blob: 0946b98d75d41f65536a341434fbe5dec6b1782f [file] [log] [blame]
/*
* Copyright (C) 2001 Mike Corrigan & Dave Engebretsen, IBM Corporation
*
* Rewrite, cleanup:
*
* Copyright (C) 2004 Olof Johansson <olof@lixom.net>, IBM Corporation
* Copyright (C) 2006 Olof Johansson <olof@lixom.net>
*
* Dynamic DMA mapping support, pSeries-specific parts, both SMP and LPAR.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/memblock.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/crash_dump.h>
#include <linux/memory.h>
#include <linux/of.h>
#include <linux/iommu.h>
#include <linux/rculist.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/iommu.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/firmware.h>
#include <asm/tce.h>
#include <asm/ppc-pci.h>
#include <asm/udbg.h>
#include <asm/mmzone.h>
#include <asm/plpar_wrappers.h>
#include "pseries.h"
static struct iommu_table_group *iommu_pseries_alloc_group(int node)
{
struct iommu_table_group *table_group = NULL;
struct iommu_table *tbl = NULL;
struct iommu_table_group_link *tgl = NULL;
table_group = kzalloc_node(sizeof(struct iommu_table_group), GFP_KERNEL,
node);
if (!table_group)
goto fail_exit;
tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL, node);
if (!tbl)
goto fail_exit;
tgl = kzalloc_node(sizeof(struct iommu_table_group_link), GFP_KERNEL,
node);
if (!tgl)
goto fail_exit;
INIT_LIST_HEAD_RCU(&tbl->it_group_list);
tgl->table_group = table_group;
list_add_rcu(&tgl->next, &tbl->it_group_list);
table_group->tables[0] = tbl;
return table_group;
fail_exit:
kfree(tgl);
kfree(table_group);
kfree(tbl);
return NULL;
}
static void iommu_pseries_free_group(struct iommu_table_group *table_group,
const char *node_name)
{
struct iommu_table *tbl;
#ifdef CONFIG_IOMMU_API
struct iommu_table_group_link *tgl;
#endif
if (!table_group)
return;
tbl = table_group->tables[0];
#ifdef CONFIG_IOMMU_API
tgl = list_first_entry_or_null(&tbl->it_group_list,
struct iommu_table_group_link, next);
WARN_ON_ONCE(!tgl);
if (tgl) {
list_del_rcu(&tgl->next);
kfree(tgl);
}
if (table_group->group) {
iommu_group_put(table_group->group);
BUG_ON(table_group->group);
}
#endif
iommu_free_table(tbl, node_name);
kfree(table_group);
}
static void tce_invalidate_pSeries_sw(struct iommu_table *tbl,
__be64 *startp, __be64 *endp)
{
u64 __iomem *invalidate = (u64 __iomem *)tbl->it_index;
unsigned long start, end, inc;
start = __pa(startp);
end = __pa(endp);
inc = L1_CACHE_BYTES; /* invalidate a cacheline of TCEs at a time */
/* If this is non-zero, change the format. We shift the
* address and or in the magic from the device tree. */
if (tbl->it_busno) {
start <<= 12;
end <<= 12;
inc <<= 12;
start |= tbl->it_busno;
end |= tbl->it_busno;
}
end |= inc - 1; /* round up end to be different than start */
mb(); /* Make sure TCEs in memory are written */
while (start <= end) {
out_be64(invalidate, start);
start += inc;
}
}
static int tce_build_pSeries(struct iommu_table *tbl, long index,
long npages, unsigned long uaddr,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
u64 proto_tce;
__be64 *tcep, *tces;
u64 rpn;
proto_tce = TCE_PCI_READ; // Read allowed
if (direction != DMA_TO_DEVICE)
proto_tce |= TCE_PCI_WRITE;
tces = tcep = ((__be64 *)tbl->it_base) + index;
while (npages--) {
/* can't move this out since we might cross MEMBLOCK boundary */
rpn = __pa(uaddr) >> TCE_SHIFT;
*tcep = cpu_to_be64(proto_tce | (rpn & TCE_RPN_MASK) << TCE_RPN_SHIFT);
uaddr += TCE_PAGE_SIZE;
tcep++;
}
if (tbl->it_type & TCE_PCI_SWINV_CREATE)
tce_invalidate_pSeries_sw(tbl, tces, tcep - 1);
return 0;
}
static void tce_free_pSeries(struct iommu_table *tbl, long index, long npages)
{
__be64 *tcep, *tces;
tces = tcep = ((__be64 *)tbl->it_base) + index;
while (npages--)
*(tcep++) = 0;
if (tbl->it_type & TCE_PCI_SWINV_FREE)
tce_invalidate_pSeries_sw(tbl, tces, tcep - 1);
}
static unsigned long tce_get_pseries(struct iommu_table *tbl, long index)
{
__be64 *tcep;
tcep = ((__be64 *)tbl->it_base) + index;
return be64_to_cpu(*tcep);
}
static void tce_free_pSeriesLP(struct iommu_table*, long, long);
static void tce_freemulti_pSeriesLP(struct iommu_table*, long, long);
static int tce_build_pSeriesLP(struct iommu_table *tbl, long tcenum,
long npages, unsigned long uaddr,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
u64 rc = 0;
u64 proto_tce, tce;
u64 rpn;
int ret = 0;
long tcenum_start = tcenum, npages_start = npages;
rpn = __pa(uaddr) >> TCE_SHIFT;
proto_tce = TCE_PCI_READ;
if (direction != DMA_TO_DEVICE)
proto_tce |= TCE_PCI_WRITE;
while (npages--) {
tce = proto_tce | (rpn & TCE_RPN_MASK) << TCE_RPN_SHIFT;
rc = plpar_tce_put((u64)tbl->it_index, (u64)tcenum << 12, tce);
if (unlikely(rc == H_NOT_ENOUGH_RESOURCES)) {
ret = (int)rc;
tce_free_pSeriesLP(tbl, tcenum_start,
(npages_start - (npages + 1)));
break;
}
if (rc && printk_ratelimit()) {
printk("tce_build_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc);
printk("\tindex = 0x%llx\n", (u64)tbl->it_index);
printk("\ttcenum = 0x%llx\n", (u64)tcenum);
printk("\ttce val = 0x%llx\n", tce );
dump_stack();
}
tcenum++;
rpn++;
}
return ret;
}
static DEFINE_PER_CPU(__be64 *, tce_page);
static int tce_buildmulti_pSeriesLP(struct iommu_table *tbl, long tcenum,
long npages, unsigned long uaddr,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
u64 rc = 0;
u64 proto_tce;
__be64 *tcep;
u64 rpn;
long l, limit;
long tcenum_start = tcenum, npages_start = npages;
int ret = 0;
unsigned long flags;
if ((npages == 1) || !firmware_has_feature(FW_FEATURE_MULTITCE)) {
return tce_build_pSeriesLP(tbl, tcenum, npages, uaddr,
direction, attrs);
}
local_irq_save(flags); /* to protect tcep and the page behind it */
tcep = __this_cpu_read(tce_page);
/* This is safe to do since interrupts are off when we're called
* from iommu_alloc{,_sg}()
*/
if (!tcep) {
tcep = (__be64 *)__get_free_page(GFP_ATOMIC);
/* If allocation fails, fall back to the loop implementation */
if (!tcep) {
local_irq_restore(flags);
return tce_build_pSeriesLP(tbl, tcenum, npages, uaddr,
direction, attrs);
}
__this_cpu_write(tce_page, tcep);
}
rpn = __pa(uaddr) >> TCE_SHIFT;
proto_tce = TCE_PCI_READ;
if (direction != DMA_TO_DEVICE)
proto_tce |= TCE_PCI_WRITE;
/* We can map max one pageful of TCEs at a time */
do {
/*
* Set up the page with TCE data, looping through and setting
* the values.
*/
limit = min_t(long, npages, 4096/TCE_ENTRY_SIZE);
for (l = 0; l < limit; l++) {
tcep[l] = cpu_to_be64(proto_tce | (rpn & TCE_RPN_MASK) << TCE_RPN_SHIFT);
rpn++;
}
rc = plpar_tce_put_indirect((u64)tbl->it_index,
(u64)tcenum << 12,
(u64)__pa(tcep),
limit);
npages -= limit;
tcenum += limit;
} while (npages > 0 && !rc);
local_irq_restore(flags);
if (unlikely(rc == H_NOT_ENOUGH_RESOURCES)) {
ret = (int)rc;
tce_freemulti_pSeriesLP(tbl, tcenum_start,
(npages_start - (npages + limit)));
return ret;
}
if (rc && printk_ratelimit()) {
printk("tce_buildmulti_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc);
printk("\tindex = 0x%llx\n", (u64)tbl->it_index);
printk("\tnpages = 0x%llx\n", (u64)npages);
printk("\ttce[0] val = 0x%llx\n", tcep[0]);
dump_stack();
}
return ret;
}
static void tce_free_pSeriesLP(struct iommu_table *tbl, long tcenum, long npages)
{
u64 rc;
while (npages--) {
rc = plpar_tce_put((u64)tbl->it_index, (u64)tcenum << 12, 0);
if (rc && printk_ratelimit()) {
printk("tce_free_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc);
printk("\tindex = 0x%llx\n", (u64)tbl->it_index);
printk("\ttcenum = 0x%llx\n", (u64)tcenum);
dump_stack();
}
tcenum++;
}
}
static void tce_freemulti_pSeriesLP(struct iommu_table *tbl, long tcenum, long npages)
{
u64 rc;
if (!firmware_has_feature(FW_FEATURE_MULTITCE))
return tce_free_pSeriesLP(tbl, tcenum, npages);
rc = plpar_tce_stuff((u64)tbl->it_index, (u64)tcenum << 12, 0, npages);
if (rc && printk_ratelimit()) {
printk("tce_freemulti_pSeriesLP: plpar_tce_stuff failed\n");
printk("\trc = %lld\n", rc);
printk("\tindex = 0x%llx\n", (u64)tbl->it_index);
printk("\tnpages = 0x%llx\n", (u64)npages);
dump_stack();
}
}
static unsigned long tce_get_pSeriesLP(struct iommu_table *tbl, long tcenum)
{
u64 rc;
unsigned long tce_ret;
rc = plpar_tce_get((u64)tbl->it_index, (u64)tcenum << 12, &tce_ret);
if (rc && printk_ratelimit()) {
printk("tce_get_pSeriesLP: plpar_tce_get failed. rc=%lld\n", rc);
printk("\tindex = 0x%llx\n", (u64)tbl->it_index);
printk("\ttcenum = 0x%llx\n", (u64)tcenum);
dump_stack();
}
return tce_ret;
}
/* this is compatible with cells for the device tree property */
struct dynamic_dma_window_prop {
__be32 liobn; /* tce table number */
__be64 dma_base; /* address hi,lo */
__be32 tce_shift; /* ilog2(tce_page_size) */
__be32 window_shift; /* ilog2(tce_window_size) */
};
struct direct_window {
struct device_node *device;
const struct dynamic_dma_window_prop *prop;
struct list_head list;
};
/* Dynamic DMA Window support */
struct ddw_query_response {
u32 windows_available;
u32 largest_available_block;
u32 page_size;
u32 migration_capable;
};
struct ddw_create_response {
u32 liobn;
u32 addr_hi;
u32 addr_lo;
};
static LIST_HEAD(direct_window_list);
/* prevents races between memory on/offline and window creation */
static DEFINE_SPINLOCK(direct_window_list_lock);
/* protects initializing window twice for same device */
static DEFINE_MUTEX(direct_window_init_mutex);
#define DIRECT64_PROPNAME "linux,direct64-ddr-window-info"
static int tce_clearrange_multi_pSeriesLP(unsigned long start_pfn,
unsigned long num_pfn, const void *arg)
{
const struct dynamic_dma_window_prop *maprange = arg;
int rc;
u64 tce_size, num_tce, dma_offset, next;
u32 tce_shift;
long limit;
tce_shift = be32_to_cpu(maprange->tce_shift);
tce_size = 1ULL << tce_shift;
next = start_pfn << PAGE_SHIFT;
num_tce = num_pfn << PAGE_SHIFT;
/* round back to the beginning of the tce page size */
num_tce += next & (tce_size - 1);
next &= ~(tce_size - 1);
/* covert to number of tces */
num_tce |= tce_size - 1;
num_tce >>= tce_shift;
do {
/*
* Set up the page with TCE data, looping through and setting
* the values.
*/
limit = min_t(long, num_tce, 512);
dma_offset = next + be64_to_cpu(maprange->dma_base);
rc = plpar_tce_stuff((u64)be32_to_cpu(maprange->liobn),
dma_offset,
0, limit);
next += limit * tce_size;
num_tce -= limit;
} while (num_tce > 0 && !rc);
return rc;
}
static int tce_setrange_multi_pSeriesLP(unsigned long start_pfn,
unsigned long num_pfn, const void *arg)
{
const struct dynamic_dma_window_prop *maprange = arg;
u64 tce_size, num_tce, dma_offset, next, proto_tce, liobn;
__be64 *tcep;
u32 tce_shift;
u64 rc = 0;
long l, limit;
local_irq_disable(); /* to protect tcep and the page behind it */
tcep = __this_cpu_read(tce_page);
if (!tcep) {
tcep = (__be64 *)__get_free_page(GFP_ATOMIC);
if (!tcep) {
local_irq_enable();
return -ENOMEM;
}
__this_cpu_write(tce_page, tcep);
}
proto_tce = TCE_PCI_READ | TCE_PCI_WRITE;
liobn = (u64)be32_to_cpu(maprange->liobn);
tce_shift = be32_to_cpu(maprange->tce_shift);
tce_size = 1ULL << tce_shift;
next = start_pfn << PAGE_SHIFT;
num_tce = num_pfn << PAGE_SHIFT;
/* round back to the beginning of the tce page size */
num_tce += next & (tce_size - 1);
next &= ~(tce_size - 1);
/* covert to number of tces */
num_tce |= tce_size - 1;
num_tce >>= tce_shift;
/* We can map max one pageful of TCEs at a time */
do {
/*
* Set up the page with TCE data, looping through and setting
* the values.
*/
limit = min_t(long, num_tce, 4096/TCE_ENTRY_SIZE);
dma_offset = next + be64_to_cpu(maprange->dma_base);
for (l = 0; l < limit; l++) {
tcep[l] = cpu_to_be64(proto_tce | next);
next += tce_size;
}
rc = plpar_tce_put_indirect(liobn,
dma_offset,
(u64)__pa(tcep),
limit);
num_tce -= limit;
} while (num_tce > 0 && !rc);
/* error cleanup: caller will clear whole range */
local_irq_enable();
return rc;
}
static int tce_setrange_multi_pSeriesLP_walk(unsigned long start_pfn,
unsigned long num_pfn, void *arg)
{
return tce_setrange_multi_pSeriesLP(start_pfn, num_pfn, arg);
}
#ifdef CONFIG_PCI
static void iommu_table_setparms(struct pci_controller *phb,
struct device_node *dn,
struct iommu_table *tbl)
{
struct device_node *node;
const unsigned long *basep, *sw_inval;
const u32 *sizep;
node = phb->dn;
basep = of_get_property(node, "linux,tce-base", NULL);
sizep = of_get_property(node, "linux,tce-size", NULL);
if (basep == NULL || sizep == NULL) {
printk(KERN_ERR "PCI_DMA: iommu_table_setparms: %s has "
"missing tce entries !\n", dn->full_name);
return;
}
tbl->it_base = (unsigned long)__va(*basep);
if (!is_kdump_kernel())
memset((void *)tbl->it_base, 0, *sizep);
tbl->it_busno = phb->bus->number;
tbl->it_page_shift = IOMMU_PAGE_SHIFT_4K;
/* Units of tce entries */
tbl->it_offset = phb->dma_window_base_cur >> tbl->it_page_shift;
/* Test if we are going over 2GB of DMA space */
if (phb->dma_window_base_cur + phb->dma_window_size > 0x80000000ul) {
udbg_printf("PCI_DMA: Unexpected number of IOAs under this PHB.\n");
panic("PCI_DMA: Unexpected number of IOAs under this PHB.\n");
}
phb->dma_window_base_cur += phb->dma_window_size;
/* Set the tce table size - measured in entries */
tbl->it_size = phb->dma_window_size >> tbl->it_page_shift;
tbl->it_index = 0;
tbl->it_blocksize = 16;
tbl->it_type = TCE_PCI;
sw_inval = of_get_property(node, "linux,tce-sw-invalidate-info", NULL);
if (sw_inval) {
/*
* This property contains information on how to
* invalidate the TCE entry. The first property is
* the base MMIO address used to invalidate entries.
* The second property tells us the format of the TCE
* invalidate (whether it needs to be shifted) and
* some magic routing info to add to our invalidate
* command.
*/
tbl->it_index = (unsigned long) ioremap(sw_inval[0], 8);
tbl->it_busno = sw_inval[1]; /* overload this with magic */
tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE;
}
}
/*
* iommu_table_setparms_lpar
*
* Function: On pSeries LPAR systems, return TCE table info, given a pci bus.
*/
static void iommu_table_setparms_lpar(struct pci_controller *phb,
struct device_node *dn,
struct iommu_table *tbl,
const __be32 *dma_window)
{
unsigned long offset, size;
of_parse_dma_window(dn, dma_window, &tbl->it_index, &offset, &size);
tbl->it_busno = phb->bus->number;
tbl->it_page_shift = IOMMU_PAGE_SHIFT_4K;
tbl->it_base = 0;
tbl->it_blocksize = 16;
tbl->it_type = TCE_PCI;
tbl->it_offset = offset >> tbl->it_page_shift;
tbl->it_size = size >> tbl->it_page_shift;
}
struct iommu_table_ops iommu_table_pseries_ops = {
.set = tce_build_pSeries,
.clear = tce_free_pSeries,
.get = tce_get_pseries
};
static void pci_dma_bus_setup_pSeries(struct pci_bus *bus)
{
struct device_node *dn;
struct iommu_table *tbl;
struct device_node *isa_dn, *isa_dn_orig;
struct device_node *tmp;
struct pci_dn *pci;
int children;
dn = pci_bus_to_OF_node(bus);
pr_debug("pci_dma_bus_setup_pSeries: setting up bus %s\n", dn->full_name);
if (bus->self) {
/* This is not a root bus, any setup will be done for the
* device-side of the bridge in iommu_dev_setup_pSeries().
*/
return;
}
pci = PCI_DN(dn);
/* Check if the ISA bus on the system is under
* this PHB.
*/
isa_dn = isa_dn_orig = of_find_node_by_type(NULL, "isa");
while (isa_dn && isa_dn != dn)
isa_dn = isa_dn->parent;
of_node_put(isa_dn_orig);
/* Count number of direct PCI children of the PHB. */
for (children = 0, tmp = dn->child; tmp; tmp = tmp->sibling)
children++;
pr_debug("Children: %d\n", children);
/* Calculate amount of DMA window per slot. Each window must be
* a power of two (due to pci_alloc_consistent requirements).
*
* Keep 256MB aside for PHBs with ISA.
*/
if (!isa_dn) {
/* No ISA/IDE - just set window size and return */
pci->phb->dma_window_size = 0x80000000ul; /* To be divided */
while (pci->phb->dma_window_size * children > 0x80000000ul)
pci->phb->dma_window_size >>= 1;
pr_debug("No ISA/IDE, window size is 0x%llx\n",
pci->phb->dma_window_size);
pci->phb->dma_window_base_cur = 0;
return;
}
/* If we have ISA, then we probably have an IDE
* controller too. Allocate a 128MB table but
* skip the first 128MB to avoid stepping on ISA
* space.
*/
pci->phb->dma_window_size = 0x8000000ul;
pci->phb->dma_window_base_cur = 0x8000000ul;
pci->table_group = iommu_pseries_alloc_group(pci->phb->node);
tbl = pci->table_group->tables[0];
iommu_table_setparms(pci->phb, dn, tbl);
tbl->it_ops = &iommu_table_pseries_ops;
iommu_init_table(tbl, pci->phb->node);
iommu_register_group(pci->table_group, pci_domain_nr(bus), 0);
/* Divide the rest (1.75GB) among the children */
pci->phb->dma_window_size = 0x80000000ul;
while (pci->phb->dma_window_size * children > 0x70000000ul)
pci->phb->dma_window_size >>= 1;
pr_debug("ISA/IDE, window size is 0x%llx\n", pci->phb->dma_window_size);
}
struct iommu_table_ops iommu_table_lpar_multi_ops = {
.set = tce_buildmulti_pSeriesLP,
.clear = tce_freemulti_pSeriesLP,
.get = tce_get_pSeriesLP
};
static void pci_dma_bus_setup_pSeriesLP(struct pci_bus *bus)
{
struct iommu_table *tbl;
struct device_node *dn, *pdn;
struct pci_dn *ppci;
const __be32 *dma_window = NULL;
dn = pci_bus_to_OF_node(bus);
pr_debug("pci_dma_bus_setup_pSeriesLP: setting up bus %s\n",
dn->full_name);
/* Find nearest ibm,dma-window, walking up the device tree */
for (pdn = dn; pdn != NULL; pdn = pdn->parent) {
dma_window = of_get_property(pdn, "ibm,dma-window", NULL);
if (dma_window != NULL)
break;
}
if (dma_window == NULL) {
pr_debug(" no ibm,dma-window property !\n");
return;
}
ppci = PCI_DN(pdn);
pr_debug(" parent is %s, iommu_table: 0x%p\n",
pdn->full_name, ppci->table_group);
if (!ppci->table_group) {
ppci->table_group = iommu_pseries_alloc_group(ppci->phb->node);
tbl = ppci->table_group->tables[0];
iommu_table_setparms_lpar(ppci->phb, pdn, tbl, dma_window);
tbl->it_ops = &iommu_table_lpar_multi_ops;
iommu_init_table(tbl, ppci->phb->node);
iommu_register_group(ppci->table_group,
pci_domain_nr(bus), 0);
pr_debug(" created table: %p\n", ppci->table_group);
}
}
static void pci_dma_dev_setup_pSeries(struct pci_dev *dev)
{
struct device_node *dn;
struct iommu_table *tbl;
pr_debug("pci_dma_dev_setup_pSeries: %s\n", pci_name(dev));
dn = dev->dev.of_node;
/* If we're the direct child of a root bus, then we need to allocate
* an iommu table ourselves. The bus setup code should have setup
* the window sizes already.
*/
if (!dev->bus->self) {
struct pci_controller *phb = PCI_DN(dn)->phb;
pr_debug(" --> first child, no bridge. Allocating iommu table.\n");
PCI_DN(dn)->table_group = iommu_pseries_alloc_group(phb->node);
tbl = PCI_DN(dn)->table_group->tables[0];
iommu_table_setparms(phb, dn, tbl);
tbl->it_ops = &iommu_table_pseries_ops;
iommu_init_table(tbl, phb->node);
iommu_register_group(PCI_DN(dn)->table_group,
pci_domain_nr(phb->bus), 0);
set_iommu_table_base(&dev->dev, tbl);
iommu_add_device(&dev->dev);
return;
}
/* If this device is further down the bus tree, search upwards until
* an already allocated iommu table is found and use that.
*/
while (dn && PCI_DN(dn) && PCI_DN(dn)->table_group == NULL)
dn = dn->parent;
if (dn && PCI_DN(dn)) {
set_iommu_table_base(&dev->dev,
PCI_DN(dn)->table_group->tables[0]);
iommu_add_device(&dev->dev);
} else
printk(KERN_WARNING "iommu: Device %s has no iommu table\n",
pci_name(dev));
}
static int __read_mostly disable_ddw;
static int __init disable_ddw_setup(char *str)
{
disable_ddw = 1;
printk(KERN_INFO "ppc iommu: disabling ddw.\n");
return 0;
}
early_param("disable_ddw", disable_ddw_setup);
static void remove_ddw(struct device_node *np, bool remove_prop)
{
struct dynamic_dma_window_prop *dwp;
struct property *win64;
u32 ddw_avail[3];
u64 liobn;
int ret = 0;
ret = of_property_read_u32_array(np, "ibm,ddw-applicable",
&ddw_avail[0], 3);
win64 = of_find_property(np, DIRECT64_PROPNAME, NULL);
if (!win64)
return;
if (ret || win64->length < sizeof(*dwp))
goto delprop;
dwp = win64->value;
liobn = (u64)be32_to_cpu(dwp->liobn);
/* clear the whole window, note the arg is in kernel pages */
ret = tce_clearrange_multi_pSeriesLP(0,
1ULL << (be32_to_cpu(dwp->window_shift) - PAGE_SHIFT), dwp);
if (ret)
pr_warning("%s failed to clear tces in window.\n",
np->full_name);
else
pr_debug("%s successfully cleared tces in window.\n",
np->full_name);
ret = rtas_call(ddw_avail[2], 1, 1, NULL, liobn);
if (ret)
pr_warning("%s: failed to remove direct window: rtas returned "
"%d to ibm,remove-pe-dma-window(%x) %llx\n",
np->full_name, ret, ddw_avail[2], liobn);
else
pr_debug("%s: successfully removed direct window: rtas returned "
"%d to ibm,remove-pe-dma-window(%x) %llx\n",
np->full_name, ret, ddw_avail[2], liobn);
delprop:
if (remove_prop)
ret = of_remove_property(np, win64);
if (ret)
pr_warning("%s: failed to remove direct window property: %d\n",
np->full_name, ret);
}
static u64 find_existing_ddw(struct device_node *pdn)
{
struct direct_window *window;
const struct dynamic_dma_window_prop *direct64;
u64 dma_addr = 0;
spin_lock(&direct_window_list_lock);
/* check if we already created a window and dupe that config if so */
list_for_each_entry(window, &direct_window_list, list) {
if (window->device == pdn) {
direct64 = window->prop;
dma_addr = be64_to_cpu(direct64->dma_base);
break;
}
}
spin_unlock(&direct_window_list_lock);
return dma_addr;
}
static int find_existing_ddw_windows(void)
{
int len;
struct device_node *pdn;
struct direct_window *window;
const struct dynamic_dma_window_prop *direct64;
if (!firmware_has_feature(FW_FEATURE_LPAR))
return 0;
for_each_node_with_property(pdn, DIRECT64_PROPNAME) {
direct64 = of_get_property(pdn, DIRECT64_PROPNAME, &len);
if (!direct64)
continue;
window = kzalloc(sizeof(*window), GFP_KERNEL);
if (!window || len < sizeof(struct dynamic_dma_window_prop)) {
kfree(window);
remove_ddw(pdn, true);
continue;
}
window->device = pdn;
window->prop = direct64;
spin_lock(&direct_window_list_lock);
list_add(&window->list, &direct_window_list);
spin_unlock(&direct_window_list_lock);
}
return 0;
}
machine_arch_initcall(pseries, find_existing_ddw_windows);
static int query_ddw(struct pci_dev *dev, const u32 *ddw_avail,
struct ddw_query_response *query)
{
struct eeh_dev *edev;
u32 cfg_addr;
u64 buid;
int ret;
/*
* Get the config address and phb buid of the PE window.
* Rely on eeh to retrieve this for us.
* Retrieve them from the pci device, not the node with the
* dma-window property
*/
edev = pci_dev_to_eeh_dev(dev);
cfg_addr = edev->config_addr;
if (edev->pe_config_addr)
cfg_addr = edev->pe_config_addr;
buid = edev->phb->buid;
ret = rtas_call(ddw_avail[0], 3, 5, (u32 *)query,
cfg_addr, BUID_HI(buid), BUID_LO(buid));
dev_info(&dev->dev, "ibm,query-pe-dma-windows(%x) %x %x %x"
" returned %d\n", ddw_avail[0], cfg_addr, BUID_HI(buid),
BUID_LO(buid), ret);
return ret;
}
static int create_ddw(struct pci_dev *dev, const u32 *ddw_avail,
struct ddw_create_response *create, int page_shift,
int window_shift)
{
struct eeh_dev *edev;
u32 cfg_addr;
u64 buid;
int ret;
/*
* Get the config address and phb buid of the PE window.
* Rely on eeh to retrieve this for us.
* Retrieve them from the pci device, not the node with the
* dma-window property
*/
edev = pci_dev_to_eeh_dev(dev);
cfg_addr = edev->config_addr;
if (edev->pe_config_addr)
cfg_addr = edev->pe_config_addr;
buid = edev->phb->buid;
do {
/* extra outputs are LIOBN and dma-addr (hi, lo) */
ret = rtas_call(ddw_avail[1], 5, 4, (u32 *)create,
cfg_addr, BUID_HI(buid), BUID_LO(buid),
page_shift, window_shift);
} while (rtas_busy_delay(ret));
dev_info(&dev->dev,
"ibm,create-pe-dma-window(%x) %x %x %x %x %x returned %d "
"(liobn = 0x%x starting addr = %x %x)\n", ddw_avail[1],
cfg_addr, BUID_HI(buid), BUID_LO(buid), page_shift,
window_shift, ret, create->liobn, create->addr_hi, create->addr_lo);
return ret;
}
struct failed_ddw_pdn {
struct device_node *pdn;
struct list_head list;
};
static LIST_HEAD(failed_ddw_pdn_list);
/*
* If the PE supports dynamic dma windows, and there is space for a table
* that can map all pages in a linear offset, then setup such a table,
* and record the dma-offset in the struct device.
*
* dev: the pci device we are checking
* pdn: the parent pe node with the ibm,dma_window property
* Future: also check if we can remap the base window for our base page size
*
* returns the dma offset for use by dma_set_mask
*/
static u64 enable_ddw(struct pci_dev *dev, struct device_node *pdn)
{
int len, ret;
struct ddw_query_response query;
struct ddw_create_response create;
int page_shift;
u64 dma_addr, max_addr;
struct device_node *dn;
u32 ddw_avail[3];
struct direct_window *window;
struct property *win64;
struct dynamic_dma_window_prop *ddwprop;
struct failed_ddw_pdn *fpdn;
mutex_lock(&direct_window_init_mutex);
dma_addr = find_existing_ddw(pdn);
if (dma_addr != 0)
goto out_unlock;
/*
* If we already went through this for a previous function of
* the same device and failed, we don't want to muck with the
* DMA window again, as it will race with in-flight operations
* and can lead to EEHs. The above mutex protects access to the
* list.
*/
list_for_each_entry(fpdn, &failed_ddw_pdn_list, list) {
if (!strcmp(fpdn->pdn->full_name, pdn->full_name))
goto out_unlock;
}
/*
* the ibm,ddw-applicable property holds the tokens for:
* ibm,query-pe-dma-window
* ibm,create-pe-dma-window
* ibm,remove-pe-dma-window
* for the given node in that order.
* the property is actually in the parent, not the PE
*/
ret = of_property_read_u32_array(pdn, "ibm,ddw-applicable",
&ddw_avail[0], 3);
if (ret)
goto out_failed;
/*
* Query if there is a second window of size to map the
* whole partition. Query returns number of windows, largest
* block assigned to PE (partition endpoint), and two bitmasks
* of page sizes: supported and supported for migrate-dma.
*/
dn = pci_device_to_OF_node(dev);
ret = query_ddw(dev, ddw_avail, &query);
if (ret != 0)
goto out_failed;
if (query.windows_available == 0) {
/*
* no additional windows are available for this device.
* We might be able to reallocate the existing window,
* trading in for a larger page size.
*/
dev_dbg(&dev->dev, "no free dynamic windows");
goto out_failed;
}
if (query.page_size & 4) {
page_shift = 24; /* 16MB */
} else if (query.page_size & 2) {
page_shift = 16; /* 64kB */
} else if (query.page_size & 1) {
page_shift = 12; /* 4kB */
} else {
dev_dbg(&dev->dev, "no supported direct page size in mask %x",
query.page_size);
goto out_failed;
}
/* verify the window * number of ptes will map the partition */
/* check largest block * page size > max memory hotplug addr */
max_addr = memory_hotplug_max();
if (query.largest_available_block < (max_addr >> page_shift)) {
dev_dbg(&dev->dev, "can't map partiton max 0x%llx with %u "
"%llu-sized pages\n", max_addr, query.largest_available_block,
1ULL << page_shift);
goto out_failed;
}
len = order_base_2(max_addr);
win64 = kzalloc(sizeof(struct property), GFP_KERNEL);
if (!win64) {
dev_info(&dev->dev,
"couldn't allocate property for 64bit dma window\n");
goto out_failed;
}
win64->name = kstrdup(DIRECT64_PROPNAME, GFP_KERNEL);
win64->value = ddwprop = kmalloc(sizeof(*ddwprop), GFP_KERNEL);
win64->length = sizeof(*ddwprop);
if (!win64->name || !win64->value) {
dev_info(&dev->dev,
"couldn't allocate property name and value\n");
goto out_free_prop;
}
ret = create_ddw(dev, ddw_avail, &create, page_shift, len);
if (ret != 0)
goto out_free_prop;
ddwprop->liobn = cpu_to_be32(create.liobn);
ddwprop->dma_base = cpu_to_be64(((u64)create.addr_hi << 32) |
create.addr_lo);
ddwprop->tce_shift = cpu_to_be32(page_shift);
ddwprop->window_shift = cpu_to_be32(len);
dev_dbg(&dev->dev, "created tce table LIOBN 0x%x for %s\n",
create.liobn, dn->full_name);
window = kzalloc(sizeof(*window), GFP_KERNEL);
if (!window)
goto out_clear_window;
ret = walk_system_ram_range(0, memblock_end_of_DRAM() >> PAGE_SHIFT,
win64->value, tce_setrange_multi_pSeriesLP_walk);
if (ret) {
dev_info(&dev->dev, "failed to map direct window for %s: %d\n",
dn->full_name, ret);
goto out_free_window;
}
ret = of_add_property(pdn, win64);
if (ret) {
dev_err(&dev->dev, "unable to add dma window property for %s: %d",
pdn->full_name, ret);
goto out_free_window;
}
window->device = pdn;
window->prop = ddwprop;
spin_lock(&direct_window_list_lock);
list_add(&window->list, &direct_window_list);
spin_unlock(&direct_window_list_lock);
dma_addr = be64_to_cpu(ddwprop->dma_base);
goto out_unlock;
out_free_window:
kfree(window);
out_clear_window:
remove_ddw(pdn, true);
out_free_prop:
kfree(win64->name);
kfree(win64->value);
kfree(win64);
out_failed:
fpdn = kzalloc(sizeof(*fpdn), GFP_KERNEL);
if (!fpdn)
goto out_unlock;
fpdn->pdn = pdn;
list_add(&fpdn->list, &failed_ddw_pdn_list);
out_unlock:
mutex_unlock(&direct_window_init_mutex);
return dma_addr;
}
static void pci_dma_dev_setup_pSeriesLP(struct pci_dev *dev)
{
struct device_node *pdn, *dn;
struct iommu_table *tbl;
const __be32 *dma_window = NULL;
struct pci_dn *pci;
pr_debug("pci_dma_dev_setup_pSeriesLP: %s\n", pci_name(dev));
/* dev setup for LPAR is a little tricky, since the device tree might
* contain the dma-window properties per-device and not necessarily
* for the bus. So we need to search upwards in the tree until we
* either hit a dma-window property, OR find a parent with a table
* already allocated.
*/
dn = pci_device_to_OF_node(dev);
pr_debug(" node is %s\n", dn->full_name);
for (pdn = dn; pdn && PCI_DN(pdn) && !PCI_DN(pdn)->table_group;
pdn = pdn->parent) {
dma_window = of_get_property(pdn, "ibm,dma-window", NULL);
if (dma_window)
break;
}
if (!pdn || !PCI_DN(pdn)) {
printk(KERN_WARNING "pci_dma_dev_setup_pSeriesLP: "
"no DMA window found for pci dev=%s dn=%s\n",
pci_name(dev), of_node_full_name(dn));
return;
}
pr_debug(" parent is %s\n", pdn->full_name);
pci = PCI_DN(pdn);
if (!pci->table_group) {
pci->table_group = iommu_pseries_alloc_group(pci->phb->node);
tbl = pci->table_group->tables[0];
iommu_table_setparms_lpar(pci->phb, pdn, tbl, dma_window);
tbl->it_ops = &iommu_table_lpar_multi_ops;
iommu_init_table(tbl, pci->phb->node);
iommu_register_group(pci->table_group,
pci_domain_nr(pci->phb->bus), 0);
pr_debug(" created table: %p\n", pci->table_group);
} else {
pr_debug(" found DMA window, table: %p\n", pci->table_group);
}
set_iommu_table_base(&dev->dev, pci->table_group->tables[0]);
iommu_add_device(&dev->dev);
}
static int dma_set_mask_pSeriesLP(struct device *dev, u64 dma_mask)
{
bool ddw_enabled = false;
struct device_node *pdn, *dn;
struct pci_dev *pdev;
const __be32 *dma_window = NULL;
u64 dma_offset;
if (!dev->dma_mask)
return -EIO;
if (!dev_is_pci(dev))
goto check_mask;
pdev = to_pci_dev(dev);
/* only attempt to use a new window if 64-bit DMA is requested */
if (!disable_ddw && dma_mask == DMA_BIT_MASK(64)) {
dn = pci_device_to_OF_node(pdev);
dev_dbg(dev, "node is %s\n", dn->full_name);
/*
* the device tree might contain the dma-window properties
* per-device and not necessarily for the bus. So we need to
* search upwards in the tree until we either hit a dma-window
* property, OR find a parent with a table already allocated.
*/
for (pdn = dn; pdn && PCI_DN(pdn) && !PCI_DN(pdn)->table_group;
pdn = pdn->parent) {
dma_window = of_get_property(pdn, "ibm,dma-window", NULL);
if (dma_window)
break;
}
if (pdn && PCI_DN(pdn)) {
dma_offset = enable_ddw(pdev, pdn);
if (dma_offset != 0) {
dev_info(dev, "Using 64-bit direct DMA at offset %llx\n", dma_offset);
set_dma_offset(dev, dma_offset);
set_dma_ops(dev, &dma_direct_ops);
ddw_enabled = true;
}
}
}
/* fall back on iommu ops */
if (!ddw_enabled && get_dma_ops(dev) != &dma_iommu_ops) {
dev_info(dev, "Restoring 32-bit DMA via iommu\n");
set_dma_ops(dev, &dma_iommu_ops);
}
check_mask:
if (!dma_supported(dev, dma_mask))
return -EIO;
*dev->dma_mask = dma_mask;
return 0;
}
static u64 dma_get_required_mask_pSeriesLP(struct device *dev)
{
if (!dev->dma_mask)
return 0;
if (!disable_ddw && dev_is_pci(dev)) {
struct pci_dev *pdev = to_pci_dev(dev);
struct device_node *dn;
dn = pci_device_to_OF_node(pdev);
/* search upwards for ibm,dma-window */
for (; dn && PCI_DN(dn) && !PCI_DN(dn)->table_group;
dn = dn->parent)
if (of_get_property(dn, "ibm,dma-window", NULL))
break;
/* if there is a ibm,ddw-applicable property require 64 bits */
if (dn && PCI_DN(dn) &&
of_get_property(dn, "ibm,ddw-applicable", NULL))
return DMA_BIT_MASK(64);
}
return dma_iommu_ops.get_required_mask(dev);
}
#else /* CONFIG_PCI */
#define pci_dma_bus_setup_pSeries NULL
#define pci_dma_dev_setup_pSeries NULL
#define pci_dma_bus_setup_pSeriesLP NULL
#define pci_dma_dev_setup_pSeriesLP NULL
#define dma_set_mask_pSeriesLP NULL
#define dma_get_required_mask_pSeriesLP NULL
#endif /* !CONFIG_PCI */
static int iommu_mem_notifier(struct notifier_block *nb, unsigned long action,
void *data)
{
struct direct_window *window;
struct memory_notify *arg = data;
int ret = 0;
switch (action) {
case MEM_GOING_ONLINE:
spin_lock(&direct_window_list_lock);
list_for_each_entry(window, &direct_window_list, list) {
ret |= tce_setrange_multi_pSeriesLP(arg->start_pfn,
arg->nr_pages, window->prop);
/* XXX log error */
}
spin_unlock(&direct_window_list_lock);
break;
case MEM_CANCEL_ONLINE:
case MEM_OFFLINE:
spin_lock(&direct_window_list_lock);
list_for_each_entry(window, &direct_window_list, list) {
ret |= tce_clearrange_multi_pSeriesLP(arg->start_pfn,
arg->nr_pages, window->prop);
/* XXX log error */
}
spin_unlock(&direct_window_list_lock);
break;
default:
break;
}
if (ret && action != MEM_CANCEL_ONLINE)
return NOTIFY_BAD;
return NOTIFY_OK;
}
static struct notifier_block iommu_mem_nb = {
.notifier_call = iommu_mem_notifier,
};
static int iommu_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *data)
{
int err = NOTIFY_OK;
struct of_reconfig_data *rd = data;
struct device_node *np = rd->dn;
struct pci_dn *pci = PCI_DN(np);
struct direct_window *window;
switch (action) {
case OF_RECONFIG_DETACH_NODE:
/*
* Removing the property will invoke the reconfig
* notifier again, which causes dead-lock on the
* read-write semaphore of the notifier chain. So
* we have to remove the property when releasing
* the device node.
*/
remove_ddw(np, false);
if (pci && pci->table_group)
iommu_pseries_free_group(pci->table_group,
np->full_name);
spin_lock(&direct_window_list_lock);
list_for_each_entry(window, &direct_window_list, list) {
if (window->device == np) {
list_del(&window->list);
kfree(window);
break;
}
}
spin_unlock(&direct_window_list_lock);
break;
default:
err = NOTIFY_DONE;
break;
}
return err;
}
static struct notifier_block iommu_reconfig_nb = {
.notifier_call = iommu_reconfig_notifier,
};
/* These are called very early. */
void iommu_init_early_pSeries(void)
{
if (of_chosen && of_get_property(of_chosen, "linux,iommu-off", NULL))
return;
if (firmware_has_feature(FW_FEATURE_LPAR)) {
pseries_pci_controller_ops.dma_bus_setup = pci_dma_bus_setup_pSeriesLP;
pseries_pci_controller_ops.dma_dev_setup = pci_dma_dev_setup_pSeriesLP;
ppc_md.dma_set_mask = dma_set_mask_pSeriesLP;
ppc_md.dma_get_required_mask = dma_get_required_mask_pSeriesLP;
} else {
pseries_pci_controller_ops.dma_bus_setup = pci_dma_bus_setup_pSeries;
pseries_pci_controller_ops.dma_dev_setup = pci_dma_dev_setup_pSeries;
}
of_reconfig_notifier_register(&iommu_reconfig_nb);
register_memory_notifier(&iommu_mem_nb);
set_pci_dma_ops(&dma_iommu_ops);
}
static int __init disable_multitce(char *str)
{
if (strcmp(str, "off") == 0 &&
firmware_has_feature(FW_FEATURE_LPAR) &&
firmware_has_feature(FW_FEATURE_MULTITCE)) {
printk(KERN_INFO "Disabling MULTITCE firmware feature\n");
powerpc_firmware_features &= ~FW_FEATURE_MULTITCE;
}
return 1;
}
__setup("multitce=", disable_multitce);
machine_subsys_initcall_sync(pseries, tce_iommu_bus_notifier_init);