| #ifndef _ASM_POWERPC_PGTABLE_PPC64_H_ |
| #define _ASM_POWERPC_PGTABLE_PPC64_H_ |
| /* |
| * This file contains the functions and defines necessary to modify and use |
| * the ppc64 hashed page table. |
| */ |
| |
| #ifdef CONFIG_PPC_64K_PAGES |
| #include <asm/pgtable-ppc64-64k.h> |
| #else |
| #include <asm/pgtable-ppc64-4k.h> |
| #endif |
| #include <asm/barrier.h> |
| |
| #define FIRST_USER_ADDRESS 0UL |
| |
| /* |
| * Size of EA range mapped by our pagetables. |
| */ |
| #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ |
| PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT) |
| #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE) |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| #define PMD_CACHE_INDEX (PMD_INDEX_SIZE + 1) |
| #else |
| #define PMD_CACHE_INDEX PMD_INDEX_SIZE |
| #endif |
| /* |
| * Define the address range of the kernel non-linear virtual area |
| */ |
| |
| #ifdef CONFIG_PPC_BOOK3E |
| #define KERN_VIRT_START ASM_CONST(0x8000000000000000) |
| #else |
| #define KERN_VIRT_START ASM_CONST(0xD000000000000000) |
| #endif |
| #define KERN_VIRT_SIZE ASM_CONST(0x0000100000000000) |
| |
| /* |
| * The vmalloc space starts at the beginning of that region, and |
| * occupies half of it on hash CPUs and a quarter of it on Book3E |
| * (we keep a quarter for the virtual memmap) |
| */ |
| #define VMALLOC_START KERN_VIRT_START |
| #ifdef CONFIG_PPC_BOOK3E |
| #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 2) |
| #else |
| #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) |
| #endif |
| #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE) |
| |
| /* |
| * The second half of the kernel virtual space is used for IO mappings, |
| * it's itself carved into the PIO region (ISA and PHB IO space) and |
| * the ioremap space |
| * |
| * ISA_IO_BASE = KERN_IO_START, 64K reserved area |
| * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces |
| * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE |
| */ |
| #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1)) |
| #define FULL_IO_SIZE 0x80000000ul |
| #define ISA_IO_BASE (KERN_IO_START) |
| #define ISA_IO_END (KERN_IO_START + 0x10000ul) |
| #define PHB_IO_BASE (ISA_IO_END) |
| #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE) |
| #define IOREMAP_BASE (PHB_IO_END) |
| #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE) |
| |
| |
| /* |
| * Region IDs |
| */ |
| #define REGION_SHIFT 60UL |
| #define REGION_MASK (0xfUL << REGION_SHIFT) |
| #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT) |
| |
| #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START)) |
| #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET)) |
| #define VMEMMAP_REGION_ID (0xfUL) /* Server only */ |
| #define USER_REGION_ID (0UL) |
| |
| /* |
| * Defines the address of the vmemap area, in its own region on |
| * hash table CPUs and after the vmalloc space on Book3E |
| */ |
| #ifdef CONFIG_PPC_BOOK3E |
| #define VMEMMAP_BASE VMALLOC_END |
| #define VMEMMAP_END KERN_IO_START |
| #else |
| #define VMEMMAP_BASE (VMEMMAP_REGION_ID << REGION_SHIFT) |
| #endif |
| #define vmemmap ((struct page *)VMEMMAP_BASE) |
| |
| |
| /* |
| * Include the PTE bits definitions |
| */ |
| #ifdef CONFIG_PPC_BOOK3S |
| #include <asm/pte-hash64.h> |
| #else |
| #include <asm/pte-book3e.h> |
| #endif |
| #include <asm/pte-common.h> |
| |
| #ifdef CONFIG_PPC_MM_SLICES |
| #define HAVE_ARCH_UNMAPPED_AREA |
| #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN |
| #endif /* CONFIG_PPC_MM_SLICES */ |
| |
| #ifndef __ASSEMBLY__ |
| |
| /* |
| * This is the default implementation of various PTE accessors, it's |
| * used in all cases except Book3S with 64K pages where we have a |
| * concept of sub-pages |
| */ |
| #ifndef __real_pte |
| |
| #ifdef CONFIG_STRICT_MM_TYPECHECKS |
| #define __real_pte(e,p) ((real_pte_t){(e)}) |
| #define __rpte_to_pte(r) ((r).pte) |
| #else |
| #define __real_pte(e,p) (e) |
| #define __rpte_to_pte(r) (__pte(r)) |
| #endif |
| #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> 12) |
| |
| #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \ |
| do { \ |
| index = 0; \ |
| shift = mmu_psize_defs[psize].shift; \ |
| |
| #define pte_iterate_hashed_end() } while(0) |
| |
| /* |
| * We expect this to be called only for user addresses or kernel virtual |
| * addresses other than the linear mapping. |
| */ |
| #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K |
| |
| #endif /* __real_pte */ |
| |
| |
| /* pte_clear moved to later in this file */ |
| |
| #define PMD_BAD_BITS (PTE_TABLE_SIZE-1) |
| #define PUD_BAD_BITS (PMD_TABLE_SIZE-1) |
| |
| #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval)) |
| #define pmd_none(pmd) (!pmd_val(pmd)) |
| #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \ |
| || (pmd_val(pmd) & PMD_BAD_BITS)) |
| #define pmd_present(pmd) (!pmd_none(pmd)) |
| #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0) |
| #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS) |
| extern struct page *pmd_page(pmd_t pmd); |
| |
| #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval)) |
| #define pud_none(pud) (!pud_val(pud)) |
| #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \ |
| || (pud_val(pud) & PUD_BAD_BITS)) |
| #define pud_present(pud) (pud_val(pud) != 0) |
| #define pud_clear(pudp) (pud_val(*(pudp)) = 0) |
| #define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS) |
| |
| extern struct page *pud_page(pud_t pud); |
| |
| static inline pte_t pud_pte(pud_t pud) |
| { |
| return __pte(pud_val(pud)); |
| } |
| |
| static inline pud_t pte_pud(pte_t pte) |
| { |
| return __pud(pte_val(pte)); |
| } |
| #define pud_write(pud) pte_write(pud_pte(pud)) |
| #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);}) |
| #define pgd_write(pgd) pte_write(pgd_pte(pgd)) |
| |
| /* |
| * Find an entry in a page-table-directory. We combine the address region |
| * (the high order N bits) and the pgd portion of the address. |
| */ |
| #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1)) |
| |
| #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) |
| |
| #define pmd_offset(pudp,addr) \ |
| (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) |
| |
| #define pte_offset_kernel(dir,addr) \ |
| (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) |
| |
| #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) |
| #define pte_unmap(pte) do { } while(0) |
| |
| /* to find an entry in a kernel page-table-directory */ |
| /* This now only contains the vmalloc pages */ |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, unsigned long pte, int huge); |
| |
| /* Atomic PTE updates */ |
| static inline unsigned long pte_update(struct mm_struct *mm, |
| unsigned long addr, |
| pte_t *ptep, unsigned long clr, |
| unsigned long set, |
| int huge) |
| { |
| #ifdef PTE_ATOMIC_UPDATES |
| unsigned long old, tmp; |
| |
| __asm__ __volatile__( |
| "1: ldarx %0,0,%3 # pte_update\n\ |
| andi. %1,%0,%6\n\ |
| bne- 1b \n\ |
| andc %1,%0,%4 \n\ |
| or %1,%1,%7\n\ |
| stdcx. %1,0,%3 \n\ |
| bne- 1b" |
| : "=&r" (old), "=&r" (tmp), "=m" (*ptep) |
| : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY), "r" (set) |
| : "cc" ); |
| #else |
| unsigned long old = pte_val(*ptep); |
| *ptep = __pte((old & ~clr) | set); |
| #endif |
| /* huge pages use the old page table lock */ |
| if (!huge) |
| assert_pte_locked(mm, addr); |
| |
| #ifdef CONFIG_PPC_STD_MMU_64 |
| if (old & _PAGE_HASHPTE) |
| hpte_need_flush(mm, addr, ptep, old, huge); |
| #endif |
| |
| return old; |
| } |
| |
| static inline int __ptep_test_and_clear_young(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| unsigned long old; |
| |
| if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) |
| return 0; |
| old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); |
| return (old & _PAGE_ACCESSED) != 0; |
| } |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ |
| ({ \ |
| int __r; \ |
| __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ |
| __r; \ |
| }) |
| |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| |
| if ((pte_val(*ptep) & _PAGE_RW) == 0) |
| return; |
| |
| pte_update(mm, addr, ptep, _PAGE_RW, 0, 0); |
| } |
| |
| static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| if ((pte_val(*ptep) & _PAGE_RW) == 0) |
| return; |
| |
| pte_update(mm, addr, ptep, _PAGE_RW, 0, 1); |
| } |
| |
| /* |
| * We currently remove entries from the hashtable regardless of whether |
| * the entry was young or dirty. The generic routines only flush if the |
| * entry was young or dirty which is not good enough. |
| * |
| * We should be more intelligent about this but for the moment we override |
| * these functions and force a tlb flush unconditionally |
| */ |
| #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH |
| #define ptep_clear_flush_young(__vma, __address, __ptep) \ |
| ({ \ |
| int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ |
| __ptep); \ |
| __young; \ |
| }) |
| |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0); |
| return __pte(old); |
| } |
| |
| static inline void pte_clear(struct mm_struct *mm, unsigned long addr, |
| pte_t * ptep) |
| { |
| pte_update(mm, addr, ptep, ~0UL, 0, 0); |
| } |
| |
| |
| /* Set the dirty and/or accessed bits atomically in a linux PTE, this |
| * function doesn't need to flush the hash entry |
| */ |
| static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry) |
| { |
| unsigned long bits = pte_val(entry) & |
| (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); |
| |
| #ifdef PTE_ATOMIC_UPDATES |
| unsigned long old, tmp; |
| |
| __asm__ __volatile__( |
| "1: ldarx %0,0,%4\n\ |
| andi. %1,%0,%6\n\ |
| bne- 1b \n\ |
| or %0,%3,%0\n\ |
| stdcx. %0,0,%4\n\ |
| bne- 1b" |
| :"=&r" (old), "=&r" (tmp), "=m" (*ptep) |
| :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY) |
| :"cc"); |
| #else |
| unsigned long old = pte_val(*ptep); |
| *ptep = __pte(old | bits); |
| #endif |
| } |
| |
| #define __HAVE_ARCH_PTE_SAME |
| #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0) |
| |
| #define pte_ERROR(e) \ |
| pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) |
| #define pmd_ERROR(e) \ |
| pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) |
| #define pgd_ERROR(e) \ |
| pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) |
| |
| /* Encode and de-code a swap entry */ |
| #define MAX_SWAPFILES_CHECK() do { \ |
| BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \ |
| /* \ |
| * Don't have overlapping bits with _PAGE_HPTEFLAGS \ |
| * We filter HPTEFLAGS on set_pte. \ |
| */ \ |
| BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \ |
| } while (0) |
| /* |
| * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT; |
| */ |
| #define SWP_TYPE_BITS 5 |
| #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \ |
| & ((1UL << SWP_TYPE_BITS) - 1)) |
| #define __swp_offset(x) ((x).val >> PTE_RPN_SHIFT) |
| #define __swp_entry(type, offset) ((swp_entry_t) { \ |
| ((type) << _PAGE_BIT_SWAP_TYPE) \ |
| | ((offset) << PTE_RPN_SHIFT) }) |
| |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) }) |
| #define __swp_entry_to_pte(x) __pte((x).val) |
| |
| void pgtable_cache_add(unsigned shift, void (*ctor)(void *)); |
| void pgtable_cache_init(void); |
| #endif /* __ASSEMBLY__ */ |
| |
| /* |
| * THP pages can't be special. So use the _PAGE_SPECIAL |
| */ |
| #define _PAGE_SPLITTING _PAGE_SPECIAL |
| |
| /* |
| * We need to differentiate between explicit huge page and THP huge |
| * page, since THP huge page also need to track real subpage details |
| */ |
| #define _PAGE_THP_HUGE _PAGE_4K_PFN |
| |
| /* |
| * set of bits not changed in pmd_modify. |
| */ |
| #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | \ |
| _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \ |
| _PAGE_THP_HUGE) |
| |
| #ifndef __ASSEMBLY__ |
| /* |
| * The linux hugepage PMD now include the pmd entries followed by the address |
| * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits. |
| * [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per |
| * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and |
| * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t. |
| * |
| * The last three bits are intentionally left to zero. This memory location |
| * are also used as normal page PTE pointers. So if we have any pointers |
| * left around while we collapse a hugepage, we need to make sure |
| * _PAGE_PRESENT bit of that is zero when we look at them |
| */ |
| static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index) |
| { |
| return (hpte_slot_array[index] >> 3) & 0x1; |
| } |
| |
| static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array, |
| int index) |
| { |
| return hpte_slot_array[index] >> 4; |
| } |
| |
| static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array, |
| unsigned int index, unsigned int hidx) |
| { |
| hpte_slot_array[index] = hidx << 4 | 0x1 << 3; |
| } |
| |
| struct page *realmode_pfn_to_page(unsigned long pfn); |
| |
| static inline char *get_hpte_slot_array(pmd_t *pmdp) |
| { |
| /* |
| * The hpte hindex is stored in the pgtable whose address is in the |
| * second half of the PMD |
| * |
| * Order this load with the test for pmd_trans_huge in the caller |
| */ |
| smp_rmb(); |
| return *(char **)(pmdp + PTRS_PER_PMD); |
| |
| |
| } |
| |
| extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr, |
| pmd_t *pmdp, unsigned long old_pmd); |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot); |
| extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot); |
| extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot); |
| extern void set_pmd_at(struct mm_struct *mm, unsigned long addr, |
| pmd_t *pmdp, pmd_t pmd); |
| extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, |
| pmd_t *pmd); |
| /* |
| * |
| * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs |
| * page. The hugetlbfs page table walking and mangling paths are totally |
| * separated form the core VM paths and they're differentiated by |
| * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run. |
| * |
| * pmd_trans_huge() is defined as false at build time if |
| * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build |
| * time in such case. |
| * |
| * For ppc64 we need to differntiate from explicit hugepages from THP, because |
| * for THP we also track the subpage details at the pmd level. We don't do |
| * that for explicit huge pages. |
| * |
| */ |
| static inline int pmd_trans_huge(pmd_t pmd) |
| { |
| /* |
| * leaf pte for huge page, bottom two bits != 00 |
| */ |
| return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE); |
| } |
| |
| static inline int pmd_trans_splitting(pmd_t pmd) |
| { |
| if (pmd_trans_huge(pmd)) |
| return pmd_val(pmd) & _PAGE_SPLITTING; |
| return 0; |
| } |
| |
| extern int has_transparent_hugepage(void); |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| static inline int pmd_large(pmd_t pmd) |
| { |
| /* |
| * leaf pte for huge page, bottom two bits != 00 |
| */ |
| return ((pmd_val(pmd) & 0x3) != 0x0); |
| } |
| |
| static inline pte_t pmd_pte(pmd_t pmd) |
| { |
| return __pte(pmd_val(pmd)); |
| } |
| |
| static inline pmd_t pte_pmd(pte_t pte) |
| { |
| return __pmd(pte_val(pte)); |
| } |
| |
| static inline pte_t *pmdp_ptep(pmd_t *pmd) |
| { |
| return (pte_t *)pmd; |
| } |
| |
| #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd)) |
| #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) |
| #define pmd_young(pmd) pte_young(pmd_pte(pmd)) |
| #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) |
| #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) |
| #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) |
| #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) |
| #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) |
| |
| #define __HAVE_ARCH_PMD_WRITE |
| #define pmd_write(pmd) pte_write(pmd_pte(pmd)) |
| |
| static inline pmd_t pmd_mkhuge(pmd_t pmd) |
| { |
| /* Do nothing, mk_pmd() does this part. */ |
| return pmd; |
| } |
| |
| static inline pmd_t pmd_mknotpresent(pmd_t pmd) |
| { |
| pmd_val(pmd) &= ~_PAGE_PRESENT; |
| return pmd; |
| } |
| |
| static inline pmd_t pmd_mksplitting(pmd_t pmd) |
| { |
| pmd_val(pmd) |= _PAGE_SPLITTING; |
| return pmd; |
| } |
| |
| #define __HAVE_ARCH_PMD_SAME |
| static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) |
| { |
| return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0); |
| } |
| |
| #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS |
| extern int pmdp_set_access_flags(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp, |
| pmd_t entry, int dirty); |
| |
| extern unsigned long pmd_hugepage_update(struct mm_struct *mm, |
| unsigned long addr, |
| pmd_t *pmdp, |
| unsigned long clr, |
| unsigned long set); |
| |
| static inline int __pmdp_test_and_clear_young(struct mm_struct *mm, |
| unsigned long addr, pmd_t *pmdp) |
| { |
| unsigned long old; |
| |
| if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) |
| return 0; |
| old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0); |
| return ((old & _PAGE_ACCESSED) != 0); |
| } |
| |
| #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG |
| extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp); |
| #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH |
| extern int pmdp_clear_flush_young(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp); |
| |
| #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR |
| extern pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, |
| unsigned long addr, pmd_t *pmdp); |
| |
| #define __HAVE_ARCH_PMDP_SET_WRPROTECT |
| static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, |
| pmd_t *pmdp) |
| { |
| |
| if ((pmd_val(*pmdp) & _PAGE_RW) == 0) |
| return; |
| |
| pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0); |
| } |
| |
| #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH |
| extern void pmdp_splitting_flush(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp); |
| |
| extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp); |
| #define pmdp_collapse_flush pmdp_collapse_flush |
| |
| #define __HAVE_ARCH_PGTABLE_DEPOSIT |
| extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, |
| pgtable_t pgtable); |
| #define __HAVE_ARCH_PGTABLE_WITHDRAW |
| extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); |
| |
| #define __HAVE_ARCH_PMDP_INVALIDATE |
| extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, |
| pmd_t *pmdp); |
| |
| #define pmd_move_must_withdraw pmd_move_must_withdraw |
| struct spinlock; |
| static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, |
| struct spinlock *old_pmd_ptl) |
| { |
| /* |
| * Archs like ppc64 use pgtable to store per pmd |
| * specific information. So when we switch the pmd, |
| * we should also withdraw and deposit the pgtable |
| */ |
| return true; |
| } |
| #endif /* __ASSEMBLY__ */ |
| #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */ |