| /* |
| * PowerPC memory management structures |
| * |
| * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com> |
| * PPC64 rework. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #ifndef _PPC64_MMU_H_ |
| #define _PPC64_MMU_H_ |
| |
| #include <linux/config.h> |
| #include <asm/asm-compat.h> |
| #include <asm/page.h> |
| |
| /* |
| * Segment table |
| */ |
| |
| #define STE_ESID_V 0x80 |
| #define STE_ESID_KS 0x20 |
| #define STE_ESID_KP 0x10 |
| #define STE_ESID_N 0x08 |
| |
| #define STE_VSID_SHIFT 12 |
| |
| /* Location of cpu0's segment table */ |
| #define STAB0_PAGE 0x6 |
| #define STAB0_PHYS_ADDR (STAB0_PAGE<<12) |
| |
| #ifndef __ASSEMBLY__ |
| extern char initial_stab[]; |
| #endif /* ! __ASSEMBLY */ |
| |
| /* |
| * SLB |
| */ |
| |
| #define SLB_NUM_BOLTED 3 |
| #define SLB_CACHE_ENTRIES 8 |
| |
| /* Bits in the SLB ESID word */ |
| #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */ |
| |
| /* Bits in the SLB VSID word */ |
| #define SLB_VSID_SHIFT 12 |
| #define SLB_VSID_B ASM_CONST(0xc000000000000000) |
| #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000) |
| #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000) |
| #define SLB_VSID_KS ASM_CONST(0x0000000000000800) |
| #define SLB_VSID_KP ASM_CONST(0x0000000000000400) |
| #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */ |
| #define SLB_VSID_L ASM_CONST(0x0000000000000100) |
| #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */ |
| #define SLB_VSID_LP ASM_CONST(0x0000000000000030) |
| #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000) |
| #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010) |
| #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020) |
| #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030) |
| #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP) |
| |
| #define SLB_VSID_KERNEL (SLB_VSID_KP) |
| #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C) |
| |
| #define SLBIE_C (0x08000000) |
| |
| /* |
| * Hash table |
| */ |
| |
| #define HPTES_PER_GROUP 8 |
| |
| #define HPTE_V_AVPN_SHIFT 7 |
| #define HPTE_V_AVPN ASM_CONST(0xffffffffffffff80) |
| #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) |
| #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & HPTE_V_AVPN)) |
| #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010) |
| #define HPTE_V_LOCK ASM_CONST(0x0000000000000008) |
| #define HPTE_V_LARGE ASM_CONST(0x0000000000000004) |
| #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002) |
| #define HPTE_V_VALID ASM_CONST(0x0000000000000001) |
| |
| #define HPTE_R_PP0 ASM_CONST(0x8000000000000000) |
| #define HPTE_R_TS ASM_CONST(0x4000000000000000) |
| #define HPTE_R_RPN_SHIFT 12 |
| #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000) |
| #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff) |
| #define HPTE_R_PP ASM_CONST(0x0000000000000003) |
| #define HPTE_R_N ASM_CONST(0x0000000000000004) |
| |
| /* Values for PP (assumes Ks=0, Kp=1) */ |
| /* pp0 will always be 0 for linux */ |
| #define PP_RWXX 0 /* Supervisor read/write, User none */ |
| #define PP_RWRX 1 /* Supervisor read/write, User read */ |
| #define PP_RWRW 2 /* Supervisor read/write, User read/write */ |
| #define PP_RXRX 3 /* Supervisor read, User read */ |
| |
| #ifndef __ASSEMBLY__ |
| |
| typedef struct { |
| unsigned long v; |
| unsigned long r; |
| } hpte_t; |
| |
| extern hpte_t *htab_address; |
| extern unsigned long htab_hash_mask; |
| |
| /* |
| * Page size definition |
| * |
| * shift : is the "PAGE_SHIFT" value for that page size |
| * sllp : is a bit mask with the value of SLB L || LP to be or'ed |
| * directly to a slbmte "vsid" value |
| * penc : is the HPTE encoding mask for the "LP" field: |
| * |
| */ |
| struct mmu_psize_def |
| { |
| unsigned int shift; /* number of bits */ |
| unsigned int penc; /* HPTE encoding */ |
| unsigned int tlbiel; /* tlbiel supported for that page size */ |
| unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */ |
| unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */ |
| }; |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| /* |
| * The kernel use the constants below to index in the page sizes array. |
| * The use of fixed constants for this purpose is better for performances |
| * of the low level hash refill handlers. |
| * |
| * A non supported page size has a "shift" field set to 0 |
| * |
| * Any new page size being implemented can get a new entry in here. Whether |
| * the kernel will use it or not is a different matter though. The actual page |
| * size used by hugetlbfs is not defined here and may be made variable |
| */ |
| |
| #define MMU_PAGE_4K 0 /* 4K */ |
| #define MMU_PAGE_64K 1 /* 64K */ |
| #define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */ |
| #define MMU_PAGE_1M 3 /* 1M */ |
| #define MMU_PAGE_16M 4 /* 16M */ |
| #define MMU_PAGE_16G 5 /* 16G */ |
| #define MMU_PAGE_COUNT 6 |
| |
| #ifndef __ASSEMBLY__ |
| |
| /* |
| * The current system page sizes |
| */ |
| extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; |
| extern int mmu_linear_psize; |
| extern int mmu_virtual_psize; |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| /* |
| * The page size index of the huge pages for use by hugetlbfs |
| */ |
| extern int mmu_huge_psize; |
| |
| #endif /* CONFIG_HUGETLB_PAGE */ |
| |
| /* |
| * This function sets the AVPN and L fields of the HPTE appropriately |
| * for the page size |
| */ |
| static inline unsigned long hpte_encode_v(unsigned long va, int psize) |
| { |
| unsigned long v = |
| v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm); |
| v <<= HPTE_V_AVPN_SHIFT; |
| if (psize != MMU_PAGE_4K) |
| v |= HPTE_V_LARGE; |
| return v; |
| } |
| |
| /* |
| * This function sets the ARPN, and LP fields of the HPTE appropriately |
| * for the page size. We assume the pa is already "clean" that is properly |
| * aligned for the requested page size |
| */ |
| static inline unsigned long hpte_encode_r(unsigned long pa, int psize) |
| { |
| unsigned long r; |
| |
| /* A 4K page needs no special encoding */ |
| if (psize == MMU_PAGE_4K) |
| return pa & HPTE_R_RPN; |
| else { |
| unsigned int penc = mmu_psize_defs[psize].penc; |
| unsigned int shift = mmu_psize_defs[psize].shift; |
| return (pa & ~((1ul << shift) - 1)) | (penc << 12); |
| } |
| return r; |
| } |
| |
| /* |
| * This hashes a virtual address for a 256Mb segment only for now |
| */ |
| |
| static inline unsigned long hpt_hash(unsigned long va, unsigned int shift) |
| { |
| return ((va >> 28) & 0x7fffffffffUL) ^ ((va & 0x0fffffffUL) >> shift); |
| } |
| |
| extern int __hash_page_4K(unsigned long ea, unsigned long access, |
| unsigned long vsid, pte_t *ptep, unsigned long trap, |
| unsigned int local); |
| extern int __hash_page_64K(unsigned long ea, unsigned long access, |
| unsigned long vsid, pte_t *ptep, unsigned long trap, |
| unsigned int local); |
| struct mm_struct; |
| extern int hash_huge_page(struct mm_struct *mm, unsigned long access, |
| unsigned long ea, unsigned long vsid, int local); |
| |
| extern void htab_finish_init(void); |
| extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend, |
| unsigned long pstart, unsigned long mode, |
| int psize); |
| |
| extern void hpte_init_native(void); |
| extern void hpte_init_lpar(void); |
| extern void hpte_init_iSeries(void); |
| |
| extern long pSeries_lpar_hpte_insert(unsigned long hpte_group, |
| unsigned long va, unsigned long prpn, |
| unsigned long rflags, |
| unsigned long vflags, int psize); |
| |
| extern long native_hpte_insert(unsigned long hpte_group, |
| unsigned long va, unsigned long prpn, |
| unsigned long rflags, |
| unsigned long vflags, int psize); |
| |
| extern long iSeries_hpte_insert(unsigned long hpte_group, |
| unsigned long va, unsigned long prpn, |
| unsigned long rflags, |
| unsigned long vflags, int psize); |
| |
| extern void stabs_alloc(void); |
| extern void slb_initialize(void); |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| /* |
| * VSID allocation |
| * |
| * We first generate a 36-bit "proto-VSID". For kernel addresses this |
| * is equal to the ESID, for user addresses it is: |
| * (context << 15) | (esid & 0x7fff) |
| * |
| * The two forms are distinguishable because the top bit is 0 for user |
| * addresses, whereas the top two bits are 1 for kernel addresses. |
| * Proto-VSIDs with the top two bits equal to 0b10 are reserved for |
| * now. |
| * |
| * The proto-VSIDs are then scrambled into real VSIDs with the |
| * multiplicative hash: |
| * |
| * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS |
| * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7 |
| * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF |
| * |
| * This scramble is only well defined for proto-VSIDs below |
| * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are |
| * reserved. VSID_MULTIPLIER is prime, so in particular it is |
| * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. |
| * Because the modulus is 2^n-1 we can compute it efficiently without |
| * a divide or extra multiply (see below). |
| * |
| * This scheme has several advantages over older methods: |
| * |
| * - We have VSIDs allocated for every kernel address |
| * (i.e. everything above 0xC000000000000000), except the very top |
| * segment, which simplifies several things. |
| * |
| * - We allow for 15 significant bits of ESID and 20 bits of |
| * context for user addresses. i.e. 8T (43 bits) of address space for |
| * up to 1M contexts (although the page table structure and context |
| * allocation will need changes to take advantage of this). |
| * |
| * - The scramble function gives robust scattering in the hash |
| * table (at least based on some initial results). The previous |
| * method was more susceptible to pathological cases giving excessive |
| * hash collisions. |
| */ |
| /* |
| * WARNING - If you change these you must make sure the asm |
| * implementations in slb_allocate (slb_low.S), do_stab_bolted |
| * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly. |
| * |
| * You'll also need to change the precomputed VSID values in head.S |
| * which are used by the iSeries firmware. |
| */ |
| |
| #define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */ |
| #define VSID_BITS 36 |
| #define VSID_MODULUS ((1UL<<VSID_BITS)-1) |
| |
| #define CONTEXT_BITS 19 |
| #define USER_ESID_BITS 16 |
| |
| #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT)) |
| |
| /* |
| * This macro generates asm code to compute the VSID scramble |
| * function. Used in slb_allocate() and do_stab_bolted. The function |
| * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS |
| * |
| * rt = register continaing the proto-VSID and into which the |
| * VSID will be stored |
| * rx = scratch register (clobbered) |
| * |
| * - rt and rx must be different registers |
| * - The answer will end up in the low 36 bits of rt. The higher |
| * bits may contain other garbage, so you may need to mask the |
| * result. |
| */ |
| #define ASM_VSID_SCRAMBLE(rt, rx) \ |
| lis rx,VSID_MULTIPLIER@h; \ |
| ori rx,rx,VSID_MULTIPLIER@l; \ |
| mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \ |
| \ |
| srdi rx,rt,VSID_BITS; \ |
| clrldi rt,rt,(64-VSID_BITS); \ |
| add rt,rt,rx; /* add high and low bits */ \ |
| /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \ |
| * 2^36-1+2^28-1. That in particular means that if r3 >= \ |
| * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \ |
| * the bit clear, r3 already has the answer we want, if it \ |
| * doesn't, the answer is the low 36 bits of r3+1. So in all \ |
| * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\ |
| addi rx,rt,1; \ |
| srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \ |
| add rt,rt,rx |
| |
| |
| #ifndef __ASSEMBLY__ |
| |
| typedef unsigned long mm_context_id_t; |
| |
| typedef struct { |
| mm_context_id_t id; |
| #ifdef CONFIG_HUGETLB_PAGE |
| u16 low_htlb_areas, high_htlb_areas; |
| #endif |
| } mm_context_t; |
| |
| |
| static inline unsigned long vsid_scramble(unsigned long protovsid) |
| { |
| #if 0 |
| /* The code below is equivalent to this function for arguments |
| * < 2^VSID_BITS, which is all this should ever be called |
| * with. However gcc is not clever enough to compute the |
| * modulus (2^n-1) without a second multiply. */ |
| return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS); |
| #else /* 1 */ |
| unsigned long x; |
| |
| x = protovsid * VSID_MULTIPLIER; |
| x = (x >> VSID_BITS) + (x & VSID_MODULUS); |
| return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS; |
| #endif /* 1 */ |
| } |
| |
| /* This is only valid for addresses >= KERNELBASE */ |
| static inline unsigned long get_kernel_vsid(unsigned long ea) |
| { |
| return vsid_scramble(ea >> SID_SHIFT); |
| } |
| |
| /* This is only valid for user addresses (which are below 2^41) */ |
| static inline unsigned long get_vsid(unsigned long context, unsigned long ea) |
| { |
| return vsid_scramble((context << USER_ESID_BITS) |
| | (ea >> SID_SHIFT)); |
| } |
| |
| #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS) |
| #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea)) |
| |
| #endif /* __ASSEMBLY */ |
| |
| #endif /* _PPC64_MMU_H_ */ |