && !preserve_write && |
| pmd_write(entry)); |
| } |
| spin_unlock(ptl); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. |
| * |
| * Note that if it returns page table lock pointer, this routine returns without |
| * unlocking page table lock. So callers must unlock it. |
| */ |
| spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) |
| { |
| spinlock_t *ptl; |
| ptl = pmd_lock(vma->vm_mm, pmd); |
| if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd))) |
| return ptl; |
| spin_unlock(ptl); |
| return NULL; |
| } |
| |
| static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, |
| unsigned long haddr, pmd_t *pmd) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| pgtable_t pgtable; |
| pmd_t _pmd; |
| int i; |
| |
| /* leave pmd empty until pte is filled */ |
| pmdp_huge_clear_flush_notify(vma, haddr, pmd); |
| |
| pgtable = pgtable_trans_huge_withdraw(mm, pmd); |
| pmd_populate(mm, &_pmd, pgtable); |
| |
| for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { |
| pte_t *pte, entry; |
| entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); |
| entry = pte_mkspecial(entry); |
| pte = pte_offset_map(&_pmd, haddr); |
| VM_BUG_ON(!pte_none(*pte)); |
| set_pte_at(mm, haddr, pte, entry); |
| pte_unmap(pte); |
| } |
| smp_wmb(); /* make pte visible before pmd */ |
| pmd_populate(mm, pmd, pgtable); |
| } |
| |
| static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, |
| unsigned long haddr, bool freeze) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| struct page *page; |
| pgtable_t pgtable; |
| pmd_t _pmd; |
| bool young, write, dirty, soft_dirty; |
| unsigned long addr; |
| int i; |
| |
| VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); |
| VM_BUG_ON_VMA(vma->vm_start > haddr, vma); |
| VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); |
| VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)); |
| |
| count_vm_event(THP_SPLIT_PMD); |
| |
| if (!vma_is_anonymous(vma)) { |
| _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); |
| if (vma_is_dax(vma)) |
| return; |
| page = pmd_page(_pmd); |
| if (!PageReferenced(page) && pmd_young(_pmd)) |
| SetPageReferenced(page); |
| page_remove_rmap(page, true); |
| put_page(page); |
| add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR); |
| return; |
| } else if (is_huge_zero_pmd(*pmd)) { |
| return __split_huge_zero_page_pmd(vma, haddr, pmd); |
| } |
| |
| page = pmd_page(*pmd); |
| VM_BUG_ON_PAGE(!page_count(page), page); |
| page_ref_add(page, HPAGE_PMD_NR - 1); |
| write = pmd_write(*pmd); |
| young = pmd_young(*pmd); |
| dirty = pmd_dirty(*pmd); |
| soft_dirty = pmd_soft_dirty(*pmd); |
| |
| pmdp_huge_split_prepare(vma, haddr, pmd); |
| pgtable = pgtable_trans_huge_withdraw(mm, pmd); |
| pmd_populate(mm, &_pmd, pgtable); |
| |
| for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { |
| pte_t entry, *pte; |
| /* |
| * Note that NUMA hinting access restrictions are not |
| * transferred to avoid any possibility of altering |
| * permissions across VMAs. |
| */ |
| if (freeze) { |
| swp_entry_t swp_entry; |
| swp_entry = make_migration_entry(page + i, write); |
| entry = swp_entry_to_pte(swp_entry); |
| if (soft_dirty) |
| entry = pte_swp_mksoft_dirty(entry); |
| } else { |
| entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); |
| entry = maybe_mkwrite(entry, vma); |
| if (!write) |
| entry = pte_wrprotect(entry); |
| if (!young) |
| entry = pte_mkold(entry); |
| if (soft_dirty) |
| entry = pte_mksoft_dirty(entry); |
| } |
| if (dirty) |
| SetPageDirty(page + i); |
| pte = pte_offset_map(&_pmd, addr); |
| BUG_ON(!pte_none(*pte)); |
| set_pte_at(mm, addr, pte, entry); |
| atomic_inc(&page[i]._mapcount); |
| pte_unmap(pte); |
| } |
| |
| /* |
| * Set PG_double_map before dropping compound_mapcount to avoid |
| * false-negative page_mapped(). |
| */ |
| if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { |
| for (i = 0; i < HPAGE_PMD_NR; i++) |
| atomic_inc(&page[i]._mapcount); |
| } |
| |
| if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { |
| /* Last compound_mapcount is gone. */ |
| __dec_node_page_state(page, NR_ANON_THPS); |
| if (TestClearPageDoubleMap(page)) { |
| /* No need in mapcount reference anymore */ |
| for (i = 0; i < HPAGE_PMD_NR; i++) |
| atomic_dec(&page[i]._mapcount); |
| } |
| } |
| |
| smp_wmb(); /* make pte visible before pmd */ |
| /* |
| * Up to this point the pmd is present and huge and userland has the |
| * whole access to the hugepage during the split (which happens in |
| * place). If we overwrite the pmd with the not-huge version pointing |
| * to the pte here (which of course we could if all CPUs were bug |
| * free), userland could trigger a small page size TLB miss on the |
| * small sized TLB while the hugepage TLB entry is still established in |
| * the huge TLB. Some CPU doesn't like that. |
| * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum |
| * 383 on page 93. Intel should be safe but is also warns that it's |
| * only safe if the permission and cache attributes of the two entries |
| * loaded in the two TLB is identical (which should be the case here). |
| * But it is generally safer to never allow small and huge TLB entries |
| * for the same virtual address to be loaded simultaneously. So instead |
| * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the |
| * current pmd notpresent (atomically because here the pmd_trans_huge |
| * and pmd_trans_splitting must remain set at all times on the pmd |
| * until the split is complete for this pmd), then we flush the SMP TLB |
| * and finally we write the non-huge version of the pmd entry with |
| * pmd_populate. |
| */ |
| pmdp_invalidate(vma, haddr, pmd); |
| pmd_populate(mm, pmd, pgtable); |
| |
| if (freeze) { |
| for (i = 0; i < HPAGE_PMD_NR; i++) { |
| page_remove_rmap(page + i, false); |
| put_page(page + i); |
| } |
| } |
| } |
| |
| void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, |
| unsigned long address, bool freeze, struct page *page) |
| { |
| spinlock_t *ptl; |
| struct mm_struct *mm = vma->vm_mm; |
| unsigned long haddr = address & HPAGE_PMD_MASK; |
| |
| mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE); |
| ptl = pmd_lock(mm, pmd); |
| |
| /* |
| * If caller asks to setup a migration entries, we need a page to check |
| * pmd against. Otherwise we can end up replacing wrong page. |
| */ |
| VM_BUG_ON(freeze && !page); |
| if (page && page != pmd_page(*pmd)) |
| goto out; |
| |
| if (pmd_trans_huge(*pmd)) { |
| page = pmd_page(*pmd); |
| if (PageMlocked(page)) |
| clear_page_mlock(page); |
| } else if (!pmd_devmap(*pmd)) |
| goto out; |
| __split_huge_pmd_locked(vma, pmd, haddr, freeze); |
| out: |
| spin_unlock(ptl); |
| mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE); |
| } |
| |
| void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, |
| bool freeze, struct page *page) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| pgd = pgd_offset(vma->vm_mm, address); |
| if (!pgd_present(*pgd)) |
| return; |
| |
| pud = pud_offset(pgd, address); |
| if (!pud_present(*pud)) |
| return; |
| |
| pmd = pmd_offset(pud, address); |
| |
| __split_huge_pmd(vma, pmd, address, freeze, page); |
| } |
| |
| void vma_adjust_trans_huge(struct vm_area_struct *vma, |
| unsigned long start, |
| unsigned long end, |
| long adjust_next) |
| { |
| /* |
| * If the new start address isn't hpage aligned and it could |
| * previously contain an hugepage: check if we need to split |
| * an huge pmd. |
| */ |
| if (start & ~HPAGE_PMD_MASK && |
| (start & HPAGE_PMD_MASK) >= vma->vm_start && |
| (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) |
| split_huge_pmd_address(vma, start, false, NULL); |
| |
| /* |
| * If the new end address isn't hpage aligned and it could |
| * previously contain an hugepage: check if we need to split |
| * an huge pmd. |
| */ |
| if (end & ~HPAGE_PMD_MASK && |
| (end & HPAGE_PMD_MASK) >= vma->vm_start && |
| (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) |
| split_huge_pmd_address(vma, end, false, NULL); |
| |
| /* |
| * If we're also updating the vma->vm_next->vm_start, if the new |
| * vm_next->vm_start isn't page aligned and it could previously |
| * contain an hugepage: check if we need to split an huge pmd. |
| */ |
| if (adjust_next > 0) { |
| struct vm_area_struct *next = vma->vm_next; |
| unsigned long nstart = next->vm_start; |
| nstart += adjust_next << PAGE_SHIFT; |
| if (nstart & ~HPAGE_PMD_MASK && |
| (nstart & HPAGE_PMD_MASK) >= next->vm_start && |
| (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) |
| split_huge_pmd_address(next, nstart, false, NULL); |
| } |
| } |
| |
| static void freeze_page(struct page *page) |
| { |
| enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | |
| TTU_RMAP_LOCKED; |
| int i, ret; |
| |
| VM_BUG_ON_PAGE(!PageHead(page), page); |
| |
| if (PageAnon(page)) |
| ttu_flags |= TTU_MIGRATION; |
| |
| /* We only need TTU_SPLIT_HUGE_PMD once */ |
| ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD); |
| for (i = 1; !ret && i < HPAGE_PMD_NR; i++) { |
| /* Cut short if the page is unmapped */ |
| if (page_count(page) == 1) |
| return; |
| |
| ret = try_to_unmap(page + i, ttu_flags); |
| } |
| VM_BUG_ON_PAGE(ret, page + i - 1); |
| } |
| |
| static void unfreeze_page(struct page *page) |
| { |
| int i; |
| |
| for (i = 0; i < HPAGE_PMD_NR; i++) |
| remove_migration_ptes(page + i, page + i, true); |
| } |
| |
| static void __split_huge_page_tail(struct page *head, int tail, |
| struct lruvec *lruvec, struct list_head *list) |
| { |
| struct page *page_tail = head + tail; |
| |
| VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); |
| VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail); |
| |
| /* |
| * tail_page->_refcount is zero and not changing from under us. But |
| * get_page_unless_zero() may be running from under us on the |
| * tail_page. If we used atomic_set() below instead of atomic_inc() or |
| * atomic_add(), we would then run atomic_set() concurrently with |
| * get_page_unless_zero(), and atomic_set() is implemented in C not |
| * using locked ops. spin_unlock on x86 sometime uses locked ops |
| * because of PPro errata 66, 92, so unless somebody can guarantee |
| * atomic_set() here would be safe on all archs (and not only on x86), |
| * it's safer to use atomic_inc()/atomic_add(). |
| */ |
| if (PageAnon(head)) { |
| page_ref_inc(page_tail); |
| } else { |
| /* Additional pin to radix tree */ |
| page_ref_add(page_tail, 2); |
| } |
| |
| page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; |
| page_tail->flags |= (head->flags & |
| ((1L << PG_referenced) | |
| (1L << PG_swapbacked) | |
| (1L << PG_mlocked) | |
| (1L << PG_uptodate) | |
| (1L << PG_active) | |
| (1L << PG_locked) | |
| (1L << PG_unevictable) | |
| (1L << PG_dirty))); |
| |
| /* |
| * After clearing PageTail the gup refcount can be released. |
| * Page flags also must be visible before we make the page non-compound. |
| */ |
| smp_wmb(); |
| |
| clear_compound_head(page_tail); |
| |
| if (page_is_young(head)) |
| set_page_young(page_tail); |
| if (page_is_idle(head)) |
| set_page_idle(page_tail); |
| |
| /* ->mapping in first tail page is compound_mapcount */ |
| VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, |
| page_tail); |
| page_tail->mapping = head->mapping; |
| |
| page_tail->index = head->index + tail; |
| page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); |
| lru_add_page_tail(head, page_tail, lruvec, list); |
| } |
| |
| static void __split_huge_page(struct page *page, struct list_head *list, |
| unsigned long flags) |
| { |
| struct page *head = compound_head(page); |
| struct zone *zone = page_zone(head); |
| struct lruvec *lruvec; |
| pgoff_t end = -1; |
| int i; |
| |
| lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat); |
| |
| /* complete memcg works before add pages to LRU */ |
| mem_cgroup_split_huge_fixup(head); |
| |
| if (!PageAnon(page)) |
| end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE); |
| |
| for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { |
| __split_huge_page_tail(head, i, lruvec, list); |
| /* Some pages can be beyond i_size: drop them from page cache */ |
| if (head[i].index >= end) { |
| __ClearPageDirty(head + i); |
| __delete_from_page_cache(head + i, NULL); |
| if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) |
| shmem_uncharge(head->mapping->host, 1); |
| put_page(head + i); |
| } |
| } |
| |
| ClearPageCompound(head); |
| /* See comment in __split_huge_page_tail() */ |
| if (PageAnon(head)) { |
| page_ref_inc(head); |
| } else { |
| /* Additional pin to radix tree */ |
| page_ref_add(head, 2); |
| spin_unlock(&head->mapping->tree_lock); |
| } |
| |
| spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); |
| |
| unfreeze_page(head); |
| |
| for (i = 0; i < HPAGE_PMD_NR; i++) { |
| struct page *subpage = head + i; |
| if (subpage == page) |
| continue; |
| unlock_page(subpage); |
| |
| /* |
| * Subpages may be freed if there wasn't any mapping |
| * like if add_to_swap() is running on a lru page that |
| * had its mapping zapped. And freeing these pages |
| * requires taking the lru_lock so we do the put_page |
| * of the tail pages after the split is complete. |
| */ |
| put_page(subpage); |
| } |
| } |
| |
| int total_mapcount(struct page *page) |
| { |
| int i, compound, ret; |
| |
| VM_BUG_ON_PAGE(PageTail(page), page); |
| |
| if (likely(!PageCompound(page))) |
| return atomic_read(&page->_mapcount) + 1; |
| |
| compound = compound_mapcount(page); |
| if (PageHuge(page)) |
| return compound; |
| ret = compound; |
| for (i = 0; i < HPAGE_PMD_NR; i++) |
| ret += atomic_read(&page[i]._mapcount) + 1; |
| /* File pages has compound_mapcount included in _mapcount */ |
| if (!PageAnon(page)) |
| return ret - compound * HPAGE_PMD_NR; |
| if (PageDoubleMap(page)) |
| ret -= HPAGE_PMD_NR; |
| return ret; |
| } |
| |
| /* |
| * This calculates accurately how many mappings a transparent hugepage |
| * has (unlike page_mapcount() which isn't fully accurate). This full |
| * accuracy is primarily needed to know if copy-on-write faults can |
| * reuse the page and change the mapping to read-write instead of |
| * copying them. At the same time this returns the total_mapcount too. |
| * |
| * The function returns the highest mapcount any one of the subpages |
| * has. If the return value is one, even if different processes are |
| * mapping different subpages of the transparent hugepage, they can |
| * all reuse it, because each process is reusing a different subpage. |
| * |
| * The total_mapcount is instead counting all virtual mappings of the |
| * subpages. If the total_mapcount is equal to "one", it tells the |
| * caller all mappings belong to the same "mm" and in turn the |
| * anon_vma of the transparent hugepage can become the vma->anon_vma |
| * local one as no other process may be mapping any of the subpages. |
| * |
| * It would be more accurate to replace page_mapcount() with |
| * page_trans_huge_mapcount(), however we only use |
| * page_trans_huge_mapcount() in the copy-on-write faults where we |
| * need full accuracy to avoid breaking page pinning, because |
| * page_trans_huge_mapcount() is slower than page_mapcount(). |
| */ |
| int page_trans_huge_mapcount(struct page *page, int *total_mapcount) |
| { |
| int i, ret, _total_mapcount, mapcount; |
| |
| /* hugetlbfs shouldn't call it */ |
| VM_BUG_ON_PAGE(PageHuge(page), page); |
| |
| if (likely(!PageTransCompound(page))) { |
| mapcount = atomic_read(&page->_mapcount) + 1; |
| if (total_mapcount) |
| *total_mapcount = mapcount; |
| return mapcount; |
| } |
| |
| page = compound_head(page); |
| |
| _total_mapcount = ret = 0; |
| for (i = 0; i < HPAGE_PMD_NR; i++) { |
| mapcount = atomic_read(&page[i]._mapcount) + 1; |
| ret = max(ret, mapcount); |
| _total_mapcount += mapcount; |
| } |
| if (PageDoubleMap(page)) { |
| ret -= 1; |
| _total_mapcount -= HPAGE_PMD_NR; |
| } |
| mapcount = compound_mapcount(page); |
| ret += mapcount; |
| _total_mapcount += mapcount; |
| if (total_mapcount) |
| *total_mapcount = _total_mapcount; |
| return ret; |
| } |
| |
| /* |
| * This function splits huge page into normal pages. @page can point to any |
| * subpage of huge page to split. Split doesn't change the position of @page. |
| * |
| * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. |
| * The huge page must be locked. |
| * |
| * If @list is null, tail pages will be added to LRU list, otherwise, to @list. |
| * |
| * Both head page and tail pages will inherit mapping, flags, and so on from |
| * the hugepage. |
| * |
| * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if |
| * they are not mapped. |
| * |
| * Returns 0 if the hugepage is split successfully. |
| * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under |
| * us. |
| */ |
| int split_huge_page_to_list(struct page *page, struct list_head *list) |
| { |
| struct page *head = compound_head(page); |
| struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); |
| struct anon_vma *anon_vma = NULL; |
| struct address_space *mapping = NULL; |
| int count, mapcount, extra_pins, ret; |
| bool mlocked; |
| unsigned long flags; |
| |
| VM_BUG_ON_PAGE(is_huge_zero_page(page), page); |
| VM_BUG_ON_PAGE(!PageLocked(page), page); |
| VM_BUG_ON_PAGE(!PageSwapBacked(page), page); |
| VM_BUG_ON_PAGE(!PageCompound(page), page); |
| |
| if (PageAnon(head)) { |
| /* |
| * The caller does not necessarily hold an mmap_sem that would |
| * prevent the anon_vma disappearing so we first we take a |
| * reference to it and then lock the anon_vma for write. This |
| * is similar to page_lock_anon_vma_read except the write lock |
| * is taken to serialise against parallel split or collapse |
| * operations. |
| */ |
| anon_vma = page_get_anon_vma(head); |
| if (!anon_vma) { |
| ret = -EBUSY; |
| goto out; |
| } |
| extra_pins = 0; |
| mapping = NULL; |
| anon_vma_lock_write(anon_vma); |
| } else { |
| mapping = head->mapping; |
| |
| /* Truncated ? */ |
| if (!mapping) { |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| /* Addidional pins from radix tree */ |
| extra_pins = HPAGE_PMD_NR; |
| anon_vma = NULL; |
| i_mmap_lock_read(mapping); |
| } |
| |
| /* |
| * Racy check if we can split the page, before freeze_page() will |
| * split PMDs |
| */ |
| if (total_mapcount(head) != page_count(head) - extra_pins - 1) { |
| ret = -EBUSY; |
| goto out_unlock; |
| } |
| |
| mlocked = PageMlocked(page); |
| freeze_page(head); |
| VM_BUG_ON_PAGE(compound_mapcount(head), head); |
| |
| /* Make sure the page is not on per-CPU pagevec as it takes pin */ |
| if (mlocked) |
| lru_add_drain(); |
| |
| /* prevent PageLRU to go away from under us, and freeze lru stats */ |
| spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags); |
| |
| if (mapping) { |
| void **pslot; |
| |
| spin_lock(&mapping->tree_lock); |
| pslot = radix_tree_lookup_slot(&mapping->page_tree, |
| page_index(head)); |
| /* |
| * Check if the head page is present in radix tree. |
| * We assume all tail are present too, if head is there. |
| */ |
| if (radix_tree_deref_slot_protected(pslot, |
| &mapping->tree_lock) != head) |
| goto fail; |
| } |
| |
| /* Prevent deferred_split_scan() touching ->_refcount */ |
| spin_lock(&pgdata->split_queue_lock); |
| count = page_count(head); |
| mapcount = total_mapcount(head); |
| if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { |
| if (!list_empty(page_deferred_list(head))) { |
| pgdata->split_queue_len--; |
| list_del(page_deferred_list(head)); |
| } |
| if (mapping) |
| __dec_node_page_state(page, NR_SHMEM_THPS); |
| spin_unlock(&pgdata->split_queue_lock); |
| __split_huge_page(page, list, flags); |
| ret = 0; |
| } else { |
| if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { |
| pr_alert("total_mapcount: %u, page_count(): %u\n", |
| mapcount, count); |
| if (PageTail(page)) |
| dump_page(head, NULL); |
| dump_page(page, "total_mapcount(head) > 0"); |
| BUG(); |
| } |
| spin_unlock(&pgdata->split_queue_lock); |
| fail: if (mapping) |
| spin_unlock(&mapping->tree_lock); |
| spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); |
| unfreeze_page(head); |
| ret = -EBUSY; |
| } |
| |
| out_unlock: |
| if (anon_vma) { |
| anon_vma_unlock_write(anon_vma); |
| put_anon_vma(anon_vma); |
| } |
| if (mapping) |
| i_mmap_unlock_read(mapping); |
| out: |
| count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); |
| return ret; |
| } |
| |
| void free_transhuge_page(struct page *page) |
| { |
| struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pgdata->split_queue_lock, flags); |
| if (!list_empty(page_deferred_list(page))) { |
| pgdata->split_queue_len--; |
| list_del(page_deferred_list(page)); |
| } |
| spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); |
| free_compound_page(page); |
| } |
| |
| void deferred_split_huge_page(struct page *page) |
| { |
| struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); |
| unsigned long flags; |
| |
| VM_BUG_ON_PAGE(!PageTransHuge(page), page); |
| |
| spin_lock_irqsave(&pgdata->split_queue_lock, flags); |
| if (list_empty(page_deferred_list(page))) { |
| count_vm_event(THP_DEFERRED_SPLIT_PAGE); |
| list_add_tail(page_deferred_list(page), &pgdata->split_queue); |
| pgdata->split_queue_len++; |
| } |
| spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); |
| } |
| |
| static unsigned long deferred_split_count(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| struct pglist_data *pgdata = NODE_DATA(sc->nid); |
| return ACCESS_ONCE(pgdata->split_queue_len); |
| } |
| |
| static unsigned long deferred_split_scan(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| struct pglist_data *pgdata = NODE_DATA(sc->nid); |
| unsigned long flags; |
| LIST_HEAD(list), *pos, *next; |
| struct page *page; |
| int split = 0; |
| |
| spin_lock_irqsave(&pgdata->split_queue_lock, flags); |
| /* Take pin on all head pages to avoid freeing them under us */ |
| list_for_each_safe(pos, next, &pgdata->split_queue) { |
| page = list_entry((void *)pos, struct page, mapping); |
| page = compound_head(page); |
| if (get_page_unless_zero(page)) { |
| list_move(page_deferred_list(page), &list); |
| } else { |
| /* We lost race with put_compound_page() */ |
| list_del_init(page_deferred_list(page)); |
| pgdata->split_queue_len--; |
| } |
| if (!--sc->nr_to_scan) |
| break; |
| } |
| spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); |
| |
| list_for_each_safe(pos, next, &list) { |
| page = list_entry((void *)pos, struct page, mapping); |
| lock_page(page); |
| /* split_huge_page() removes page from list on success */ |
| if (!split_huge_page(page)) |
| split++; |
| unlock_page(page); |
| put_page(page); |
| } |
| |
| spin_lock_irqsave(&pgdata->split_queue_lock, flags); |
| list_splice_tail(&list, &pgdata->split_queue); |
| spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); |
| |
| /* |
| * Stop shrinker if we didn't split any page, but the queue is empty. |
| * This can happen if pages were freed under us. |
| */ |
| if (!split && list_empty(&pgdata->split_queue)) |
| return SHRINK_STOP; |
| return split; |
| } |
| |
| static struct shrinker deferred_split_shrinker = { |
| .count_objects = deferred_split_count, |
| .scan_objects = deferred_split_scan, |
| .seeks = DEFAULT_SEEKS, |
| .flags = SHRINKER_NUMA_AWARE, |
| }; |
| |
| #ifdef CONFIG_DEBUG_FS |
| static int split_huge_pages_set(void *data, u64 val) |
| { |
| struct zone *zone; |
| struct page *page; |
| unsigned long pfn, max_zone_pfn; |
| unsigned long total = 0, split = 0; |
| |
| if (val != 1) |
| return -EINVAL; |
| |
| for_each_populated_zone(zone) { |
| max_zone_pfn = zone_end_pfn(zone); |
| for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { |
| if (!pfn_valid(pfn)) |
| continue; |
| |
| page = pfn_to_page(pfn); |
| if (!get_page_unless_zero(page)) |
| continue; |
| |
| if (zone != page_zone(page)) |
| goto next; |
| |
| if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) |
| goto next; |
| |
| total++; |
| lock_page(page); |
| if (!split_huge_page(page)) |
| split++; |
| unlock_page(page); |
| next: |
| put_page(page); |
| } |
| } |
| |
| pr_info("%lu of %lu THP split\n", split, total); |
| |
| return 0; |
| } |
| DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, |
| "%llu\n"); |
| |
| static int __init split_huge_pages_debugfs(void) |
| { |
| void *ret; |
| |
| ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL, |
| &split_huge_pages_fops); |
| if (!ret) |
| pr_warn("Failed to create split_huge_pages in debugfs"); |
| return 0; |
| } |
| late_initcall(split_huge_pages_debugfs); |
| #endif |