| #include <linux/bootmem.h> |
| #include <linux/compiler.h> |
| #include <linux/fs.h> |
| #include <linux/init.h> |
| #include <linux/ksm.h> |
| #include <linux/mm.h> |
| #include <linux/mmzone.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/hugetlb.h> |
| #include <linux/kernel-page-flags.h> |
| #include <asm/uaccess.h> |
| #include "internal.h" |
| |
| #define KPMSIZE sizeof(u64) |
| #define KPMMASK (KPMSIZE - 1) |
| |
| /* /proc/kpagecount - an array exposing page counts |
| * |
| * Each entry is a u64 representing the corresponding |
| * physical page count. |
| */ |
| static ssize_t kpagecount_read(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| u64 __user *out = (u64 __user *)buf; |
| struct page *ppage; |
| unsigned long src = *ppos; |
| unsigned long pfn; |
| ssize_t ret = 0; |
| u64 pcount; |
| |
| pfn = src / KPMSIZE; |
| count = min_t(size_t, count, (max_pfn * KPMSIZE) - src); |
| if (src & KPMMASK || count & KPMMASK) |
| return -EINVAL; |
| |
| while (count > 0) { |
| if (pfn_valid(pfn)) |
| ppage = pfn_to_page(pfn); |
| else |
| ppage = NULL; |
| if (!ppage || PageSlab(ppage)) |
| pcount = 0; |
| else |
| pcount = page_mapcount(ppage); |
| |
| if (put_user(pcount, out)) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| pfn++; |
| out++; |
| count -= KPMSIZE; |
| } |
| |
| *ppos += (char __user *)out - buf; |
| if (!ret) |
| ret = (char __user *)out - buf; |
| return ret; |
| } |
| |
| static const struct file_operations proc_kpagecount_operations = { |
| .llseek = mem_lseek, |
| .read = kpagecount_read, |
| }; |
| |
| /* /proc/kpageflags - an array exposing page flags |
| * |
| * Each entry is a u64 representing the corresponding |
| * physical page flags. |
| */ |
| |
| static inline u64 kpf_copy_bit(u64 kflags, int ubit, int kbit) |
| { |
| return ((kflags >> kbit) & 1) << ubit; |
| } |
| |
| u64 stable_page_flags(struct page *page) |
| { |
| u64 k; |
| u64 u; |
| |
| /* |
| * pseudo flag: KPF_NOPAGE |
| * it differentiates a memory hole from a page with no flags |
| */ |
| if (!page) |
| return 1 << KPF_NOPAGE; |
| |
| k = page->flags; |
| u = 0; |
| |
| /* |
| * pseudo flags for the well known (anonymous) memory mapped pages |
| * |
| * Note that page->_mapcount is overloaded in SLOB/SLUB/SLQB, so the |
| * simple test in page_mapped() is not enough. |
| */ |
| if (!PageSlab(page) && page_mapped(page)) |
| u |= 1 << KPF_MMAP; |
| if (PageAnon(page)) |
| u |= 1 << KPF_ANON; |
| if (PageKsm(page)) |
| u |= 1 << KPF_KSM; |
| |
| /* |
| * compound pages: export both head/tail info |
| * they together define a compound page's start/end pos and order |
| */ |
| if (PageHead(page)) |
| u |= 1 << KPF_COMPOUND_HEAD; |
| if (PageTail(page)) |
| u |= 1 << KPF_COMPOUND_TAIL; |
| if (PageHuge(page)) |
| u |= 1 << KPF_HUGE; |
| /* |
| * PageTransCompound can be true for non-huge compound pages (slab |
| * pages or pages allocated by drivers with __GFP_COMP) because it |
| * just checks PG_head/PG_tail, so we need to check PageLRU/PageAnon |
| * to make sure a given page is a thp, not a non-huge compound page. |
| */ |
| else if (PageTransCompound(page) && |
| (PageLRU(compound_trans_head(page)) || |
| PageAnon(compound_trans_head(page)))) |
| u |= 1 << KPF_THP; |
| |
| /* |
| * Caveats on high order pages: page->_count will only be set |
| * -1 on the head page; SLUB/SLQB do the same for PG_slab; |
| * SLOB won't set PG_slab at all on compound pages. |
| */ |
| if (PageBuddy(page)) |
| u |= 1 << KPF_BUDDY; |
| |
| u |= kpf_copy_bit(k, KPF_LOCKED, PG_locked); |
| |
| u |= kpf_copy_bit(k, KPF_SLAB, PG_slab); |
| |
| u |= kpf_copy_bit(k, KPF_ERROR, PG_error); |
| u |= kpf_copy_bit(k, KPF_DIRTY, PG_dirty); |
| u |= kpf_copy_bit(k, KPF_UPTODATE, PG_uptodate); |
| u |= kpf_copy_bit(k, KPF_WRITEBACK, PG_writeback); |
| |
| u |= kpf_copy_bit(k, KPF_LRU, PG_lru); |
| u |= kpf_copy_bit(k, KPF_REFERENCED, PG_referenced); |
| u |= kpf_copy_bit(k, KPF_ACTIVE, PG_active); |
| u |= kpf_copy_bit(k, KPF_RECLAIM, PG_reclaim); |
| |
| u |= kpf_copy_bit(k, KPF_SWAPCACHE, PG_swapcache); |
| u |= kpf_copy_bit(k, KPF_SWAPBACKED, PG_swapbacked); |
| |
| u |= kpf_copy_bit(k, KPF_UNEVICTABLE, PG_unevictable); |
| u |= kpf_copy_bit(k, KPF_MLOCKED, PG_mlocked); |
| |
| #ifdef CONFIG_MEMORY_FAILURE |
| u |= kpf_copy_bit(k, KPF_HWPOISON, PG_hwpoison); |
| #endif |
| |
| #ifdef CONFIG_ARCH_USES_PG_UNCACHED |
| u |= kpf_copy_bit(k, KPF_UNCACHED, PG_uncached); |
| #endif |
| |
| u |= kpf_copy_bit(k, KPF_RESERVED, PG_reserved); |
| u |= kpf_copy_bit(k, KPF_MAPPEDTODISK, PG_mappedtodisk); |
| u |= kpf_copy_bit(k, KPF_PRIVATE, PG_private); |
| u |= kpf_copy_bit(k, KPF_PRIVATE_2, PG_private_2); |
| u |= kpf_copy_bit(k, KPF_OWNER_PRIVATE, PG_owner_priv_1); |
| u |= kpf_copy_bit(k, KPF_ARCH, PG_arch_1); |
| |
| return u; |
| }; |
| |
| static ssize_t kpageflags_read(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| u64 __user *out = (u64 __user *)buf; |
| struct page *ppage; |
| unsigned long src = *ppos; |
| unsigned long pfn; |
| ssize_t ret = 0; |
| |
| pfn = src / KPMSIZE; |
| count = min_t(unsigned long, count, (max_pfn * KPMSIZE) - src); |
| if (src & KPMMASK || count & KPMMASK) |
| return -EINVAL; |
| |
| while (count > 0) { |
| if (pfn_valid(pfn)) |
| ppage = pfn_to_page(pfn); |
| else |
| ppage = NULL; |
| |
| if (put_user(stable_page_flags(ppage), out)) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| pfn++; |
| out++; |
| count -= KPMSIZE; |
| } |
| |
| *ppos += (char __user *)out - buf; |
| if (!ret) |
| ret = (char __user *)out - buf; |
| return ret; |
| } |
| |
| static const struct file_operations proc_kpageflags_operations = { |
| .llseek = mem_lseek, |
| .read = kpageflags_read, |
| }; |
| |
| static int __init proc_page_init(void) |
| { |
| proc_create("kpagecount", S_IRUSR, NULL, &proc_kpagecount_operations); |
| proc_create("kpageflags", S_IRUSR, NULL, &proc_kpageflags_operations); |
| return 0; |
| } |
| module_init(proc_page_init); |