| /* |
| * Copyright (c) 2008-2009 Atheros Communications Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include "ath9k.h" |
| |
| static struct ieee80211_hw * ath_get_virt_hw(struct ath_softc *sc, |
| struct ieee80211_hdr *hdr) |
| { |
| struct ieee80211_hw *hw = sc->pri_wiphy->hw; |
| int i; |
| |
| spin_lock_bh(&sc->wiphy_lock); |
| for (i = 0; i < sc->num_sec_wiphy; i++) { |
| struct ath_wiphy *aphy = sc->sec_wiphy[i]; |
| if (aphy == NULL) |
| continue; |
| if (compare_ether_addr(hdr->addr1, aphy->hw->wiphy->perm_addr) |
| == 0) { |
| hw = aphy->hw; |
| break; |
| } |
| } |
| spin_unlock_bh(&sc->wiphy_lock); |
| return hw; |
| } |
| |
| /* |
| * Setup and link descriptors. |
| * |
| * 11N: we can no longer afford to self link the last descriptor. |
| * MAC acknowledges BA status as long as it copies frames to host |
| * buffer (or rx fifo). This can incorrectly acknowledge packets |
| * to a sender if last desc is self-linked. |
| */ |
| static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath_desc *ds; |
| struct sk_buff *skb; |
| |
| ATH_RXBUF_RESET(bf); |
| |
| ds = bf->bf_desc; |
| ds->ds_link = 0; /* link to null */ |
| ds->ds_data = bf->bf_buf_addr; |
| |
| /* virtual addr of the beginning of the buffer. */ |
| skb = bf->bf_mpdu; |
| ASSERT(skb != NULL); |
| ds->ds_vdata = skb->data; |
| |
| /* setup rx descriptors. The rx.bufsize here tells the harware |
| * how much data it can DMA to us and that we are prepared |
| * to process */ |
| ath9k_hw_setuprxdesc(ah, ds, |
| sc->rx.bufsize, |
| 0); |
| |
| if (sc->rx.rxlink == NULL) |
| ath9k_hw_putrxbuf(ah, bf->bf_daddr); |
| else |
| *sc->rx.rxlink = bf->bf_daddr; |
| |
| sc->rx.rxlink = &ds->ds_link; |
| ath9k_hw_rxena(ah); |
| } |
| |
| static void ath_setdefantenna(struct ath_softc *sc, u32 antenna) |
| { |
| /* XXX block beacon interrupts */ |
| ath9k_hw_setantenna(sc->sc_ah, antenna); |
| sc->rx.defant = antenna; |
| sc->rx.rxotherant = 0; |
| } |
| |
| /* |
| * Extend 15-bit time stamp from rx descriptor to |
| * a full 64-bit TSF using the current h/w TSF. |
| */ |
| static u64 ath_extend_tsf(struct ath_softc *sc, u32 rstamp) |
| { |
| u64 tsf; |
| |
| tsf = ath9k_hw_gettsf64(sc->sc_ah); |
| if ((tsf & 0x7fff) < rstamp) |
| tsf -= 0x8000; |
| return (tsf & ~0x7fff) | rstamp; |
| } |
| |
| static struct sk_buff *ath_rxbuf_alloc(struct ath_softc *sc, u32 len, gfp_t gfp_mask) |
| { |
| struct sk_buff *skb; |
| u32 off; |
| |
| /* |
| * Cache-line-align. This is important (for the |
| * 5210 at least) as not doing so causes bogus data |
| * in rx'd frames. |
| */ |
| |
| /* Note: the kernel can allocate a value greater than |
| * what we ask it to give us. We really only need 4 KB as that |
| * is this hardware supports and in fact we need at least 3849 |
| * as that is the MAX AMSDU size this hardware supports. |
| * Unfortunately this means we may get 8 KB here from the |
| * kernel... and that is actually what is observed on some |
| * systems :( */ |
| skb = __dev_alloc_skb(len + sc->cachelsz - 1, gfp_mask); |
| if (skb != NULL) { |
| off = ((unsigned long) skb->data) % sc->cachelsz; |
| if (off != 0) |
| skb_reserve(skb, sc->cachelsz - off); |
| } else { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "skbuff alloc of size %u failed\n", len); |
| return NULL; |
| } |
| |
| return skb; |
| } |
| |
| /* |
| * For Decrypt or Demic errors, we only mark packet status here and always push |
| * up the frame up to let mac80211 handle the actual error case, be it no |
| * decryption key or real decryption error. This let us keep statistics there. |
| */ |
| static int ath_rx_prepare(struct sk_buff *skb, struct ath_desc *ds, |
| struct ieee80211_rx_status *rx_status, bool *decrypt_error, |
| struct ath_softc *sc) |
| { |
| struct ieee80211_hdr *hdr; |
| u8 ratecode; |
| __le16 fc; |
| struct ieee80211_hw *hw; |
| struct ieee80211_sta *sta; |
| struct ath_node *an; |
| int last_rssi = ATH_RSSI_DUMMY_MARKER; |
| |
| |
| hdr = (struct ieee80211_hdr *)skb->data; |
| fc = hdr->frame_control; |
| memset(rx_status, 0, sizeof(struct ieee80211_rx_status)); |
| hw = ath_get_virt_hw(sc, hdr); |
| |
| if (ds->ds_rxstat.rs_more) { |
| /* |
| * Frame spans multiple descriptors; this cannot happen yet |
| * as we don't support jumbograms. If not in monitor mode, |
| * discard the frame. Enable this if you want to see |
| * error frames in Monitor mode. |
| */ |
| if (sc->sc_ah->opmode != NL80211_IFTYPE_MONITOR) |
| goto rx_next; |
| } else if (ds->ds_rxstat.rs_status != 0) { |
| if (ds->ds_rxstat.rs_status & ATH9K_RXERR_CRC) |
| rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; |
| if (ds->ds_rxstat.rs_status & ATH9K_RXERR_PHY) |
| goto rx_next; |
| |
| if (ds->ds_rxstat.rs_status & ATH9K_RXERR_DECRYPT) { |
| *decrypt_error = true; |
| } else if (ds->ds_rxstat.rs_status & ATH9K_RXERR_MIC) { |
| if (ieee80211_is_ctl(fc)) |
| /* |
| * Sometimes, we get invalid |
| * MIC failures on valid control frames. |
| * Remove these mic errors. |
| */ |
| ds->ds_rxstat.rs_status &= ~ATH9K_RXERR_MIC; |
| else |
| rx_status->flag |= RX_FLAG_MMIC_ERROR; |
| } |
| /* |
| * Reject error frames with the exception of |
| * decryption and MIC failures. For monitor mode, |
| * we also ignore the CRC error. |
| */ |
| if (sc->sc_ah->opmode == NL80211_IFTYPE_MONITOR) { |
| if (ds->ds_rxstat.rs_status & |
| ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC | |
| ATH9K_RXERR_CRC)) |
| goto rx_next; |
| } else { |
| if (ds->ds_rxstat.rs_status & |
| ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) { |
| goto rx_next; |
| } |
| } |
| } |
| |
| ratecode = ds->ds_rxstat.rs_rate; |
| |
| if (ratecode & 0x80) { |
| /* HT rate */ |
| rx_status->flag |= RX_FLAG_HT; |
| if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040) |
| rx_status->flag |= RX_FLAG_40MHZ; |
| if (ds->ds_rxstat.rs_flags & ATH9K_RX_GI) |
| rx_status->flag |= RX_FLAG_SHORT_GI; |
| rx_status->rate_idx = ratecode & 0x7f; |
| } else { |
| int i = 0, cur_band, n_rates; |
| |
| cur_band = hw->conf.channel->band; |
| n_rates = sc->sbands[cur_band].n_bitrates; |
| |
| for (i = 0; i < n_rates; i++) { |
| if (sc->sbands[cur_band].bitrates[i].hw_value == |
| ratecode) { |
| rx_status->rate_idx = i; |
| break; |
| } |
| |
| if (sc->sbands[cur_band].bitrates[i].hw_value_short == |
| ratecode) { |
| rx_status->rate_idx = i; |
| rx_status->flag |= RX_FLAG_SHORTPRE; |
| break; |
| } |
| } |
| } |
| |
| rcu_read_lock(); |
| sta = ieee80211_find_sta(sc->hw, hdr->addr2); |
| if (sta) { |
| an = (struct ath_node *) sta->drv_priv; |
| if (ds->ds_rxstat.rs_rssi != ATH9K_RSSI_BAD && |
| !ds->ds_rxstat.rs_moreaggr) |
| ATH_RSSI_LPF(an->last_rssi, ds->ds_rxstat.rs_rssi); |
| last_rssi = an->last_rssi; |
| } |
| rcu_read_unlock(); |
| |
| if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER)) |
| ds->ds_rxstat.rs_rssi = ATH_EP_RND(last_rssi, |
| ATH_RSSI_EP_MULTIPLIER); |
| if (ds->ds_rxstat.rs_rssi < 0) |
| ds->ds_rxstat.rs_rssi = 0; |
| else if (ds->ds_rxstat.rs_rssi > 127) |
| ds->ds_rxstat.rs_rssi = 127; |
| |
| rx_status->mactime = ath_extend_tsf(sc, ds->ds_rxstat.rs_tstamp); |
| rx_status->band = hw->conf.channel->band; |
| rx_status->freq = hw->conf.channel->center_freq; |
| rx_status->noise = sc->ani.noise_floor; |
| rx_status->signal = ATH_DEFAULT_NOISE_FLOOR + ds->ds_rxstat.rs_rssi; |
| rx_status->antenna = ds->ds_rxstat.rs_antenna; |
| |
| /* |
| * Theory for reporting quality: |
| * |
| * At a hardware RSSI of 45 you will be able to use MCS 7 reliably. |
| * At a hardware RSSI of 45 you will be able to use MCS 15 reliably. |
| * At a hardware RSSI of 35 you should be able use 54 Mbps reliably. |
| * |
| * MCS 7 is the highets MCS index usable by a 1-stream device. |
| * MCS 15 is the highest MCS index usable by a 2-stream device. |
| * |
| * All ath9k devices are either 1-stream or 2-stream. |
| * |
| * How many bars you see is derived from the qual reporting. |
| * |
| * A more elaborate scheme can be used here but it requires tables |
| * of SNR/throughput for each possible mode used. For the MCS table |
| * you can refer to the wireless wiki: |
| * |
| * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n |
| * |
| */ |
| if (conf_is_ht(&hw->conf)) |
| rx_status->qual = ds->ds_rxstat.rs_rssi * 100 / 45; |
| else |
| rx_status->qual = ds->ds_rxstat.rs_rssi * 100 / 35; |
| |
| /* rssi can be more than 45 though, anything above that |
| * should be considered at 100% */ |
| if (rx_status->qual > 100) |
| rx_status->qual = 100; |
| |
| rx_status->flag |= RX_FLAG_TSFT; |
| |
| return 1; |
| rx_next: |
| return 0; |
| } |
| |
| static void ath_opmode_init(struct ath_softc *sc) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| u32 rfilt, mfilt[2]; |
| |
| /* configure rx filter */ |
| rfilt = ath_calcrxfilter(sc); |
| ath9k_hw_setrxfilter(ah, rfilt); |
| |
| /* configure bssid mask */ |
| if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) |
| ath9k_hw_setbssidmask(sc); |
| |
| /* configure operational mode */ |
| ath9k_hw_setopmode(ah); |
| |
| /* Handle any link-level address change. */ |
| ath9k_hw_setmac(ah, sc->sc_ah->macaddr); |
| |
| /* calculate and install multicast filter */ |
| mfilt[0] = mfilt[1] = ~0; |
| ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]); |
| } |
| |
| int ath_rx_init(struct ath_softc *sc, int nbufs) |
| { |
| struct sk_buff *skb; |
| struct ath_buf *bf; |
| int error = 0; |
| |
| spin_lock_init(&sc->rx.rxflushlock); |
| sc->sc_flags &= ~SC_OP_RXFLUSH; |
| spin_lock_init(&sc->rx.rxbuflock); |
| |
| sc->rx.bufsize = roundup(IEEE80211_MAX_MPDU_LEN, |
| min(sc->cachelsz, (u16)64)); |
| |
| DPRINTF(sc, ATH_DBG_CONFIG, "cachelsz %u rxbufsize %u\n", |
| sc->cachelsz, sc->rx.bufsize); |
| |
| /* Initialize rx descriptors */ |
| |
| error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf, |
| "rx", nbufs, 1); |
| if (error != 0) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "failed to allocate rx descriptors: %d\n", error); |
| goto err; |
| } |
| |
| list_for_each_entry(bf, &sc->rx.rxbuf, list) { |
| skb = ath_rxbuf_alloc(sc, sc->rx.bufsize, GFP_KERNEL); |
| if (skb == NULL) { |
| error = -ENOMEM; |
| goto err; |
| } |
| |
| bf->bf_mpdu = skb; |
| bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, |
| sc->rx.bufsize, |
| DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(sc->dev, |
| bf->bf_buf_addr))) { |
| dev_kfree_skb_any(skb); |
| bf->bf_mpdu = NULL; |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "dma_mapping_error() on RX init\n"); |
| error = -ENOMEM; |
| goto err; |
| } |
| bf->bf_dmacontext = bf->bf_buf_addr; |
| } |
| sc->rx.rxlink = NULL; |
| |
| err: |
| if (error) |
| ath_rx_cleanup(sc); |
| |
| return error; |
| } |
| |
| void ath_rx_cleanup(struct ath_softc *sc) |
| { |
| struct sk_buff *skb; |
| struct ath_buf *bf; |
| |
| list_for_each_entry(bf, &sc->rx.rxbuf, list) { |
| skb = bf->bf_mpdu; |
| if (skb) { |
| dma_unmap_single(sc->dev, bf->bf_buf_addr, |
| sc->rx.bufsize, DMA_FROM_DEVICE); |
| dev_kfree_skb(skb); |
| } |
| } |
| |
| if (sc->rx.rxdma.dd_desc_len != 0) |
| ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf); |
| } |
| |
| /* |
| * Calculate the receive filter according to the |
| * operating mode and state: |
| * |
| * o always accept unicast, broadcast, and multicast traffic |
| * o maintain current state of phy error reception (the hal |
| * may enable phy error frames for noise immunity work) |
| * o probe request frames are accepted only when operating in |
| * hostap, adhoc, or monitor modes |
| * o enable promiscuous mode according to the interface state |
| * o accept beacons: |
| * - when operating in adhoc mode so the 802.11 layer creates |
| * node table entries for peers, |
| * - when operating in station mode for collecting rssi data when |
| * the station is otherwise quiet, or |
| * - when operating as a repeater so we see repeater-sta beacons |
| * - when scanning |
| */ |
| |
| u32 ath_calcrxfilter(struct ath_softc *sc) |
| { |
| #define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR) |
| |
| u32 rfilt; |
| |
| rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE) |
| | ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST |
| | ATH9K_RX_FILTER_MCAST; |
| |
| /* If not a STA, enable processing of Probe Requests */ |
| if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION) |
| rfilt |= ATH9K_RX_FILTER_PROBEREQ; |
| |
| /* |
| * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station |
| * mode interface or when in monitor mode. AP mode does not need this |
| * since it receives all in-BSS frames anyway. |
| */ |
| if (((sc->sc_ah->opmode != NL80211_IFTYPE_AP) && |
| (sc->rx.rxfilter & FIF_PROMISC_IN_BSS)) || |
| (sc->sc_ah->opmode == NL80211_IFTYPE_MONITOR)) |
| rfilt |= ATH9K_RX_FILTER_PROM; |
| |
| if (sc->rx.rxfilter & FIF_CONTROL) |
| rfilt |= ATH9K_RX_FILTER_CONTROL; |
| |
| if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) && |
| !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)) |
| rfilt |= ATH9K_RX_FILTER_MYBEACON; |
| else |
| rfilt |= ATH9K_RX_FILTER_BEACON; |
| |
| /* If in HOSTAP mode, want to enable reception of PSPOLL frames */ |
| if (sc->sc_ah->opmode == NL80211_IFTYPE_AP) |
| rfilt |= ATH9K_RX_FILTER_PSPOLL; |
| |
| if (sc->sec_wiphy) { |
| /* TODO: only needed if more than one BSSID is in use in |
| * station/adhoc mode */ |
| /* TODO: for older chips, may need to add ATH9K_RX_FILTER_PROM |
| */ |
| rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL; |
| } |
| |
| return rfilt; |
| |
| #undef RX_FILTER_PRESERVE |
| } |
| |
| int ath_startrecv(struct ath_softc *sc) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath_buf *bf, *tbf; |
| |
| spin_lock_bh(&sc->rx.rxbuflock); |
| if (list_empty(&sc->rx.rxbuf)) |
| goto start_recv; |
| |
| sc->rx.rxlink = NULL; |
| list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) { |
| ath_rx_buf_link(sc, bf); |
| } |
| |
| /* We could have deleted elements so the list may be empty now */ |
| if (list_empty(&sc->rx.rxbuf)) |
| goto start_recv; |
| |
| bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); |
| ath9k_hw_putrxbuf(ah, bf->bf_daddr); |
| ath9k_hw_rxena(ah); |
| |
| start_recv: |
| spin_unlock_bh(&sc->rx.rxbuflock); |
| ath_opmode_init(sc); |
| ath9k_hw_startpcureceive(ah); |
| |
| return 0; |
| } |
| |
| bool ath_stoprecv(struct ath_softc *sc) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| bool stopped; |
| |
| ath9k_hw_stoppcurecv(ah); |
| ath9k_hw_setrxfilter(ah, 0); |
| stopped = ath9k_hw_stopdmarecv(ah); |
| sc->rx.rxlink = NULL; |
| |
| return stopped; |
| } |
| |
| void ath_flushrecv(struct ath_softc *sc) |
| { |
| spin_lock_bh(&sc->rx.rxflushlock); |
| sc->sc_flags |= SC_OP_RXFLUSH; |
| ath_rx_tasklet(sc, 1); |
| sc->sc_flags &= ~SC_OP_RXFLUSH; |
| spin_unlock_bh(&sc->rx.rxflushlock); |
| } |
| |
| static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb) |
| { |
| /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */ |
| struct ieee80211_mgmt *mgmt; |
| u8 *pos, *end, id, elen; |
| struct ieee80211_tim_ie *tim; |
| |
| mgmt = (struct ieee80211_mgmt *)skb->data; |
| pos = mgmt->u.beacon.variable; |
| end = skb->data + skb->len; |
| |
| while (pos + 2 < end) { |
| id = *pos++; |
| elen = *pos++; |
| if (pos + elen > end) |
| break; |
| |
| if (id == WLAN_EID_TIM) { |
| if (elen < sizeof(*tim)) |
| break; |
| tim = (struct ieee80211_tim_ie *) pos; |
| if (tim->dtim_count != 0) |
| break; |
| return tim->bitmap_ctrl & 0x01; |
| } |
| |
| pos += elen; |
| } |
| |
| return false; |
| } |
| |
| static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb) |
| { |
| struct ieee80211_mgmt *mgmt; |
| |
| if (skb->len < 24 + 8 + 2 + 2) |
| return; |
| |
| mgmt = (struct ieee80211_mgmt *)skb->data; |
| if (memcmp(sc->curbssid, mgmt->bssid, ETH_ALEN) != 0) |
| return; /* not from our current AP */ |
| |
| sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON; |
| |
| if (sc->sc_flags & SC_OP_BEACON_SYNC) { |
| sc->sc_flags &= ~SC_OP_BEACON_SYNC; |
| DPRINTF(sc, ATH_DBG_PS, "Reconfigure Beacon timers based on " |
| "timestamp from the AP\n"); |
| ath_beacon_config(sc, NULL); |
| } |
| |
| if (ath_beacon_dtim_pending_cab(skb)) { |
| /* |
| * Remain awake waiting for buffered broadcast/multicast |
| * frames. If the last broadcast/multicast frame is not |
| * received properly, the next beacon frame will work as |
| * a backup trigger for returning into NETWORK SLEEP state, |
| * so we are waiting for it as well. |
| */ |
| DPRINTF(sc, ATH_DBG_PS, "Received DTIM beacon indicating " |
| "buffered broadcast/multicast frame(s)\n"); |
| sc->sc_flags |= SC_OP_WAIT_FOR_CAB | SC_OP_WAIT_FOR_BEACON; |
| return; |
| } |
| |
| if (sc->sc_flags & SC_OP_WAIT_FOR_CAB) { |
| /* |
| * This can happen if a broadcast frame is dropped or the AP |
| * fails to send a frame indicating that all CAB frames have |
| * been delivered. |
| */ |
| sc->sc_flags &= ~SC_OP_WAIT_FOR_CAB; |
| DPRINTF(sc, ATH_DBG_PS, "PS wait for CAB frames timed out\n"); |
| } |
| } |
| |
| static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb) |
| { |
| struct ieee80211_hdr *hdr; |
| |
| hdr = (struct ieee80211_hdr *)skb->data; |
| |
| /* Process Beacon and CAB receive in PS state */ |
| if ((sc->sc_flags & SC_OP_WAIT_FOR_BEACON) && |
| ieee80211_is_beacon(hdr->frame_control)) |
| ath_rx_ps_beacon(sc, skb); |
| else if ((sc->sc_flags & SC_OP_WAIT_FOR_CAB) && |
| (ieee80211_is_data(hdr->frame_control) || |
| ieee80211_is_action(hdr->frame_control)) && |
| is_multicast_ether_addr(hdr->addr1) && |
| !ieee80211_has_moredata(hdr->frame_control)) { |
| /* |
| * No more broadcast/multicast frames to be received at this |
| * point. |
| */ |
| sc->sc_flags &= ~SC_OP_WAIT_FOR_CAB; |
| DPRINTF(sc, ATH_DBG_PS, "All PS CAB frames received, back to " |
| "sleep\n"); |
| } else if ((sc->sc_flags & SC_OP_WAIT_FOR_PSPOLL_DATA) && |
| !is_multicast_ether_addr(hdr->addr1) && |
| !ieee80211_has_morefrags(hdr->frame_control)) { |
| sc->sc_flags &= ~SC_OP_WAIT_FOR_PSPOLL_DATA; |
| DPRINTF(sc, ATH_DBG_PS, "Going back to sleep after having " |
| "received PS-Poll data (0x%x)\n", |
| sc->sc_flags & (SC_OP_WAIT_FOR_BEACON | |
| SC_OP_WAIT_FOR_CAB | |
| SC_OP_WAIT_FOR_PSPOLL_DATA | |
| SC_OP_WAIT_FOR_TX_ACK)); |
| } |
| } |
| |
| static void ath_rx_send_to_mac80211(struct ath_softc *sc, struct sk_buff *skb, |
| struct ieee80211_rx_status *rx_status) |
| { |
| struct ieee80211_hdr *hdr; |
| |
| hdr = (struct ieee80211_hdr *)skb->data; |
| |
| /* Send the frame to mac80211 */ |
| if (is_multicast_ether_addr(hdr->addr1)) { |
| int i; |
| /* |
| * Deliver broadcast/multicast frames to all suitable |
| * virtual wiphys. |
| */ |
| /* TODO: filter based on channel configuration */ |
| for (i = 0; i < sc->num_sec_wiphy; i++) { |
| struct ath_wiphy *aphy = sc->sec_wiphy[i]; |
| struct sk_buff *nskb; |
| if (aphy == NULL) |
| continue; |
| nskb = skb_copy(skb, GFP_ATOMIC); |
| if (nskb) { |
| memcpy(IEEE80211_SKB_RXCB(nskb), rx_status, |
| sizeof(*rx_status)); |
| ieee80211_rx(aphy->hw, nskb); |
| } |
| } |
| memcpy(IEEE80211_SKB_RXCB(skb), rx_status, sizeof(*rx_status)); |
| ieee80211_rx(sc->hw, skb); |
| } else { |
| /* Deliver unicast frames based on receiver address */ |
| memcpy(IEEE80211_SKB_RXCB(skb), rx_status, sizeof(*rx_status)); |
| ieee80211_rx(ath_get_virt_hw(sc, hdr), skb); |
| } |
| } |
| |
| int ath_rx_tasklet(struct ath_softc *sc, int flush) |
| { |
| #define PA2DESC(_sc, _pa) \ |
| ((struct ath_desc *)((caddr_t)(_sc)->rx.rxdma.dd_desc + \ |
| ((_pa) - (_sc)->rx.rxdma.dd_desc_paddr))) |
| |
| struct ath_buf *bf; |
| struct ath_desc *ds; |
| struct sk_buff *skb = NULL, *requeue_skb; |
| struct ieee80211_rx_status rx_status; |
| struct ath_hw *ah = sc->sc_ah; |
| struct ieee80211_hdr *hdr; |
| int hdrlen, padsize, retval; |
| bool decrypt_error = false; |
| u8 keyix; |
| __le16 fc; |
| |
| spin_lock_bh(&sc->rx.rxbuflock); |
| |
| do { |
| /* If handling rx interrupt and flush is in progress => exit */ |
| if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0)) |
| break; |
| |
| if (list_empty(&sc->rx.rxbuf)) { |
| sc->rx.rxlink = NULL; |
| break; |
| } |
| |
| bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); |
| ds = bf->bf_desc; |
| |
| /* |
| * Must provide the virtual address of the current |
| * descriptor, the physical address, and the virtual |
| * address of the next descriptor in the h/w chain. |
| * This allows the HAL to look ahead to see if the |
| * hardware is done with a descriptor by checking the |
| * done bit in the following descriptor and the address |
| * of the current descriptor the DMA engine is working |
| * on. All this is necessary because of our use of |
| * a self-linked list to avoid rx overruns. |
| */ |
| retval = ath9k_hw_rxprocdesc(ah, ds, |
| bf->bf_daddr, |
| PA2DESC(sc, ds->ds_link), |
| 0); |
| if (retval == -EINPROGRESS) { |
| struct ath_buf *tbf; |
| struct ath_desc *tds; |
| |
| if (list_is_last(&bf->list, &sc->rx.rxbuf)) { |
| sc->rx.rxlink = NULL; |
| break; |
| } |
| |
| tbf = list_entry(bf->list.next, struct ath_buf, list); |
| |
| /* |
| * On some hardware the descriptor status words could |
| * get corrupted, including the done bit. Because of |
| * this, check if the next descriptor's done bit is |
| * set or not. |
| * |
| * If the next descriptor's done bit is set, the current |
| * descriptor has been corrupted. Force s/w to discard |
| * this descriptor and continue... |
| */ |
| |
| tds = tbf->bf_desc; |
| retval = ath9k_hw_rxprocdesc(ah, tds, tbf->bf_daddr, |
| PA2DESC(sc, tds->ds_link), 0); |
| if (retval == -EINPROGRESS) { |
| break; |
| } |
| } |
| |
| skb = bf->bf_mpdu; |
| if (!skb) |
| continue; |
| |
| /* |
| * Synchronize the DMA transfer with CPU before |
| * 1. accessing the frame |
| * 2. requeueing the same buffer to h/w |
| */ |
| dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, |
| sc->rx.bufsize, |
| DMA_FROM_DEVICE); |
| |
| /* |
| * If we're asked to flush receive queue, directly |
| * chain it back at the queue without processing it. |
| */ |
| if (flush) |
| goto requeue; |
| |
| if (!ds->ds_rxstat.rs_datalen) |
| goto requeue; |
| |
| /* The status portion of the descriptor could get corrupted. */ |
| if (sc->rx.bufsize < ds->ds_rxstat.rs_datalen) |
| goto requeue; |
| |
| if (!ath_rx_prepare(skb, ds, &rx_status, &decrypt_error, sc)) |
| goto requeue; |
| |
| /* Ensure we always have an skb to requeue once we are done |
| * processing the current buffer's skb */ |
| requeue_skb = ath_rxbuf_alloc(sc, sc->rx.bufsize, GFP_ATOMIC); |
| |
| /* If there is no memory we ignore the current RX'd frame, |
| * tell hardware it can give us a new frame using the old |
| * skb and put it at the tail of the sc->rx.rxbuf list for |
| * processing. */ |
| if (!requeue_skb) |
| goto requeue; |
| |
| /* Unmap the frame */ |
| dma_unmap_single(sc->dev, bf->bf_buf_addr, |
| sc->rx.bufsize, |
| DMA_FROM_DEVICE); |
| |
| skb_put(skb, ds->ds_rxstat.rs_datalen); |
| skb->protocol = cpu_to_be16(ETH_P_CONTROL); |
| |
| /* see if any padding is done by the hw and remove it */ |
| hdr = (struct ieee80211_hdr *)skb->data; |
| hdrlen = ieee80211_get_hdrlen_from_skb(skb); |
| fc = hdr->frame_control; |
| |
| /* The MAC header is padded to have 32-bit boundary if the |
| * packet payload is non-zero. The general calculation for |
| * padsize would take into account odd header lengths: |
| * padsize = (4 - hdrlen % 4) % 4; However, since only |
| * even-length headers are used, padding can only be 0 or 2 |
| * bytes and we can optimize this a bit. In addition, we must |
| * not try to remove padding from short control frames that do |
| * not have payload. */ |
| padsize = hdrlen & 3; |
| if (padsize && hdrlen >= 24) { |
| memmove(skb->data + padsize, skb->data, hdrlen); |
| skb_pull(skb, padsize); |
| } |
| |
| keyix = ds->ds_rxstat.rs_keyix; |
| |
| if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error) { |
| rx_status.flag |= RX_FLAG_DECRYPTED; |
| } else if (ieee80211_has_protected(fc) |
| && !decrypt_error && skb->len >= hdrlen + 4) { |
| keyix = skb->data[hdrlen + 3] >> 6; |
| |
| if (test_bit(keyix, sc->keymap)) |
| rx_status.flag |= RX_FLAG_DECRYPTED; |
| } |
| if (ah->sw_mgmt_crypto && |
| (rx_status.flag & RX_FLAG_DECRYPTED) && |
| ieee80211_is_mgmt(fc)) { |
| /* Use software decrypt for management frames. */ |
| rx_status.flag &= ~RX_FLAG_DECRYPTED; |
| } |
| |
| /* We will now give hardware our shiny new allocated skb */ |
| bf->bf_mpdu = requeue_skb; |
| bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data, |
| sc->rx.bufsize, |
| DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(sc->dev, |
| bf->bf_buf_addr))) { |
| dev_kfree_skb_any(requeue_skb); |
| bf->bf_mpdu = NULL; |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "dma_mapping_error() on RX\n"); |
| ath_rx_send_to_mac80211(sc, skb, &rx_status); |
| break; |
| } |
| bf->bf_dmacontext = bf->bf_buf_addr; |
| |
| /* |
| * change the default rx antenna if rx diversity chooses the |
| * other antenna 3 times in a row. |
| */ |
| if (sc->rx.defant != ds->ds_rxstat.rs_antenna) { |
| if (++sc->rx.rxotherant >= 3) |
| ath_setdefantenna(sc, ds->ds_rxstat.rs_antenna); |
| } else { |
| sc->rx.rxotherant = 0; |
| } |
| |
| if (unlikely(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON | |
| SC_OP_WAIT_FOR_CAB | |
| SC_OP_WAIT_FOR_PSPOLL_DATA))) |
| ath_rx_ps(sc, skb); |
| |
| ath_rx_send_to_mac80211(sc, skb, &rx_status); |
| |
| requeue: |
| list_move_tail(&bf->list, &sc->rx.rxbuf); |
| ath_rx_buf_link(sc, bf); |
| } while (1); |
| |
| spin_unlock_bh(&sc->rx.rxbuflock); |
| |
| return 0; |
| #undef PA2DESC |
| } |