| /* |
| * libata-core.c - helper library for ATA |
| * |
| * Maintained by: Jeff Garzik <jgarzik@pobox.com> |
| * Please ALWAYS copy linux-ide@vger.kernel.org |
| * on emails. |
| * |
| * Copyright 2003-2004 Red Hat, Inc. All rights reserved. |
| * Copyright 2003-2004 Jeff Garzik |
| * |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; see the file COPYING. If not, write to |
| * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * |
| * libata documentation is available via 'make {ps|pdf}docs', |
| * as Documentation/DocBook/libata.* |
| * |
| * Hardware documentation available from http://www.t13.org/ and |
| * http://www.sata-io.org/ |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/spinlock.h> |
| #include <linux/blkdev.h> |
| #include <linux/delay.h> |
| #include <linux/timer.h> |
| #include <linux/interrupt.h> |
| #include <linux/completion.h> |
| #include <linux/suspend.h> |
| #include <linux/workqueue.h> |
| #include <linux/jiffies.h> |
| #include <linux/scatterlist.h> |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_host.h> |
| #include <linux/libata.h> |
| #include <asm/io.h> |
| #include <asm/semaphore.h> |
| #include <asm/byteorder.h> |
| |
| #include "libata.h" |
| |
| /* debounce timing parameters in msecs { interval, duration, timeout } */ |
| const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; |
| const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; |
| const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; |
| |
| static unsigned int ata_dev_init_params(struct ata_device *dev, |
| u16 heads, u16 sectors); |
| static unsigned int ata_dev_set_xfermode(struct ata_device *dev); |
| static void ata_dev_xfermask(struct ata_device *dev); |
| |
| static unsigned int ata_unique_id = 1; |
| static struct workqueue_struct *ata_wq; |
| |
| struct workqueue_struct *ata_aux_wq; |
| |
| int atapi_enabled = 1; |
| module_param(atapi_enabled, int, 0444); |
| MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); |
| |
| int atapi_dmadir = 0; |
| module_param(atapi_dmadir, int, 0444); |
| MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); |
| |
| int libata_fua = 0; |
| module_param_named(fua, libata_fua, int, 0444); |
| MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); |
| |
| static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ; |
| module_param(ata_probe_timeout, int, 0444); |
| MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); |
| |
| MODULE_AUTHOR("Jeff Garzik"); |
| MODULE_DESCRIPTION("Library module for ATA devices"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| |
| |
| /** |
| * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure |
| * @tf: Taskfile to convert |
| * @fis: Buffer into which data will output |
| * @pmp: Port multiplier port |
| * |
| * Converts a standard ATA taskfile to a Serial ATA |
| * FIS structure (Register - Host to Device). |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp) |
| { |
| fis[0] = 0x27; /* Register - Host to Device FIS */ |
| fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number, |
| bit 7 indicates Command FIS */ |
| fis[2] = tf->command; |
| fis[3] = tf->feature; |
| |
| fis[4] = tf->lbal; |
| fis[5] = tf->lbam; |
| fis[6] = tf->lbah; |
| fis[7] = tf->device; |
| |
| fis[8] = tf->hob_lbal; |
| fis[9] = tf->hob_lbam; |
| fis[10] = tf->hob_lbah; |
| fis[11] = tf->hob_feature; |
| |
| fis[12] = tf->nsect; |
| fis[13] = tf->hob_nsect; |
| fis[14] = 0; |
| fis[15] = tf->ctl; |
| |
| fis[16] = 0; |
| fis[17] = 0; |
| fis[18] = 0; |
| fis[19] = 0; |
| } |
| |
| /** |
| * ata_tf_from_fis - Convert SATA FIS to ATA taskfile |
| * @fis: Buffer from which data will be input |
| * @tf: Taskfile to output |
| * |
| * Converts a serial ATA FIS structure to a standard ATA taskfile. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) |
| { |
| tf->command = fis[2]; /* status */ |
| tf->feature = fis[3]; /* error */ |
| |
| tf->lbal = fis[4]; |
| tf->lbam = fis[5]; |
| tf->lbah = fis[6]; |
| tf->device = fis[7]; |
| |
| tf->hob_lbal = fis[8]; |
| tf->hob_lbam = fis[9]; |
| tf->hob_lbah = fis[10]; |
| |
| tf->nsect = fis[12]; |
| tf->hob_nsect = fis[13]; |
| } |
| |
| static const u8 ata_rw_cmds[] = { |
| /* pio multi */ |
| ATA_CMD_READ_MULTI, |
| ATA_CMD_WRITE_MULTI, |
| ATA_CMD_READ_MULTI_EXT, |
| ATA_CMD_WRITE_MULTI_EXT, |
| 0, |
| 0, |
| 0, |
| ATA_CMD_WRITE_MULTI_FUA_EXT, |
| /* pio */ |
| ATA_CMD_PIO_READ, |
| ATA_CMD_PIO_WRITE, |
| ATA_CMD_PIO_READ_EXT, |
| ATA_CMD_PIO_WRITE_EXT, |
| 0, |
| 0, |
| 0, |
| 0, |
| /* dma */ |
| ATA_CMD_READ, |
| ATA_CMD_WRITE, |
| ATA_CMD_READ_EXT, |
| ATA_CMD_WRITE_EXT, |
| 0, |
| 0, |
| 0, |
| ATA_CMD_WRITE_FUA_EXT |
| }; |
| |
| /** |
| * ata_rwcmd_protocol - set taskfile r/w commands and protocol |
| * @qc: command to examine and configure |
| * |
| * Examine the device configuration and tf->flags to calculate |
| * the proper read/write commands and protocol to use. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| int ata_rwcmd_protocol(struct ata_queued_cmd *qc) |
| { |
| struct ata_taskfile *tf = &qc->tf; |
| struct ata_device *dev = qc->dev; |
| u8 cmd; |
| |
| int index, fua, lba48, write; |
| |
| fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; |
| lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; |
| write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; |
| |
| if (dev->flags & ATA_DFLAG_PIO) { |
| tf->protocol = ATA_PROT_PIO; |
| index = dev->multi_count ? 0 : 8; |
| } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) { |
| /* Unable to use DMA due to host limitation */ |
| tf->protocol = ATA_PROT_PIO; |
| index = dev->multi_count ? 0 : 8; |
| } else { |
| tf->protocol = ATA_PROT_DMA; |
| index = 16; |
| } |
| |
| cmd = ata_rw_cmds[index + fua + lba48 + write]; |
| if (cmd) { |
| tf->command = cmd; |
| return 0; |
| } |
| return -1; |
| } |
| |
| /** |
| * ata_tf_read_block - Read block address from ATA taskfile |
| * @tf: ATA taskfile of interest |
| * @dev: ATA device @tf belongs to |
| * |
| * LOCKING: |
| * None. |
| * |
| * Read block address from @tf. This function can handle all |
| * three address formats - LBA, LBA48 and CHS. tf->protocol and |
| * flags select the address format to use. |
| * |
| * RETURNS: |
| * Block address read from @tf. |
| */ |
| u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) |
| { |
| u64 block = 0; |
| |
| if (tf->flags & ATA_TFLAG_LBA) { |
| if (tf->flags & ATA_TFLAG_LBA48) { |
| block |= (u64)tf->hob_lbah << 40; |
| block |= (u64)tf->hob_lbam << 32; |
| block |= tf->hob_lbal << 24; |
| } else |
| block |= (tf->device & 0xf) << 24; |
| |
| block |= tf->lbah << 16; |
| block |= tf->lbam << 8; |
| block |= tf->lbal; |
| } else { |
| u32 cyl, head, sect; |
| |
| cyl = tf->lbam | (tf->lbah << 8); |
| head = tf->device & 0xf; |
| sect = tf->lbal; |
| |
| block = (cyl * dev->heads + head) * dev->sectors + sect; |
| } |
| |
| return block; |
| } |
| |
| /** |
| * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask |
| * @pio_mask: pio_mask |
| * @mwdma_mask: mwdma_mask |
| * @udma_mask: udma_mask |
| * |
| * Pack @pio_mask, @mwdma_mask and @udma_mask into a single |
| * unsigned int xfer_mask. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Packed xfer_mask. |
| */ |
| static unsigned int ata_pack_xfermask(unsigned int pio_mask, |
| unsigned int mwdma_mask, |
| unsigned int udma_mask) |
| { |
| return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | |
| ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | |
| ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); |
| } |
| |
| /** |
| * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks |
| * @xfer_mask: xfer_mask to unpack |
| * @pio_mask: resulting pio_mask |
| * @mwdma_mask: resulting mwdma_mask |
| * @udma_mask: resulting udma_mask |
| * |
| * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. |
| * Any NULL distination masks will be ignored. |
| */ |
| static void ata_unpack_xfermask(unsigned int xfer_mask, |
| unsigned int *pio_mask, |
| unsigned int *mwdma_mask, |
| unsigned int *udma_mask) |
| { |
| if (pio_mask) |
| *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; |
| if (mwdma_mask) |
| *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; |
| if (udma_mask) |
| *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; |
| } |
| |
| static const struct ata_xfer_ent { |
| int shift, bits; |
| u8 base; |
| } ata_xfer_tbl[] = { |
| { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 }, |
| { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 }, |
| { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 }, |
| { -1, }, |
| }; |
| |
| /** |
| * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask |
| * @xfer_mask: xfer_mask of interest |
| * |
| * Return matching XFER_* value for @xfer_mask. Only the highest |
| * bit of @xfer_mask is considered. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Matching XFER_* value, 0 if no match found. |
| */ |
| static u8 ata_xfer_mask2mode(unsigned int xfer_mask) |
| { |
| int highbit = fls(xfer_mask) - 1; |
| const struct ata_xfer_ent *ent; |
| |
| for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) |
| if (highbit >= ent->shift && highbit < ent->shift + ent->bits) |
| return ent->base + highbit - ent->shift; |
| return 0; |
| } |
| |
| /** |
| * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* |
| * @xfer_mode: XFER_* of interest |
| * |
| * Return matching xfer_mask for @xfer_mode. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Matching xfer_mask, 0 if no match found. |
| */ |
| static unsigned int ata_xfer_mode2mask(u8 xfer_mode) |
| { |
| const struct ata_xfer_ent *ent; |
| |
| for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) |
| if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) |
| return 1 << (ent->shift + xfer_mode - ent->base); |
| return 0; |
| } |
| |
| /** |
| * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* |
| * @xfer_mode: XFER_* of interest |
| * |
| * Return matching xfer_shift for @xfer_mode. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Matching xfer_shift, -1 if no match found. |
| */ |
| static int ata_xfer_mode2shift(unsigned int xfer_mode) |
| { |
| const struct ata_xfer_ent *ent; |
| |
| for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) |
| if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) |
| return ent->shift; |
| return -1; |
| } |
| |
| /** |
| * ata_mode_string - convert xfer_mask to string |
| * @xfer_mask: mask of bits supported; only highest bit counts. |
| * |
| * Determine string which represents the highest speed |
| * (highest bit in @modemask). |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Constant C string representing highest speed listed in |
| * @mode_mask, or the constant C string "<n/a>". |
| */ |
| static const char *ata_mode_string(unsigned int xfer_mask) |
| { |
| static const char * const xfer_mode_str[] = { |
| "PIO0", |
| "PIO1", |
| "PIO2", |
| "PIO3", |
| "PIO4", |
| "PIO5", |
| "PIO6", |
| "MWDMA0", |
| "MWDMA1", |
| "MWDMA2", |
| "MWDMA3", |
| "MWDMA4", |
| "UDMA/16", |
| "UDMA/25", |
| "UDMA/33", |
| "UDMA/44", |
| "UDMA/66", |
| "UDMA/100", |
| "UDMA/133", |
| "UDMA7", |
| }; |
| int highbit; |
| |
| highbit = fls(xfer_mask) - 1; |
| if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) |
| return xfer_mode_str[highbit]; |
| return "<n/a>"; |
| } |
| |
| static const char *sata_spd_string(unsigned int spd) |
| { |
| static const char * const spd_str[] = { |
| "1.5 Gbps", |
| "3.0 Gbps", |
| }; |
| |
| if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) |
| return "<unknown>"; |
| return spd_str[spd - 1]; |
| } |
| |
| void ata_dev_disable(struct ata_device *dev) |
| { |
| if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) { |
| ata_dev_printk(dev, KERN_WARNING, "disabled\n"); |
| dev->class++; |
| } |
| } |
| |
| /** |
| * ata_pio_devchk - PATA device presence detection |
| * @ap: ATA channel to examine |
| * @device: Device to examine (starting at zero) |
| * |
| * This technique was originally described in |
| * Hale Landis's ATADRVR (www.ata-atapi.com), and |
| * later found its way into the ATA/ATAPI spec. |
| * |
| * Write a pattern to the ATA shadow registers, |
| * and if a device is present, it will respond by |
| * correctly storing and echoing back the |
| * ATA shadow register contents. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| static unsigned int ata_pio_devchk(struct ata_port *ap, |
| unsigned int device) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| u8 nsect, lbal; |
| |
| ap->ops->dev_select(ap, device); |
| |
| outb(0x55, ioaddr->nsect_addr); |
| outb(0xaa, ioaddr->lbal_addr); |
| |
| outb(0xaa, ioaddr->nsect_addr); |
| outb(0x55, ioaddr->lbal_addr); |
| |
| outb(0x55, ioaddr->nsect_addr); |
| outb(0xaa, ioaddr->lbal_addr); |
| |
| nsect = inb(ioaddr->nsect_addr); |
| lbal = inb(ioaddr->lbal_addr); |
| |
| if ((nsect == 0x55) && (lbal == 0xaa)) |
| return 1; /* we found a device */ |
| |
| return 0; /* nothing found */ |
| } |
| |
| /** |
| * ata_mmio_devchk - PATA device presence detection |
| * @ap: ATA channel to examine |
| * @device: Device to examine (starting at zero) |
| * |
| * This technique was originally described in |
| * Hale Landis's ATADRVR (www.ata-atapi.com), and |
| * later found its way into the ATA/ATAPI spec. |
| * |
| * Write a pattern to the ATA shadow registers, |
| * and if a device is present, it will respond by |
| * correctly storing and echoing back the |
| * ATA shadow register contents. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| static unsigned int ata_mmio_devchk(struct ata_port *ap, |
| unsigned int device) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| u8 nsect, lbal; |
| |
| ap->ops->dev_select(ap, device); |
| |
| writeb(0x55, (void __iomem *) ioaddr->nsect_addr); |
| writeb(0xaa, (void __iomem *) ioaddr->lbal_addr); |
| |
| writeb(0xaa, (void __iomem *) ioaddr->nsect_addr); |
| writeb(0x55, (void __iomem *) ioaddr->lbal_addr); |
| |
| writeb(0x55, (void __iomem *) ioaddr->nsect_addr); |
| writeb(0xaa, (void __iomem *) ioaddr->lbal_addr); |
| |
| nsect = readb((void __iomem *) ioaddr->nsect_addr); |
| lbal = readb((void __iomem *) ioaddr->lbal_addr); |
| |
| if ((nsect == 0x55) && (lbal == 0xaa)) |
| return 1; /* we found a device */ |
| |
| return 0; /* nothing found */ |
| } |
| |
| /** |
| * ata_devchk - PATA device presence detection |
| * @ap: ATA channel to examine |
| * @device: Device to examine (starting at zero) |
| * |
| * Dispatch ATA device presence detection, depending |
| * on whether we are using PIO or MMIO to talk to the |
| * ATA shadow registers. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| static unsigned int ata_devchk(struct ata_port *ap, |
| unsigned int device) |
| { |
| if (ap->flags & ATA_FLAG_MMIO) |
| return ata_mmio_devchk(ap, device); |
| return ata_pio_devchk(ap, device); |
| } |
| |
| /** |
| * ata_dev_classify - determine device type based on ATA-spec signature |
| * @tf: ATA taskfile register set for device to be identified |
| * |
| * Determine from taskfile register contents whether a device is |
| * ATA or ATAPI, as per "Signature and persistence" section |
| * of ATA/PI spec (volume 1, sect 5.14). |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN |
| * the event of failure. |
| */ |
| |
| unsigned int ata_dev_classify(const struct ata_taskfile *tf) |
| { |
| /* Apple's open source Darwin code hints that some devices only |
| * put a proper signature into the LBA mid/high registers, |
| * So, we only check those. It's sufficient for uniqueness. |
| */ |
| |
| if (((tf->lbam == 0) && (tf->lbah == 0)) || |
| ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) { |
| DPRINTK("found ATA device by sig\n"); |
| return ATA_DEV_ATA; |
| } |
| |
| if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) || |
| ((tf->lbam == 0x69) && (tf->lbah == 0x96))) { |
| DPRINTK("found ATAPI device by sig\n"); |
| return ATA_DEV_ATAPI; |
| } |
| |
| DPRINTK("unknown device\n"); |
| return ATA_DEV_UNKNOWN; |
| } |
| |
| /** |
| * ata_dev_try_classify - Parse returned ATA device signature |
| * @ap: ATA channel to examine |
| * @device: Device to examine (starting at zero) |
| * @r_err: Value of error register on completion |
| * |
| * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, |
| * an ATA/ATAPI-defined set of values is placed in the ATA |
| * shadow registers, indicating the results of device detection |
| * and diagnostics. |
| * |
| * Select the ATA device, and read the values from the ATA shadow |
| * registers. Then parse according to the Error register value, |
| * and the spec-defined values examined by ata_dev_classify(). |
| * |
| * LOCKING: |
| * caller. |
| * |
| * RETURNS: |
| * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. |
| */ |
| |
| static unsigned int |
| ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err) |
| { |
| struct ata_taskfile tf; |
| unsigned int class; |
| u8 err; |
| |
| ap->ops->dev_select(ap, device); |
| |
| memset(&tf, 0, sizeof(tf)); |
| |
| ap->ops->tf_read(ap, &tf); |
| err = tf.feature; |
| if (r_err) |
| *r_err = err; |
| |
| /* see if device passed diags: if master then continue and warn later */ |
| if (err == 0 && device == 0) |
| /* diagnostic fail : do nothing _YET_ */ |
| ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC; |
| else if (err == 1) |
| /* do nothing */ ; |
| else if ((device == 0) && (err == 0x81)) |
| /* do nothing */ ; |
| else |
| return ATA_DEV_NONE; |
| |
| /* determine if device is ATA or ATAPI */ |
| class = ata_dev_classify(&tf); |
| |
| if (class == ATA_DEV_UNKNOWN) |
| return ATA_DEV_NONE; |
| if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0)) |
| return ATA_DEV_NONE; |
| return class; |
| } |
| |
| /** |
| * ata_id_string - Convert IDENTIFY DEVICE page into string |
| * @id: IDENTIFY DEVICE results we will examine |
| * @s: string into which data is output |
| * @ofs: offset into identify device page |
| * @len: length of string to return. must be an even number. |
| * |
| * The strings in the IDENTIFY DEVICE page are broken up into |
| * 16-bit chunks. Run through the string, and output each |
| * 8-bit chunk linearly, regardless of platform. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| void ata_id_string(const u16 *id, unsigned char *s, |
| unsigned int ofs, unsigned int len) |
| { |
| unsigned int c; |
| |
| while (len > 0) { |
| c = id[ofs] >> 8; |
| *s = c; |
| s++; |
| |
| c = id[ofs] & 0xff; |
| *s = c; |
| s++; |
| |
| ofs++; |
| len -= 2; |
| } |
| } |
| |
| /** |
| * ata_id_c_string - Convert IDENTIFY DEVICE page into C string |
| * @id: IDENTIFY DEVICE results we will examine |
| * @s: string into which data is output |
| * @ofs: offset into identify device page |
| * @len: length of string to return. must be an odd number. |
| * |
| * This function is identical to ata_id_string except that it |
| * trims trailing spaces and terminates the resulting string with |
| * null. @len must be actual maximum length (even number) + 1. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| void ata_id_c_string(const u16 *id, unsigned char *s, |
| unsigned int ofs, unsigned int len) |
| { |
| unsigned char *p; |
| |
| WARN_ON(!(len & 1)); |
| |
| ata_id_string(id, s, ofs, len - 1); |
| |
| p = s + strnlen(s, len - 1); |
| while (p > s && p[-1] == ' ') |
| p--; |
| *p = '\0'; |
| } |
| |
| static u64 ata_id_n_sectors(const u16 *id) |
| { |
| if (ata_id_has_lba(id)) { |
| if (ata_id_has_lba48(id)) |
| return ata_id_u64(id, 100); |
| else |
| return ata_id_u32(id, 60); |
| } else { |
| if (ata_id_current_chs_valid(id)) |
| return ata_id_u32(id, 57); |
| else |
| return id[1] * id[3] * id[6]; |
| } |
| } |
| |
| /** |
| * ata_noop_dev_select - Select device 0/1 on ATA bus |
| * @ap: ATA channel to manipulate |
| * @device: ATA device (numbered from zero) to select |
| * |
| * This function performs no actual function. |
| * |
| * May be used as the dev_select() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| void ata_noop_dev_select (struct ata_port *ap, unsigned int device) |
| { |
| } |
| |
| |
| /** |
| * ata_std_dev_select - Select device 0/1 on ATA bus |
| * @ap: ATA channel to manipulate |
| * @device: ATA device (numbered from zero) to select |
| * |
| * Use the method defined in the ATA specification to |
| * make either device 0, or device 1, active on the |
| * ATA channel. Works with both PIO and MMIO. |
| * |
| * May be used as the dev_select() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| void ata_std_dev_select (struct ata_port *ap, unsigned int device) |
| { |
| u8 tmp; |
| |
| if (device == 0) |
| tmp = ATA_DEVICE_OBS; |
| else |
| tmp = ATA_DEVICE_OBS | ATA_DEV1; |
| |
| if (ap->flags & ATA_FLAG_MMIO) { |
| writeb(tmp, (void __iomem *) ap->ioaddr.device_addr); |
| } else { |
| outb(tmp, ap->ioaddr.device_addr); |
| } |
| ata_pause(ap); /* needed; also flushes, for mmio */ |
| } |
| |
| /** |
| * ata_dev_select - Select device 0/1 on ATA bus |
| * @ap: ATA channel to manipulate |
| * @device: ATA device (numbered from zero) to select |
| * @wait: non-zero to wait for Status register BSY bit to clear |
| * @can_sleep: non-zero if context allows sleeping |
| * |
| * Use the method defined in the ATA specification to |
| * make either device 0, or device 1, active on the |
| * ATA channel. |
| * |
| * This is a high-level version of ata_std_dev_select(), |
| * which additionally provides the services of inserting |
| * the proper pauses and status polling, where needed. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| void ata_dev_select(struct ata_port *ap, unsigned int device, |
| unsigned int wait, unsigned int can_sleep) |
| { |
| if (ata_msg_probe(ap)) |
| ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: " |
| "device %u, wait %u\n", ap->id, device, wait); |
| |
| if (wait) |
| ata_wait_idle(ap); |
| |
| ap->ops->dev_select(ap, device); |
| |
| if (wait) { |
| if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI) |
| msleep(150); |
| ata_wait_idle(ap); |
| } |
| } |
| |
| /** |
| * ata_dump_id - IDENTIFY DEVICE info debugging output |
| * @id: IDENTIFY DEVICE page to dump |
| * |
| * Dump selected 16-bit words from the given IDENTIFY DEVICE |
| * page. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| static inline void ata_dump_id(const u16 *id) |
| { |
| DPRINTK("49==0x%04x " |
| "53==0x%04x " |
| "63==0x%04x " |
| "64==0x%04x " |
| "75==0x%04x \n", |
| id[49], |
| id[53], |
| id[63], |
| id[64], |
| id[75]); |
| DPRINTK("80==0x%04x " |
| "81==0x%04x " |
| "82==0x%04x " |
| "83==0x%04x " |
| "84==0x%04x \n", |
| id[80], |
| id[81], |
| id[82], |
| id[83], |
| id[84]); |
| DPRINTK("88==0x%04x " |
| "93==0x%04x\n", |
| id[88], |
| id[93]); |
| } |
| |
| /** |
| * ata_id_xfermask - Compute xfermask from the given IDENTIFY data |
| * @id: IDENTIFY data to compute xfer mask from |
| * |
| * Compute the xfermask for this device. This is not as trivial |
| * as it seems if we must consider early devices correctly. |
| * |
| * FIXME: pre IDE drive timing (do we care ?). |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Computed xfermask |
| */ |
| static unsigned int ata_id_xfermask(const u16 *id) |
| { |
| unsigned int pio_mask, mwdma_mask, udma_mask; |
| |
| /* Usual case. Word 53 indicates word 64 is valid */ |
| if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { |
| pio_mask = id[ATA_ID_PIO_MODES] & 0x03; |
| pio_mask <<= 3; |
| pio_mask |= 0x7; |
| } else { |
| /* If word 64 isn't valid then Word 51 high byte holds |
| * the PIO timing number for the maximum. Turn it into |
| * a mask. |
| */ |
| u8 mode = id[ATA_ID_OLD_PIO_MODES] & 0xFF; |
| if (mode < 5) /* Valid PIO range */ |
| pio_mask = (2 << mode) - 1; |
| else |
| pio_mask = 1; |
| |
| /* But wait.. there's more. Design your standards by |
| * committee and you too can get a free iordy field to |
| * process. However its the speeds not the modes that |
| * are supported... Note drivers using the timing API |
| * will get this right anyway |
| */ |
| } |
| |
| mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; |
| |
| if (ata_id_is_cfa(id)) { |
| /* |
| * Process compact flash extended modes |
| */ |
| int pio = id[163] & 0x7; |
| int dma = (id[163] >> 3) & 7; |
| |
| if (pio) |
| pio_mask |= (1 << 5); |
| if (pio > 1) |
| pio_mask |= (1 << 6); |
| if (dma) |
| mwdma_mask |= (1 << 3); |
| if (dma > 1) |
| mwdma_mask |= (1 << 4); |
| } |
| |
| udma_mask = 0; |
| if (id[ATA_ID_FIELD_VALID] & (1 << 2)) |
| udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; |
| |
| return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); |
| } |
| |
| /** |
| * ata_port_queue_task - Queue port_task |
| * @ap: The ata_port to queue port_task for |
| * @fn: workqueue function to be scheduled |
| * @data: data value to pass to workqueue function |
| * @delay: delay time for workqueue function |
| * |
| * Schedule @fn(@data) for execution after @delay jiffies using |
| * port_task. There is one port_task per port and it's the |
| * user(low level driver)'s responsibility to make sure that only |
| * one task is active at any given time. |
| * |
| * libata core layer takes care of synchronization between |
| * port_task and EH. ata_port_queue_task() may be ignored for EH |
| * synchronization. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data, |
| unsigned long delay) |
| { |
| int rc; |
| |
| if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK) |
| return; |
| |
| PREPARE_WORK(&ap->port_task, fn, data); |
| |
| if (!delay) |
| rc = queue_work(ata_wq, &ap->port_task); |
| else |
| rc = queue_delayed_work(ata_wq, &ap->port_task, delay); |
| |
| /* rc == 0 means that another user is using port task */ |
| WARN_ON(rc == 0); |
| } |
| |
| /** |
| * ata_port_flush_task - Flush port_task |
| * @ap: The ata_port to flush port_task for |
| * |
| * After this function completes, port_task is guranteed not to |
| * be running or scheduled. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| */ |
| void ata_port_flush_task(struct ata_port *ap) |
| { |
| unsigned long flags; |
| |
| DPRINTK("ENTER\n"); |
| |
| spin_lock_irqsave(ap->lock, flags); |
| ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK; |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| DPRINTK("flush #1\n"); |
| flush_workqueue(ata_wq); |
| |
| /* |
| * At this point, if a task is running, it's guaranteed to see |
| * the FLUSH flag; thus, it will never queue pio tasks again. |
| * Cancel and flush. |
| */ |
| if (!cancel_delayed_work(&ap->port_task)) { |
| if (ata_msg_ctl(ap)) |
| ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n", |
| __FUNCTION__); |
| flush_workqueue(ata_wq); |
| } |
| |
| spin_lock_irqsave(ap->lock, flags); |
| ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK; |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| if (ata_msg_ctl(ap)) |
| ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__); |
| } |
| |
| void ata_qc_complete_internal(struct ata_queued_cmd *qc) |
| { |
| struct completion *waiting = qc->private_data; |
| |
| complete(waiting); |
| } |
| |
| /** |
| * ata_exec_internal - execute libata internal command |
| * @dev: Device to which the command is sent |
| * @tf: Taskfile registers for the command and the result |
| * @cdb: CDB for packet command |
| * @dma_dir: Data tranfer direction of the command |
| * @buf: Data buffer of the command |
| * @buflen: Length of data buffer |
| * |
| * Executes libata internal command with timeout. @tf contains |
| * command on entry and result on return. Timeout and error |
| * conditions are reported via return value. No recovery action |
| * is taken after a command times out. It's caller's duty to |
| * clean up after timeout. |
| * |
| * LOCKING: |
| * None. Should be called with kernel context, might sleep. |
| * |
| * RETURNS: |
| * Zero on success, AC_ERR_* mask on failure |
| */ |
| unsigned ata_exec_internal(struct ata_device *dev, |
| struct ata_taskfile *tf, const u8 *cdb, |
| int dma_dir, void *buf, unsigned int buflen) |
| { |
| struct ata_port *ap = dev->ap; |
| u8 command = tf->command; |
| struct ata_queued_cmd *qc; |
| unsigned int tag, preempted_tag; |
| u32 preempted_sactive, preempted_qc_active; |
| DECLARE_COMPLETION_ONSTACK(wait); |
| unsigned long flags; |
| unsigned int err_mask; |
| int rc; |
| |
| spin_lock_irqsave(ap->lock, flags); |
| |
| /* no internal command while frozen */ |
| if (ap->pflags & ATA_PFLAG_FROZEN) { |
| spin_unlock_irqrestore(ap->lock, flags); |
| return AC_ERR_SYSTEM; |
| } |
| |
| /* initialize internal qc */ |
| |
| /* XXX: Tag 0 is used for drivers with legacy EH as some |
| * drivers choke if any other tag is given. This breaks |
| * ata_tag_internal() test for those drivers. Don't use new |
| * EH stuff without converting to it. |
| */ |
| if (ap->ops->error_handler) |
| tag = ATA_TAG_INTERNAL; |
| else |
| tag = 0; |
| |
| if (test_and_set_bit(tag, &ap->qc_allocated)) |
| BUG(); |
| qc = __ata_qc_from_tag(ap, tag); |
| |
| qc->tag = tag; |
| qc->scsicmd = NULL; |
| qc->ap = ap; |
| qc->dev = dev; |
| ata_qc_reinit(qc); |
| |
| preempted_tag = ap->active_tag; |
| preempted_sactive = ap->sactive; |
| preempted_qc_active = ap->qc_active; |
| ap->active_tag = ATA_TAG_POISON; |
| ap->sactive = 0; |
| ap->qc_active = 0; |
| |
| /* prepare & issue qc */ |
| qc->tf = *tf; |
| if (cdb) |
| memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); |
| qc->flags |= ATA_QCFLAG_RESULT_TF; |
| qc->dma_dir = dma_dir; |
| if (dma_dir != DMA_NONE) { |
| ata_sg_init_one(qc, buf, buflen); |
| qc->nsect = buflen / ATA_SECT_SIZE; |
| } |
| |
| qc->private_data = &wait; |
| qc->complete_fn = ata_qc_complete_internal; |
| |
| ata_qc_issue(qc); |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| rc = wait_for_completion_timeout(&wait, ata_probe_timeout); |
| |
| ata_port_flush_task(ap); |
| |
| if (!rc) { |
| spin_lock_irqsave(ap->lock, flags); |
| |
| /* We're racing with irq here. If we lose, the |
| * following test prevents us from completing the qc |
| * twice. If we win, the port is frozen and will be |
| * cleaned up by ->post_internal_cmd(). |
| */ |
| if (qc->flags & ATA_QCFLAG_ACTIVE) { |
| qc->err_mask |= AC_ERR_TIMEOUT; |
| |
| if (ap->ops->error_handler) |
| ata_port_freeze(ap); |
| else |
| ata_qc_complete(qc); |
| |
| if (ata_msg_warn(ap)) |
| ata_dev_printk(dev, KERN_WARNING, |
| "qc timeout (cmd 0x%x)\n", command); |
| } |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| } |
| |
| /* do post_internal_cmd */ |
| if (ap->ops->post_internal_cmd) |
| ap->ops->post_internal_cmd(qc); |
| |
| if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) { |
| if (ata_msg_warn(ap)) |
| ata_dev_printk(dev, KERN_WARNING, |
| "zero err_mask for failed " |
| "internal command, assuming AC_ERR_OTHER\n"); |
| qc->err_mask |= AC_ERR_OTHER; |
| } |
| |
| /* finish up */ |
| spin_lock_irqsave(ap->lock, flags); |
| |
| *tf = qc->result_tf; |
| err_mask = qc->err_mask; |
| |
| ata_qc_free(qc); |
| ap->active_tag = preempted_tag; |
| ap->sactive = preempted_sactive; |
| ap->qc_active = preempted_qc_active; |
| |
| /* XXX - Some LLDDs (sata_mv) disable port on command failure. |
| * Until those drivers are fixed, we detect the condition |
| * here, fail the command with AC_ERR_SYSTEM and reenable the |
| * port. |
| * |
| * Note that this doesn't change any behavior as internal |
| * command failure results in disabling the device in the |
| * higher layer for LLDDs without new reset/EH callbacks. |
| * |
| * Kill the following code as soon as those drivers are fixed. |
| */ |
| if (ap->flags & ATA_FLAG_DISABLED) { |
| err_mask |= AC_ERR_SYSTEM; |
| ata_port_probe(ap); |
| } |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| return err_mask; |
| } |
| |
| /** |
| * ata_do_simple_cmd - execute simple internal command |
| * @dev: Device to which the command is sent |
| * @cmd: Opcode to execute |
| * |
| * Execute a 'simple' command, that only consists of the opcode |
| * 'cmd' itself, without filling any other registers |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep). |
| * |
| * RETURNS: |
| * Zero on success, AC_ERR_* mask on failure |
| */ |
| unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) |
| { |
| struct ata_taskfile tf; |
| |
| ata_tf_init(dev, &tf); |
| |
| tf.command = cmd; |
| tf.flags |= ATA_TFLAG_DEVICE; |
| tf.protocol = ATA_PROT_NODATA; |
| |
| return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); |
| } |
| |
| /** |
| * ata_pio_need_iordy - check if iordy needed |
| * @adev: ATA device |
| * |
| * Check if the current speed of the device requires IORDY. Used |
| * by various controllers for chip configuration. |
| */ |
| |
| unsigned int ata_pio_need_iordy(const struct ata_device *adev) |
| { |
| int pio; |
| int speed = adev->pio_mode - XFER_PIO_0; |
| |
| if (speed < 2) |
| return 0; |
| if (speed > 2) |
| return 1; |
| |
| /* If we have no drive specific rule, then PIO 2 is non IORDY */ |
| |
| if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ |
| pio = adev->id[ATA_ID_EIDE_PIO]; |
| /* Is the speed faster than the drive allows non IORDY ? */ |
| if (pio) { |
| /* This is cycle times not frequency - watch the logic! */ |
| if (pio > 240) /* PIO2 is 240nS per cycle */ |
| return 1; |
| return 0; |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * ata_dev_read_id - Read ID data from the specified device |
| * @dev: target device |
| * @p_class: pointer to class of the target device (may be changed) |
| * @flags: ATA_READID_* flags |
| * @id: buffer to read IDENTIFY data into |
| * |
| * Read ID data from the specified device. ATA_CMD_ID_ATA is |
| * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI |
| * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS |
| * for pre-ATA4 drives. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, |
| unsigned int flags, u16 *id) |
| { |
| struct ata_port *ap = dev->ap; |
| unsigned int class = *p_class; |
| struct ata_taskfile tf; |
| unsigned int err_mask = 0; |
| const char *reason; |
| int rc; |
| |
| if (ata_msg_ctl(ap)) |
| ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n", |
| __FUNCTION__, ap->id, dev->devno); |
| |
| ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */ |
| |
| retry: |
| ata_tf_init(dev, &tf); |
| |
| switch (class) { |
| case ATA_DEV_ATA: |
| tf.command = ATA_CMD_ID_ATA; |
| break; |
| case ATA_DEV_ATAPI: |
| tf.command = ATA_CMD_ID_ATAPI; |
| break; |
| default: |
| rc = -ENODEV; |
| reason = "unsupported class"; |
| goto err_out; |
| } |
| |
| tf.protocol = ATA_PROT_PIO; |
| |
| /* presence detection using polling IDENTIFY? */ |
| if (flags & ATA_READID_DETECT) |
| tf.flags |= ATA_TFLAG_POLLING; |
| |
| err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, |
| id, sizeof(id[0]) * ATA_ID_WORDS); |
| if (err_mask) { |
| if ((flags & ATA_READID_DETECT) && |
| (err_mask & AC_ERR_NODEV_HINT)) { |
| DPRINTK("ata%u.%d: NODEV after polling detection\n", |
| ap->id, dev->devno); |
| return -ENOENT; |
| } |
| |
| rc = -EIO; |
| reason = "I/O error"; |
| goto err_out; |
| } |
| |
| swap_buf_le16(id, ATA_ID_WORDS); |
| |
| /* sanity check */ |
| rc = -EINVAL; |
| reason = "device reports illegal type"; |
| |
| if (class == ATA_DEV_ATA) { |
| if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) |
| goto err_out; |
| } else { |
| if (ata_id_is_ata(id)) |
| goto err_out; |
| } |
| |
| if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { |
| /* |
| * The exact sequence expected by certain pre-ATA4 drives is: |
| * SRST RESET |
| * IDENTIFY |
| * INITIALIZE DEVICE PARAMETERS |
| * anything else.. |
| * Some drives were very specific about that exact sequence. |
| */ |
| if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { |
| err_mask = ata_dev_init_params(dev, id[3], id[6]); |
| if (err_mask) { |
| rc = -EIO; |
| reason = "INIT_DEV_PARAMS failed"; |
| goto err_out; |
| } |
| |
| /* current CHS translation info (id[53-58]) might be |
| * changed. reread the identify device info. |
| */ |
| flags &= ~ATA_READID_POSTRESET; |
| goto retry; |
| } |
| } |
| |
| *p_class = class; |
| |
| return 0; |
| |
| err_out: |
| if (ata_msg_warn(ap)) |
| ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " |
| "(%s, err_mask=0x%x)\n", reason, err_mask); |
| return rc; |
| } |
| |
| static inline u8 ata_dev_knobble(struct ata_device *dev) |
| { |
| return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); |
| } |
| |
| static void ata_dev_config_ncq(struct ata_device *dev, |
| char *desc, size_t desc_sz) |
| { |
| struct ata_port *ap = dev->ap; |
| int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); |
| |
| if (!ata_id_has_ncq(dev->id)) { |
| desc[0] = '\0'; |
| return; |
| } |
| if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) { |
| snprintf(desc, desc_sz, "NCQ (not used)"); |
| return; |
| } |
| if (ap->flags & ATA_FLAG_NCQ) { |
| hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); |
| dev->flags |= ATA_DFLAG_NCQ; |
| } |
| |
| if (hdepth >= ddepth) |
| snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); |
| else |
| snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); |
| } |
| |
| static void ata_set_port_max_cmd_len(struct ata_port *ap) |
| { |
| int i; |
| |
| if (ap->scsi_host) { |
| unsigned int len = 0; |
| |
| for (i = 0; i < ATA_MAX_DEVICES; i++) |
| len = max(len, ap->device[i].cdb_len); |
| |
| ap->scsi_host->max_cmd_len = len; |
| } |
| } |
| |
| /** |
| * ata_dev_configure - Configure the specified ATA/ATAPI device |
| * @dev: Target device to configure |
| * |
| * Configure @dev according to @dev->id. Generic and low-level |
| * driver specific fixups are also applied. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise |
| */ |
| int ata_dev_configure(struct ata_device *dev) |
| { |
| struct ata_port *ap = dev->ap; |
| int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO; |
| const u16 *id = dev->id; |
| unsigned int xfer_mask; |
| char revbuf[7]; /* XYZ-99\0 */ |
| int rc; |
| |
| if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { |
| ata_dev_printk(dev, KERN_INFO, |
| "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n", |
| __FUNCTION__, ap->id, dev->devno); |
| return 0; |
| } |
| |
| if (ata_msg_probe(ap)) |
| ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n", |
| __FUNCTION__, ap->id, dev->devno); |
| |
| /* print device capabilities */ |
| if (ata_msg_probe(ap)) |
| ata_dev_printk(dev, KERN_DEBUG, |
| "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " |
| "85:%04x 86:%04x 87:%04x 88:%04x\n", |
| __FUNCTION__, |
| id[49], id[82], id[83], id[84], |
| id[85], id[86], id[87], id[88]); |
| |
| /* initialize to-be-configured parameters */ |
| dev->flags &= ~ATA_DFLAG_CFG_MASK; |
| dev->max_sectors = 0; |
| dev->cdb_len = 0; |
| dev->n_sectors = 0; |
| dev->cylinders = 0; |
| dev->heads = 0; |
| dev->sectors = 0; |
| |
| /* |
| * common ATA, ATAPI feature tests |
| */ |
| |
| /* find max transfer mode; for printk only */ |
| xfer_mask = ata_id_xfermask(id); |
| |
| if (ata_msg_probe(ap)) |
| ata_dump_id(id); |
| |
| /* ATA-specific feature tests */ |
| if (dev->class == ATA_DEV_ATA) { |
| if (ata_id_is_cfa(id)) { |
| if (id[162] & 1) /* CPRM may make this media unusable */ |
| ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n", |
| ap->id, dev->devno); |
| snprintf(revbuf, 7, "CFA"); |
| } |
| else |
| snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); |
| |
| dev->n_sectors = ata_id_n_sectors(id); |
| |
| if (ata_id_has_lba(id)) { |
| const char *lba_desc; |
| char ncq_desc[20]; |
| |
| lba_desc = "LBA"; |
| dev->flags |= ATA_DFLAG_LBA; |
| if (ata_id_has_lba48(id)) { |
| dev->flags |= ATA_DFLAG_LBA48; |
| lba_desc = "LBA48"; |
| |
| if (dev->n_sectors >= (1UL << 28) && |
| ata_id_has_flush_ext(id)) |
| dev->flags |= ATA_DFLAG_FLUSH_EXT; |
| } |
| |
| /* config NCQ */ |
| ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); |
| |
| /* print device info to dmesg */ |
| if (ata_msg_drv(ap) && print_info) |
| ata_dev_printk(dev, KERN_INFO, "%s, " |
| "max %s, %Lu sectors: %s %s\n", |
| revbuf, |
| ata_mode_string(xfer_mask), |
| (unsigned long long)dev->n_sectors, |
| lba_desc, ncq_desc); |
| } else { |
| /* CHS */ |
| |
| /* Default translation */ |
| dev->cylinders = id[1]; |
| dev->heads = id[3]; |
| dev->sectors = id[6]; |
| |
| if (ata_id_current_chs_valid(id)) { |
| /* Current CHS translation is valid. */ |
| dev->cylinders = id[54]; |
| dev->heads = id[55]; |
| dev->sectors = id[56]; |
| } |
| |
| /* print device info to dmesg */ |
| if (ata_msg_drv(ap) && print_info) |
| ata_dev_printk(dev, KERN_INFO, "%s, " |
| "max %s, %Lu sectors: CHS %u/%u/%u\n", |
| revbuf, |
| ata_mode_string(xfer_mask), |
| (unsigned long long)dev->n_sectors, |
| dev->cylinders, dev->heads, |
| dev->sectors); |
| } |
| |
| if (dev->id[59] & 0x100) { |
| dev->multi_count = dev->id[59] & 0xff; |
| if (ata_msg_drv(ap) && print_info) |
| ata_dev_printk(dev, KERN_INFO, |
| "ata%u: dev %u multi count %u\n", |
| ap->id, dev->devno, dev->multi_count); |
| } |
| |
| dev->cdb_len = 16; |
| } |
| |
| /* ATAPI-specific feature tests */ |
| else if (dev->class == ATA_DEV_ATAPI) { |
| char *cdb_intr_string = ""; |
| |
| rc = atapi_cdb_len(id); |
| if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { |
| if (ata_msg_warn(ap)) |
| ata_dev_printk(dev, KERN_WARNING, |
| "unsupported CDB len\n"); |
| rc = -EINVAL; |
| goto err_out_nosup; |
| } |
| dev->cdb_len = (unsigned int) rc; |
| |
| if (ata_id_cdb_intr(dev->id)) { |
| dev->flags |= ATA_DFLAG_CDB_INTR; |
| cdb_intr_string = ", CDB intr"; |
| } |
| |
| /* print device info to dmesg */ |
| if (ata_msg_drv(ap) && print_info) |
| ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n", |
| ata_mode_string(xfer_mask), |
| cdb_intr_string); |
| } |
| |
| /* determine max_sectors */ |
| dev->max_sectors = ATA_MAX_SECTORS; |
| if (dev->flags & ATA_DFLAG_LBA48) |
| dev->max_sectors = ATA_MAX_SECTORS_LBA48; |
| |
| if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { |
| /* Let the user know. We don't want to disallow opens for |
| rescue purposes, or in case the vendor is just a blithering |
| idiot */ |
| if (print_info) { |
| ata_dev_printk(dev, KERN_WARNING, |
| "Drive reports diagnostics failure. This may indicate a drive\n"); |
| ata_dev_printk(dev, KERN_WARNING, |
| "fault or invalid emulation. Contact drive vendor for information.\n"); |
| } |
| } |
| |
| ata_set_port_max_cmd_len(ap); |
| |
| /* limit bridge transfers to udma5, 200 sectors */ |
| if (ata_dev_knobble(dev)) { |
| if (ata_msg_drv(ap) && print_info) |
| ata_dev_printk(dev, KERN_INFO, |
| "applying bridge limits\n"); |
| dev->udma_mask &= ATA_UDMA5; |
| dev->max_sectors = ATA_MAX_SECTORS; |
| } |
| |
| if (ap->ops->dev_config) |
| ap->ops->dev_config(ap, dev); |
| |
| if (ata_msg_probe(ap)) |
| ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n", |
| __FUNCTION__, ata_chk_status(ap)); |
| return 0; |
| |
| err_out_nosup: |
| if (ata_msg_probe(ap)) |
| ata_dev_printk(dev, KERN_DEBUG, |
| "%s: EXIT, err\n", __FUNCTION__); |
| return rc; |
| } |
| |
| /** |
| * ata_bus_probe - Reset and probe ATA bus |
| * @ap: Bus to probe |
| * |
| * Master ATA bus probing function. Initiates a hardware-dependent |
| * bus reset, then attempts to identify any devices found on |
| * the bus. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| * RETURNS: |
| * Zero on success, negative errno otherwise. |
| */ |
| |
| int ata_bus_probe(struct ata_port *ap) |
| { |
| unsigned int classes[ATA_MAX_DEVICES]; |
| int tries[ATA_MAX_DEVICES]; |
| int i, rc, down_xfermask; |
| struct ata_device *dev; |
| |
| ata_port_probe(ap); |
| |
| for (i = 0; i < ATA_MAX_DEVICES; i++) |
| tries[i] = ATA_PROBE_MAX_TRIES; |
| |
| retry: |
| down_xfermask = 0; |
| |
| /* reset and determine device classes */ |
| ap->ops->phy_reset(ap); |
| |
| for (i = 0; i < ATA_MAX_DEVICES; i++) { |
| dev = &ap->device[i]; |
| |
| if (!(ap->flags & ATA_FLAG_DISABLED) && |
| dev->class != ATA_DEV_UNKNOWN) |
| classes[dev->devno] = dev->class; |
| else |
| classes[dev->devno] = ATA_DEV_NONE; |
| |
| dev->class = ATA_DEV_UNKNOWN; |
| } |
| |
| ata_port_probe(ap); |
| |
| /* after the reset the device state is PIO 0 and the controller |
| state is undefined. Record the mode */ |
| |
| for (i = 0; i < ATA_MAX_DEVICES; i++) |
| ap->device[i].pio_mode = XFER_PIO_0; |
| |
| /* read IDENTIFY page and configure devices */ |
| for (i = 0; i < ATA_MAX_DEVICES; i++) { |
| dev = &ap->device[i]; |
| |
| if (tries[i]) |
| dev->class = classes[i]; |
| |
| if (!ata_dev_enabled(dev)) |
| continue; |
| |
| rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, |
| dev->id); |
| if (rc) |
| goto fail; |
| |
| ap->eh_context.i.flags |= ATA_EHI_PRINTINFO; |
| rc = ata_dev_configure(dev); |
| ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO; |
| if (rc) |
| goto fail; |
| } |
| |
| /* configure transfer mode */ |
| rc = ata_set_mode(ap, &dev); |
| if (rc) { |
| down_xfermask = 1; |
| goto fail; |
| } |
| |
| for (i = 0; i < ATA_MAX_DEVICES; i++) |
| if (ata_dev_enabled(&ap->device[i])) |
| return 0; |
| |
| /* no device present, disable port */ |
| ata_port_disable(ap); |
| ap->ops->port_disable(ap); |
| return -ENODEV; |
| |
| fail: |
| switch (rc) { |
| case -EINVAL: |
| case -ENODEV: |
| tries[dev->devno] = 0; |
| break; |
| case -EIO: |
| sata_down_spd_limit(ap); |
| /* fall through */ |
| default: |
| tries[dev->devno]--; |
| if (down_xfermask && |
| ata_down_xfermask_limit(dev, tries[dev->devno] == 1)) |
| tries[dev->devno] = 0; |
| } |
| |
| if (!tries[dev->devno]) { |
| ata_down_xfermask_limit(dev, 1); |
| ata_dev_disable(dev); |
| } |
| |
| goto retry; |
| } |
| |
| /** |
| * ata_port_probe - Mark port as enabled |
| * @ap: Port for which we indicate enablement |
| * |
| * Modify @ap data structure such that the system |
| * thinks that the entire port is enabled. |
| * |
| * LOCKING: host lock, or some other form of |
| * serialization. |
| */ |
| |
| void ata_port_probe(struct ata_port *ap) |
| { |
| ap->flags &= ~ATA_FLAG_DISABLED; |
| } |
| |
| /** |
| * sata_print_link_status - Print SATA link status |
| * @ap: SATA port to printk link status about |
| * |
| * This function prints link speed and status of a SATA link. |
| * |
| * LOCKING: |
| * None. |
| */ |
| static void sata_print_link_status(struct ata_port *ap) |
| { |
| u32 sstatus, scontrol, tmp; |
| |
| if (sata_scr_read(ap, SCR_STATUS, &sstatus)) |
| return; |
| sata_scr_read(ap, SCR_CONTROL, &scontrol); |
| |
| if (ata_port_online(ap)) { |
| tmp = (sstatus >> 4) & 0xf; |
| ata_port_printk(ap, KERN_INFO, |
| "SATA link up %s (SStatus %X SControl %X)\n", |
| sata_spd_string(tmp), sstatus, scontrol); |
| } else { |
| ata_port_printk(ap, KERN_INFO, |
| "SATA link down (SStatus %X SControl %X)\n", |
| sstatus, scontrol); |
| } |
| } |
| |
| /** |
| * __sata_phy_reset - Wake/reset a low-level SATA PHY |
| * @ap: SATA port associated with target SATA PHY. |
| * |
| * This function issues commands to standard SATA Sxxx |
| * PHY registers, to wake up the phy (and device), and |
| * clear any reset condition. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| */ |
| void __sata_phy_reset(struct ata_port *ap) |
| { |
| u32 sstatus; |
| unsigned long timeout = jiffies + (HZ * 5); |
| |
| if (ap->flags & ATA_FLAG_SATA_RESET) { |
| /* issue phy wake/reset */ |
| sata_scr_write_flush(ap, SCR_CONTROL, 0x301); |
| /* Couldn't find anything in SATA I/II specs, but |
| * AHCI-1.1 10.4.2 says at least 1 ms. */ |
| mdelay(1); |
| } |
| /* phy wake/clear reset */ |
| sata_scr_write_flush(ap, SCR_CONTROL, 0x300); |
| |
| /* wait for phy to become ready, if necessary */ |
| do { |
| msleep(200); |
| sata_scr_read(ap, SCR_STATUS, &sstatus); |
| if ((sstatus & 0xf) != 1) |
| break; |
| } while (time_before(jiffies, timeout)); |
| |
| /* print link status */ |
| sata_print_link_status(ap); |
| |
| /* TODO: phy layer with polling, timeouts, etc. */ |
| if (!ata_port_offline(ap)) |
| ata_port_probe(ap); |
| else |
| ata_port_disable(ap); |
| |
| if (ap->flags & ATA_FLAG_DISABLED) |
| return; |
| |
| if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { |
| ata_port_disable(ap); |
| return; |
| } |
| |
| ap->cbl = ATA_CBL_SATA; |
| } |
| |
| /** |
| * sata_phy_reset - Reset SATA bus. |
| * @ap: SATA port associated with target SATA PHY. |
| * |
| * This function resets the SATA bus, and then probes |
| * the bus for devices. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| */ |
| void sata_phy_reset(struct ata_port *ap) |
| { |
| __sata_phy_reset(ap); |
| if (ap->flags & ATA_FLAG_DISABLED) |
| return; |
| ata_bus_reset(ap); |
| } |
| |
| /** |
| * ata_dev_pair - return other device on cable |
| * @adev: device |
| * |
| * Obtain the other device on the same cable, or if none is |
| * present NULL is returned |
| */ |
| |
| struct ata_device *ata_dev_pair(struct ata_device *adev) |
| { |
| struct ata_port *ap = adev->ap; |
| struct ata_device *pair = &ap->device[1 - adev->devno]; |
| if (!ata_dev_enabled(pair)) |
| return NULL; |
| return pair; |
| } |
| |
| /** |
| * ata_port_disable - Disable port. |
| * @ap: Port to be disabled. |
| * |
| * Modify @ap data structure such that the system |
| * thinks that the entire port is disabled, and should |
| * never attempt to probe or communicate with devices |
| * on this port. |
| * |
| * LOCKING: host lock, or some other form of |
| * serialization. |
| */ |
| |
| void ata_port_disable(struct ata_port *ap) |
| { |
| ap->device[0].class = ATA_DEV_NONE; |
| ap->device[1].class = ATA_DEV_NONE; |
| ap->flags |= ATA_FLAG_DISABLED; |
| } |
| |
| /** |
| * sata_down_spd_limit - adjust SATA spd limit downward |
| * @ap: Port to adjust SATA spd limit for |
| * |
| * Adjust SATA spd limit of @ap downward. Note that this |
| * function only adjusts the limit. The change must be applied |
| * using sata_set_spd(). |
| * |
| * LOCKING: |
| * Inherited from caller. |
| * |
| * RETURNS: |
| * 0 on success, negative errno on failure |
| */ |
| int sata_down_spd_limit(struct ata_port *ap) |
| { |
| u32 sstatus, spd, mask; |
| int rc, highbit; |
| |
| rc = sata_scr_read(ap, SCR_STATUS, &sstatus); |
| if (rc) |
| return rc; |
| |
| mask = ap->sata_spd_limit; |
| if (mask <= 1) |
| return -EINVAL; |
| highbit = fls(mask) - 1; |
| mask &= ~(1 << highbit); |
| |
| spd = (sstatus >> 4) & 0xf; |
| if (spd <= 1) |
| return -EINVAL; |
| spd--; |
| mask &= (1 << spd) - 1; |
| if (!mask) |
| return -EINVAL; |
| |
| ap->sata_spd_limit = mask; |
| |
| ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n", |
| sata_spd_string(fls(mask))); |
| |
| return 0; |
| } |
| |
| static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol) |
| { |
| u32 spd, limit; |
| |
| if (ap->sata_spd_limit == UINT_MAX) |
| limit = 0; |
| else |
| limit = fls(ap->sata_spd_limit); |
| |
| spd = (*scontrol >> 4) & 0xf; |
| *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4); |
| |
| return spd != limit; |
| } |
| |
| /** |
| * sata_set_spd_needed - is SATA spd configuration needed |
| * @ap: Port in question |
| * |
| * Test whether the spd limit in SControl matches |
| * @ap->sata_spd_limit. This function is used to determine |
| * whether hardreset is necessary to apply SATA spd |
| * configuration. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| * |
| * RETURNS: |
| * 1 if SATA spd configuration is needed, 0 otherwise. |
| */ |
| int sata_set_spd_needed(struct ata_port *ap) |
| { |
| u32 scontrol; |
| |
| if (sata_scr_read(ap, SCR_CONTROL, &scontrol)) |
| return 0; |
| |
| return __sata_set_spd_needed(ap, &scontrol); |
| } |
| |
| /** |
| * sata_set_spd - set SATA spd according to spd limit |
| * @ap: Port to set SATA spd for |
| * |
| * Set SATA spd of @ap according to sata_spd_limit. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| * |
| * RETURNS: |
| * 0 if spd doesn't need to be changed, 1 if spd has been |
| * changed. Negative errno if SCR registers are inaccessible. |
| */ |
| int sata_set_spd(struct ata_port *ap) |
| { |
| u32 scontrol; |
| int rc; |
| |
| if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) |
| return rc; |
| |
| if (!__sata_set_spd_needed(ap, &scontrol)) |
| return 0; |
| |
| if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) |
| return rc; |
| |
| return 1; |
| } |
| |
| /* |
| * This mode timing computation functionality is ported over from |
| * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik |
| */ |
| /* |
| * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). |
| * These were taken from ATA/ATAPI-6 standard, rev 0a, except |
| * for UDMA6, which is currently supported only by Maxtor drives. |
| * |
| * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. |
| */ |
| |
| static const struct ata_timing ata_timing[] = { |
| |
| { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, |
| { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, |
| { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, |
| { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, |
| |
| { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, |
| { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, |
| { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, |
| { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, |
| { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, |
| |
| /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ |
| |
| { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, |
| { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, |
| { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, |
| |
| { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, |
| { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, |
| { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, |
| |
| { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, |
| { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, |
| { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, |
| { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, |
| |
| { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, |
| { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, |
| { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, |
| |
| /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ |
| |
| { 0xFF } |
| }; |
| |
| #define ENOUGH(v,unit) (((v)-1)/(unit)+1) |
| #define EZ(v,unit) ((v)?ENOUGH(v,unit):0) |
| |
| static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) |
| { |
| q->setup = EZ(t->setup * 1000, T); |
| q->act8b = EZ(t->act8b * 1000, T); |
| q->rec8b = EZ(t->rec8b * 1000, T); |
| q->cyc8b = EZ(t->cyc8b * 1000, T); |
| q->active = EZ(t->active * 1000, T); |
| q->recover = EZ(t->recover * 1000, T); |
| q->cycle = EZ(t->cycle * 1000, T); |
| q->udma = EZ(t->udma * 1000, UT); |
| } |
| |
| void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, |
| struct ata_timing *m, unsigned int what) |
| { |
| if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); |
| if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); |
| if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); |
| if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); |
| if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); |
| if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); |
| if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); |
| if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); |
| } |
| |
| static const struct ata_timing* ata_timing_find_mode(unsigned short speed) |
| { |
| const struct ata_timing *t; |
| |
| for (t = ata_timing; t->mode != speed; t++) |
| if (t->mode == 0xFF) |
| return NULL; |
| return t; |
| } |
| |
| int ata_timing_compute(struct ata_device *adev, unsigned short speed, |
| struct ata_timing *t, int T, int UT) |
| { |
| const struct ata_timing *s; |
| struct ata_timing p; |
| |
| /* |
| * Find the mode. |
| */ |
| |
| if (!(s = ata_timing_find_mode(speed))) |
| return -EINVAL; |
| |
| memcpy(t, s, sizeof(*s)); |
| |
| /* |
| * If the drive is an EIDE drive, it can tell us it needs extended |
| * PIO/MW_DMA cycle timing. |
| */ |
| |
| if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ |
| memset(&p, 0, sizeof(p)); |
| if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { |
| if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; |
| else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; |
| } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { |
| p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; |
| } |
| ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); |
| } |
| |
| /* |
| * Convert the timing to bus clock counts. |
| */ |
| |
| ata_timing_quantize(t, t, T, UT); |
| |
| /* |
| * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, |
| * S.M.A.R.T * and some other commands. We have to ensure that the |
| * DMA cycle timing is slower/equal than the fastest PIO timing. |
| */ |
| |
| if (speed > XFER_PIO_4) { |
| ata_timing_compute(adev, adev->pio_mode, &p, T, UT); |
| ata_timing_merge(&p, t, t, ATA_TIMING_ALL); |
| } |
| |
| /* |
| * Lengthen active & recovery time so that cycle time is correct. |
| */ |
| |
| if (t->act8b + t->rec8b < t->cyc8b) { |
| t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; |
| t->rec8b = t->cyc8b - t->act8b; |
| } |
| |
| if (t->active + t->recover < t->cycle) { |
| t->active += (t->cycle - (t->active + t->recover)) / 2; |
| t->recover = t->cycle - t->active; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ata_down_xfermask_limit - adjust dev xfer masks downward |
| * @dev: Device to adjust xfer masks |
| * @force_pio0: Force PIO0 |
| * |
| * Adjust xfer masks of @dev downward. Note that this function |
| * does not apply the change. Invoking ata_set_mode() afterwards |
| * will apply the limit. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| * |
| * RETURNS: |
| * 0 on success, negative errno on failure |
| */ |
| int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0) |
| { |
| unsigned long xfer_mask; |
| int highbit; |
| |
| xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask, |
| dev->udma_mask); |
| |
| if (!xfer_mask) |
| goto fail; |
| /* don't gear down to MWDMA from UDMA, go directly to PIO */ |
| if (xfer_mask & ATA_MASK_UDMA) |
| xfer_mask &= ~ATA_MASK_MWDMA; |
| |
| highbit = fls(xfer_mask) - 1; |
| xfer_mask &= ~(1 << highbit); |
| if (force_pio0) |
| xfer_mask &= 1 << ATA_SHIFT_PIO; |
| if (!xfer_mask) |
| goto fail; |
| |
| ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, |
| &dev->udma_mask); |
| |
| ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n", |
| ata_mode_string(xfer_mask)); |
| |
| return 0; |
| |
| fail: |
| return -EINVAL; |
| } |
| |
| static int ata_dev_set_mode(struct ata_device *dev) |
| { |
| struct ata_eh_context *ehc = &dev->ap->eh_context; |
| unsigned int err_mask; |
| int rc; |
| |
| dev->flags &= ~ATA_DFLAG_PIO; |
| if (dev->xfer_shift == ATA_SHIFT_PIO) |
| dev->flags |= ATA_DFLAG_PIO; |
| |
| err_mask = ata_dev_set_xfermode(dev); |
| if (err_mask) { |
| ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " |
| "(err_mask=0x%x)\n", err_mask); |
| return -EIO; |
| } |
| |
| ehc->i.flags |= ATA_EHI_POST_SETMODE; |
| rc = ata_dev_revalidate(dev, 0); |
| ehc->i.flags &= ~ATA_EHI_POST_SETMODE; |
| if (rc) |
| return rc; |
| |
| DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", |
| dev->xfer_shift, (int)dev->xfer_mode); |
| |
| ata_dev_printk(dev, KERN_INFO, "configured for %s\n", |
| ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode))); |
| return 0; |
| } |
| |
| /** |
| * ata_set_mode - Program timings and issue SET FEATURES - XFER |
| * @ap: port on which timings will be programmed |
| * @r_failed_dev: out paramter for failed device |
| * |
| * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If |
| * ata_set_mode() fails, pointer to the failing device is |
| * returned in @r_failed_dev. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| * RETURNS: |
| * 0 on success, negative errno otherwise |
| */ |
| int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev) |
| { |
| struct ata_device *dev; |
| int i, rc = 0, used_dma = 0, found = 0; |
| |
| /* has private set_mode? */ |
| if (ap->ops->set_mode) { |
| /* FIXME: make ->set_mode handle no device case and |
| * return error code and failing device on failure. |
| */ |
| for (i = 0; i < ATA_MAX_DEVICES; i++) { |
| if (ata_dev_ready(&ap->device[i])) { |
| ap->ops->set_mode(ap); |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| /* step 1: calculate xfer_mask */ |
| for (i = 0; i < ATA_MAX_DEVICES; i++) { |
| unsigned int pio_mask, dma_mask; |
| |
| dev = &ap->device[i]; |
| |
| if (!ata_dev_enabled(dev)) |
| continue; |
| |
| ata_dev_xfermask(dev); |
| |
| pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); |
| dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); |
| dev->pio_mode = ata_xfer_mask2mode(pio_mask); |
| dev->dma_mode = ata_xfer_mask2mode(dma_mask); |
| |
| found = 1; |
| if (dev->dma_mode) |
| used_dma = 1; |
| } |
| if (!found) |
| goto out; |
| |
| /* step 2: always set host PIO timings */ |
| for (i = 0; i < ATA_MAX_DEVICES; i++) { |
| dev = &ap->device[i]; |
| if (!ata_dev_enabled(dev)) |
| continue; |
| |
| if (!dev->pio_mode) { |
| ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| dev->xfer_mode = dev->pio_mode; |
| dev->xfer_shift = ATA_SHIFT_PIO; |
| if (ap->ops->set_piomode) |
| ap->ops->set_piomode(ap, dev); |
| } |
| |
| /* step 3: set host DMA timings */ |
| for (i = 0; i < ATA_MAX_DEVICES; i++) { |
| dev = &ap->device[i]; |
| |
| if (!ata_dev_enabled(dev) || !dev->dma_mode) |
| continue; |
| |
| dev->xfer_mode = dev->dma_mode; |
| dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); |
| if (ap->ops->set_dmamode) |
| ap->ops->set_dmamode(ap, dev); |
| } |
| |
| /* step 4: update devices' xfer mode */ |
| for (i = 0; i < ATA_MAX_DEVICES; i++) { |
| dev = &ap->device[i]; |
| |
| /* don't udpate suspended devices' xfer mode */ |
| if (!ata_dev_ready(dev)) |
| continue; |
| |
| rc = ata_dev_set_mode(dev); |
| if (rc) |
| goto out; |
| } |
| |
| /* Record simplex status. If we selected DMA then the other |
| * host channels are not permitted to do so. |
| */ |
| if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) |
| ap->host->simplex_claimed = 1; |
| |
| /* step5: chip specific finalisation */ |
| if (ap->ops->post_set_mode) |
| ap->ops->post_set_mode(ap); |
| |
| out: |
| if (rc) |
| *r_failed_dev = dev; |
| return rc; |
| } |
| |
| /** |
| * ata_tf_to_host - issue ATA taskfile to host controller |
| * @ap: port to which command is being issued |
| * @tf: ATA taskfile register set |
| * |
| * Issues ATA taskfile register set to ATA host controller, |
| * with proper synchronization with interrupt handler and |
| * other threads. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| |
| static inline void ata_tf_to_host(struct ata_port *ap, |
| const struct ata_taskfile *tf) |
| { |
| ap->ops->tf_load(ap, tf); |
| ap->ops->exec_command(ap, tf); |
| } |
| |
| /** |
| * ata_busy_sleep - sleep until BSY clears, or timeout |
| * @ap: port containing status register to be polled |
| * @tmout_pat: impatience timeout |
| * @tmout: overall timeout |
| * |
| * Sleep until ATA Status register bit BSY clears, |
| * or a timeout occurs. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep). |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int ata_busy_sleep(struct ata_port *ap, |
| unsigned long tmout_pat, unsigned long tmout) |
| { |
| unsigned long timer_start, timeout; |
| u8 status; |
| |
| status = ata_busy_wait(ap, ATA_BUSY, 300); |
| timer_start = jiffies; |
| timeout = timer_start + tmout_pat; |
| while (status != 0xff && (status & ATA_BUSY) && |
| time_before(jiffies, timeout)) { |
| msleep(50); |
| status = ata_busy_wait(ap, ATA_BUSY, 3); |
| } |
| |
| if (status != 0xff && (status & ATA_BUSY)) |
| ata_port_printk(ap, KERN_WARNING, |
| "port is slow to respond, please be patient " |
| "(Status 0x%x)\n", status); |
| |
| timeout = timer_start + tmout; |
| while (status != 0xff && (status & ATA_BUSY) && |
| time_before(jiffies, timeout)) { |
| msleep(50); |
| status = ata_chk_status(ap); |
| } |
| |
| if (status == 0xff) |
| return -ENODEV; |
| |
| if (status & ATA_BUSY) { |
| ata_port_printk(ap, KERN_ERR, "port failed to respond " |
| "(%lu secs, Status 0x%x)\n", |
| tmout / HZ, status); |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| unsigned int dev0 = devmask & (1 << 0); |
| unsigned int dev1 = devmask & (1 << 1); |
| unsigned long timeout; |
| |
| /* if device 0 was found in ata_devchk, wait for its |
| * BSY bit to clear |
| */ |
| if (dev0) |
| ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); |
| |
| /* if device 1 was found in ata_devchk, wait for |
| * register access, then wait for BSY to clear |
| */ |
| timeout = jiffies + ATA_TMOUT_BOOT; |
| while (dev1) { |
| u8 nsect, lbal; |
| |
| ap->ops->dev_select(ap, 1); |
| if (ap->flags & ATA_FLAG_MMIO) { |
| nsect = readb((void __iomem *) ioaddr->nsect_addr); |
| lbal = readb((void __iomem *) ioaddr->lbal_addr); |
| } else { |
| nsect = inb(ioaddr->nsect_addr); |
| lbal = inb(ioaddr->lbal_addr); |
| } |
| if ((nsect == 1) && (lbal == 1)) |
| break; |
| if (time_after(jiffies, timeout)) { |
| dev1 = 0; |
| break; |
| } |
| msleep(50); /* give drive a breather */ |
| } |
| if (dev1) |
| ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); |
| |
| /* is all this really necessary? */ |
| ap->ops->dev_select(ap, 0); |
| if (dev1) |
| ap->ops->dev_select(ap, 1); |
| if (dev0) |
| ap->ops->dev_select(ap, 0); |
| } |
| |
| static unsigned int ata_bus_softreset(struct ata_port *ap, |
| unsigned int devmask) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| |
| DPRINTK("ata%u: bus reset via SRST\n", ap->id); |
| |
| /* software reset. causes dev0 to be selected */ |
| if (ap->flags & ATA_FLAG_MMIO) { |
| writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr); |
| udelay(20); /* FIXME: flush */ |
| writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr); |
| udelay(20); /* FIXME: flush */ |
| writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr); |
| } else { |
| outb(ap->ctl, ioaddr->ctl_addr); |
| udelay(10); |
| outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr); |
| udelay(10); |
| outb(ap->ctl, ioaddr->ctl_addr); |
| } |
| |
| /* spec mandates ">= 2ms" before checking status. |
| * We wait 150ms, because that was the magic delay used for |
| * ATAPI devices in Hale Landis's ATADRVR, for the period of time |
| * between when the ATA command register is written, and then |
| * status is checked. Because waiting for "a while" before |
| * checking status is fine, post SRST, we perform this magic |
| * delay here as well. |
| * |
| * Old drivers/ide uses the 2mS rule and then waits for ready |
| */ |
| msleep(150); |
| |
| /* Before we perform post reset processing we want to see if |
| * the bus shows 0xFF because the odd clown forgets the D7 |
| * pulldown resistor. |
| */ |
| if (ata_check_status(ap) == 0xFF) |
| return 0; |
| |
| ata_bus_post_reset(ap, devmask); |
| |
| return 0; |
| } |
| |
| /** |
| * ata_bus_reset - reset host port and associated ATA channel |
| * @ap: port to reset |
| * |
| * This is typically the first time we actually start issuing |
| * commands to the ATA channel. We wait for BSY to clear, then |
| * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its |
| * result. Determine what devices, if any, are on the channel |
| * by looking at the device 0/1 error register. Look at the signature |
| * stored in each device's taskfile registers, to determine if |
| * the device is ATA or ATAPI. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * Obtains host lock. |
| * |
| * SIDE EFFECTS: |
| * Sets ATA_FLAG_DISABLED if bus reset fails. |
| */ |
| |
| void ata_bus_reset(struct ata_port *ap) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; |
| u8 err; |
| unsigned int dev0, dev1 = 0, devmask = 0; |
| |
| DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no); |
| |
| /* determine if device 0/1 are present */ |
| if (ap->flags & ATA_FLAG_SATA_RESET) |
| dev0 = 1; |
| else { |
| dev0 = ata_devchk(ap, 0); |
| if (slave_possible) |
| dev1 = ata_devchk(ap, 1); |
| } |
| |
| if (dev0) |
| devmask |= (1 << 0); |
| if (dev1) |
| devmask |= (1 << 1); |
| |
| /* select device 0 again */ |
| ap->ops->dev_select(ap, 0); |
| |
| /* issue bus reset */ |
| if (ap->flags & ATA_FLAG_SRST) |
| if (ata_bus_softreset(ap, devmask)) |
| goto err_out; |
| |
| /* |
| * determine by signature whether we have ATA or ATAPI devices |
| */ |
| ap->device[0].class = ata_dev_try_classify(ap, 0, &err); |
| if ((slave_possible) && (err != 0x81)) |
| ap->device[1].class = ata_dev_try_classify(ap, 1, &err); |
| |
| /* re-enable interrupts */ |
| if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */ |
| ata_irq_on(ap); |
| |
| /* is double-select really necessary? */ |
| if (ap->device[1].class != ATA_DEV_NONE) |
| ap->ops->dev_select(ap, 1); |
| if (ap->device[0].class != ATA_DEV_NONE) |
| ap->ops->dev_select(ap, 0); |
| |
| /* if no devices were detected, disable this port */ |
| if ((ap->device[0].class == ATA_DEV_NONE) && |
| (ap->device[1].class == ATA_DEV_NONE)) |
| goto err_out; |
| |
| if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { |
| /* set up device control for ATA_FLAG_SATA_RESET */ |
| if (ap->flags & ATA_FLAG_MMIO) |
| writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr); |
| else |
| outb(ap->ctl, ioaddr->ctl_addr); |
| } |
| |
| DPRINTK("EXIT\n"); |
| return; |
| |
| err_out: |
| ata_port_printk(ap, KERN_ERR, "disabling port\n"); |
| ap->ops->port_disable(ap); |
| |
| DPRINTK("EXIT\n"); |
| } |
| |
| /** |
| * sata_phy_debounce - debounce SATA phy status |
| * @ap: ATA port to debounce SATA phy status for |
| * @params: timing parameters { interval, duratinon, timeout } in msec |
| * |
| * Make sure SStatus of @ap reaches stable state, determined by |
| * holding the same value where DET is not 1 for @duration polled |
| * every @interval, before @timeout. Timeout constraints the |
| * beginning of the stable state. Because, after hot unplugging, |
| * DET gets stuck at 1 on some controllers, this functions waits |
| * until timeout then returns 0 if DET is stable at 1. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno on failure. |
| */ |
| int sata_phy_debounce(struct ata_port *ap, const unsigned long *params) |
| { |
| unsigned long interval_msec = params[0]; |
| unsigned long duration = params[1] * HZ / 1000; |
| unsigned long timeout = jiffies + params[2] * HZ / 1000; |
| unsigned long last_jiffies; |
| u32 last, cur; |
| int rc; |
| |
| if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) |
| return rc; |
| cur &= 0xf; |
| |
| last = cur; |
| last_jiffies = jiffies; |
| |
| while (1) { |
| msleep(interval_msec); |
| if ((rc = sata_scr_read(ap, SCR_STATUS, &cur))) |
| return rc; |
| cur &= 0xf; |
| |
| /* DET stable? */ |
| if (cur == last) { |
| if (cur == 1 && time_before(jiffies, timeout)) |
| continue; |
| if (time_after(jiffies, last_jiffies + duration)) |
| return 0; |
| continue; |
| } |
| |
| /* unstable, start over */ |
| last = cur; |
| last_jiffies = jiffies; |
| |
| /* check timeout */ |
| if (time_after(jiffies, timeout)) |
| return -EBUSY; |
| } |
| } |
| |
| /** |
| * sata_phy_resume - resume SATA phy |
| * @ap: ATA port to resume SATA phy for |
| * @params: timing parameters { interval, duratinon, timeout } in msec |
| * |
| * Resume SATA phy of @ap and debounce it. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno on failure. |
| */ |
| int sata_phy_resume(struct ata_port *ap, const unsigned long *params) |
| { |
| u32 scontrol; |
| int rc; |
| |
| if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) |
| return rc; |
| |
| scontrol = (scontrol & 0x0f0) | 0x300; |
| |
| if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) |
| return rc; |
| |
| /* Some PHYs react badly if SStatus is pounded immediately |
| * after resuming. Delay 200ms before debouncing. |
| */ |
| msleep(200); |
| |
| return sata_phy_debounce(ap, params); |
| } |
| |
| static void ata_wait_spinup(struct ata_port *ap) |
| { |
| struct ata_eh_context *ehc = &ap->eh_context; |
| unsigned long end, secs; |
| int rc; |
| |
| /* first, debounce phy if SATA */ |
| if (ap->cbl == ATA_CBL_SATA) { |
| rc = sata_phy_debounce(ap, sata_deb_timing_hotplug); |
| |
| /* if debounced successfully and offline, no need to wait */ |
| if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap)) |
| return; |
| } |
| |
| /* okay, let's give the drive time to spin up */ |
| end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000; |
| secs = ((end - jiffies) + HZ - 1) / HZ; |
| |
| if (time_after(jiffies, end)) |
| return; |
| |
| if (secs > 5) |
| ata_port_printk(ap, KERN_INFO, "waiting for device to spin up " |
| "(%lu secs)\n", secs); |
| |
| schedule_timeout_uninterruptible(end - jiffies); |
| } |
| |
| /** |
| * ata_std_prereset - prepare for reset |
| * @ap: ATA port to be reset |
| * |
| * @ap is about to be reset. Initialize it. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int ata_std_prereset(struct ata_port *ap) |
| { |
| struct ata_eh_context *ehc = &ap->eh_context; |
| const unsigned long *timing = sata_ehc_deb_timing(ehc); |
| int rc; |
| |
| /* handle link resume & hotplug spinup */ |
| if ((ehc->i.flags & ATA_EHI_RESUME_LINK) && |
| (ap->flags & ATA_FLAG_HRST_TO_RESUME)) |
| ehc->i.action |= ATA_EH_HARDRESET; |
| |
| if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) && |
| (ap->flags & ATA_FLAG_SKIP_D2H_BSY)) |
| ata_wait_spinup(ap); |
| |
| /* if we're about to do hardreset, nothing more to do */ |
| if (ehc->i.action & ATA_EH_HARDRESET) |
| return 0; |
| |
| /* if SATA, resume phy */ |
| if (ap->cbl == ATA_CBL_SATA) { |
| rc = sata_phy_resume(ap, timing); |
| if (rc && rc != -EOPNOTSUPP) { |
| /* phy resume failed */ |
| ata_port_printk(ap, KERN_WARNING, "failed to resume " |
| "link for reset (errno=%d)\n", rc); |
| return rc; |
| } |
| } |
| |
| /* Wait for !BSY if the controller can wait for the first D2H |
| * Reg FIS and we don't know that no device is attached. |
| */ |
| if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) |
| ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); |
| |
| return 0; |
| } |
| |
| /** |
| * ata_std_softreset - reset host port via ATA SRST |
| * @ap: port to reset |
| * @classes: resulting classes of attached devices |
| * |
| * Reset host port using ATA SRST. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int ata_std_softreset(struct ata_port *ap, unsigned int *classes) |
| { |
| unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; |
| unsigned int devmask = 0, err_mask; |
| u8 err; |
| |
| DPRINTK("ENTER\n"); |
| |
| if (ata_port_offline(ap)) { |
| classes[0] = ATA_DEV_NONE; |
| goto out; |
| } |
| |
| /* determine if device 0/1 are present */ |
| if (ata_devchk(ap, 0)) |
| devmask |= (1 << 0); |
| if (slave_possible && ata_devchk(ap, 1)) |
| devmask |= (1 << 1); |
| |
| /* select device 0 again */ |
| ap->ops->dev_select(ap, 0); |
| |
| /* issue bus reset */ |
| DPRINTK("about to softreset, devmask=%x\n", devmask); |
| err_mask = ata_bus_softreset(ap, devmask); |
| if (err_mask) { |
| ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n", |
| err_mask); |
| return -EIO; |
| } |
| |
| /* determine by signature whether we have ATA or ATAPI devices */ |
| classes[0] = ata_dev_try_classify(ap, 0, &err); |
| if (slave_possible && err != 0x81) |
| classes[1] = ata_dev_try_classify(ap, 1, &err); |
| |
| out: |
| DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); |
| return 0; |
| } |
| |
| /** |
| * sata_port_hardreset - reset port via SATA phy reset |
| * @ap: port to reset |
| * @timing: timing parameters { interval, duratinon, timeout } in msec |
| * |
| * SATA phy-reset host port using DET bits of SControl register. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing) |
| { |
| u32 scontrol; |
| int rc; |
| |
| DPRINTK("ENTER\n"); |
| |
| if (sata_set_spd_needed(ap)) { |
| /* SATA spec says nothing about how to reconfigure |
| * spd. To be on the safe side, turn off phy during |
| * reconfiguration. This works for at least ICH7 AHCI |
| * and Sil3124. |
| */ |
| if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) |
| goto out; |
| |
| scontrol = (scontrol & 0x0f0) | 0x304; |
| |
| if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) |
| goto out; |
| |
| sata_set_spd(ap); |
| } |
| |
| /* issue phy wake/reset */ |
| if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) |
| goto out; |
| |
| scontrol = (scontrol & 0x0f0) | 0x301; |
| |
| if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol))) |
| goto out; |
| |
| /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 |
| * 10.4.2 says at least 1 ms. |
| */ |
| msleep(1); |
| |
| /* bring phy back */ |
| rc = sata_phy_resume(ap, timing); |
| out: |
| DPRINTK("EXIT, rc=%d\n", rc); |
| return rc; |
| } |
| |
| /** |
| * sata_std_hardreset - reset host port via SATA phy reset |
| * @ap: port to reset |
| * @class: resulting class of attached device |
| * |
| * SATA phy-reset host port using DET bits of SControl register, |
| * wait for !BSY and classify the attached device. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int sata_std_hardreset(struct ata_port *ap, unsigned int *class) |
| { |
| const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context); |
| int rc; |
| |
| DPRINTK("ENTER\n"); |
| |
| /* do hardreset */ |
| rc = sata_port_hardreset(ap, timing); |
| if (rc) { |
| ata_port_printk(ap, KERN_ERR, |
| "COMRESET failed (errno=%d)\n", rc); |
| return rc; |
| } |
| |
| /* TODO: phy layer with polling, timeouts, etc. */ |
| if (ata_port_offline(ap)) { |
| *class = ATA_DEV_NONE; |
| DPRINTK("EXIT, link offline\n"); |
| return 0; |
| } |
| |
| if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { |
| ata_port_printk(ap, KERN_ERR, |
| "COMRESET failed (device not ready)\n"); |
| return -EIO; |
| } |
| |
| ap->ops->dev_select(ap, 0); /* probably unnecessary */ |
| |
| *class = ata_dev_try_classify(ap, 0, NULL); |
| |
| DPRINTK("EXIT, class=%u\n", *class); |
| return 0; |
| } |
| |
| /** |
| * ata_std_postreset - standard postreset callback |
| * @ap: the target ata_port |
| * @classes: classes of attached devices |
| * |
| * This function is invoked after a successful reset. Note that |
| * the device might have been reset more than once using |
| * different reset methods before postreset is invoked. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| */ |
| void ata_std_postreset(struct ata_port *ap, unsigned int *classes) |
| { |
| u32 serror; |
| |
| DPRINTK("ENTER\n"); |
| |
| /* print link status */ |
| sata_print_link_status(ap); |
| |
| /* clear SError */ |
| if (sata_scr_read(ap, SCR_ERROR, &serror) == 0) |
| sata_scr_write(ap, SCR_ERROR, serror); |
| |
| /* re-enable interrupts */ |
| if (!ap->ops->error_handler) { |
| /* FIXME: hack. create a hook instead */ |
| if (ap->ioaddr.ctl_addr) |
| ata_irq_on(ap); |
| } |
| |
| /* is double-select really necessary? */ |
| if (classes[0] != ATA_DEV_NONE) |
| ap->ops->dev_select(ap, 1); |
| if (classes[1] != ATA_DEV_NONE) |
| ap->ops->dev_select(ap, 0); |
| |
| /* bail out if no device is present */ |
| if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { |
| DPRINTK("EXIT, no device\n"); |
| return; |
| } |
| |
| /* set up device control */ |
| if (ap->ioaddr.ctl_addr) { |
| if (ap->flags & ATA_FLAG_MMIO) |
| writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr); |
| else |
| outb(ap->ctl, ap->ioaddr.ctl_addr); |
| } |
| |
| DPRINTK("EXIT\n"); |
| } |
| |
| /** |
| * ata_dev_same_device - Determine whether new ID matches configured device |
| * @dev: device to compare against |
| * @new_class: class of the new device |
| * @new_id: IDENTIFY page of the new device |
| * |
| * Compare @new_class and @new_id against @dev and determine |
| * whether @dev is the device indicated by @new_class and |
| * @new_id. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * 1 if @dev matches @new_class and @new_id, 0 otherwise. |
| */ |
| static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, |
| const u16 *new_id) |
| { |
| const u16 *old_id = dev->id; |
| unsigned char model[2][41], serial[2][21]; |
| u64 new_n_sectors; |
| |
| if (dev->class != new_class) { |
| ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", |
| dev->class, new_class); |
| return 0; |
| } |
| |
| ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0])); |
| ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1])); |
| ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0])); |
| ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1])); |
| new_n_sectors = ata_id_n_sectors(new_id); |
| |
| if (strcmp(model[0], model[1])) { |
| ata_dev_printk(dev, KERN_INFO, "model number mismatch " |
| "'%s' != '%s'\n", model[0], model[1]); |
| return 0; |
| } |
| |
| if (strcmp(serial[0], serial[1])) { |
| ata_dev_printk(dev, KERN_INFO, "serial number mismatch " |
| "'%s' != '%s'\n", serial[0], serial[1]); |
| return 0; |
| } |
| |
| if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) { |
| ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " |
| "%llu != %llu\n", |
| (unsigned long long)dev->n_sectors, |
| (unsigned long long)new_n_sectors); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /** |
| * ata_dev_revalidate - Revalidate ATA device |
| * @dev: device to revalidate |
| * @readid_flags: read ID flags |
| * |
| * Re-read IDENTIFY page and make sure @dev is still attached to |
| * the port. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, negative errno otherwise |
| */ |
| int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags) |
| { |
| unsigned int class = dev->class; |
| u16 *id = (void *)dev->ap->sector_buf; |
| int rc; |
| |
| if (!ata_dev_enabled(dev)) { |
| rc = -ENODEV; |
| goto fail; |
| } |
| |
| /* read ID data */ |
| rc = ata_dev_read_id(dev, &class, readid_flags, id); |
| if (rc) |
| goto fail; |
| |
| /* is the device still there? */ |
| if (!ata_dev_same_device(dev, class, id)) { |
| rc = -ENODEV; |
| goto fail; |
| } |
| |
| memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); |
| |
| /* configure device according to the new ID */ |
| rc = ata_dev_configure(dev); |
| if (rc == 0) |
| return 0; |
| |
| fail: |
| ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); |
| return rc; |
| } |
| |
| struct ata_blacklist_entry { |
| const char *model_num; |
| const char *model_rev; |
| unsigned long horkage; |
| }; |
| |
| static const struct ata_blacklist_entry ata_device_blacklist [] = { |
| /* Devices with DMA related problems under Linux */ |
| { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, |
| { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, |
| { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, |
| { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, |
| { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, |
| { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, |
| { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, |
| { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, |
| { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, |
| { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, |
| { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, |
| { "CRD-84", NULL, ATA_HORKAGE_NODMA }, |
| { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, |
| { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, |
| { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, |
| { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, |
| { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, |
| { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, |
| { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, |
| { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, |
| { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, |
| { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, |
| { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, |
| { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, |
| { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, |
| { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, |
| { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, |
| { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, |
| { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, |
| { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA }, |
| |
| /* Devices we expect to fail diagnostics */ |
| |
| /* Devices where NCQ should be avoided */ |
| /* NCQ is slow */ |
| { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, |
| |
| /* Devices with NCQ limits */ |
| |
| /* End Marker */ |
| { } |
| }; |
| |
| static int ata_strim(char *s, size_t len) |
| { |
| len = strnlen(s, len); |
| |
| /* ATAPI specifies that empty space is blank-filled; remove blanks */ |
| while ((len > 0) && (s[len - 1] == ' ')) { |
| len--; |
| s[len] = 0; |
| } |
| return len; |
| } |
| |
| unsigned long ata_device_blacklisted(const struct ata_device *dev) |
| { |
| unsigned char model_num[40]; |
| unsigned char model_rev[16]; |
| unsigned int nlen, rlen; |
| const struct ata_blacklist_entry *ad = ata_device_blacklist; |
| |
| ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS, |
| sizeof(model_num)); |
| ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS, |
| sizeof(model_rev)); |
| nlen = ata_strim(model_num, sizeof(model_num)); |
| rlen = ata_strim(model_rev, sizeof(model_rev)); |
| |
| while (ad->model_num) { |
| if (!strncmp(ad->model_num, model_num, nlen)) { |
| if (ad->model_rev == NULL) |
| return ad->horkage; |
| if (!strncmp(ad->model_rev, model_rev, rlen)) |
| return ad->horkage; |
| } |
| ad++; |
| } |
| return 0; |
| } |
| |
| static int ata_dma_blacklisted(const struct ata_device *dev) |
| { |
| /* We don't support polling DMA. |
| * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) |
| * if the LLDD handles only interrupts in the HSM_ST_LAST state. |
| */ |
| if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) && |
| (dev->flags & ATA_DFLAG_CDB_INTR)) |
| return 1; |
| return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0; |
| } |
| |
| /** |
| * ata_dev_xfermask - Compute supported xfermask of the given device |
| * @dev: Device to compute xfermask for |
| * |
| * Compute supported xfermask of @dev and store it in |
| * dev->*_mask. This function is responsible for applying all |
| * known limits including host controller limits, device |
| * blacklist, etc... |
| * |
| * LOCKING: |
| * None. |
| */ |
| static void ata_dev_xfermask(struct ata_device *dev) |
| { |
| struct ata_port *ap = dev->ap; |
| struct ata_host *host = ap->host; |
| unsigned long xfer_mask; |
| |
| /* controller modes available */ |
| xfer_mask = ata_pack_xfermask(ap->pio_mask, |
| ap->mwdma_mask, ap->udma_mask); |
| |
| /* Apply cable rule here. Don't apply it early because when |
| * we handle hot plug the cable type can itself change. |
| */ |
| if (ap->cbl == ATA_CBL_PATA40) |
| xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); |
| /* Apply drive side cable rule. Unknown or 80 pin cables reported |
| * host side are checked drive side as well. Cases where we know a |
| * 40wire cable is used safely for 80 are not checked here. |
| */ |
| if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80)) |
| xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); |
| |
| |
| xfer_mask &= ata_pack_xfermask(dev->pio_mask, |
| dev->mwdma_mask, dev->udma_mask); |
| xfer_mask &= ata_id_xfermask(dev->id); |
| |
| /* |
| * CFA Advanced TrueIDE timings are not allowed on a shared |
| * cable |
| */ |
| if (ata_dev_pair(dev)) { |
| /* No PIO5 or PIO6 */ |
| xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); |
| /* No MWDMA3 or MWDMA 4 */ |
| xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); |
| } |
| |
| if (ata_dma_blacklisted(dev)) { |
| xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); |
| ata_dev_printk(dev, KERN_WARNING, |
| "device is on DMA blacklist, disabling DMA\n"); |
| } |
| |
| if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) { |
| xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); |
| ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " |
| "other device, disabling DMA\n"); |
| } |
| |
| if (ap->ops->mode_filter) |
| xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask); |
| |
| ata_unpack_xfermask(xfer_mask, &dev->pio_mask, |
| &dev->mwdma_mask, &dev->udma_mask); |
| } |
| |
| /** |
| * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command |
| * @dev: Device to which command will be sent |
| * |
| * Issue SET FEATURES - XFER MODE command to device @dev |
| * on port @ap. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| * RETURNS: |
| * 0 on success, AC_ERR_* mask otherwise. |
| */ |
| |
| static unsigned int ata_dev_set_xfermode(struct ata_device *dev) |
| { |
| struct ata_taskfile tf; |
| unsigned int err_mask; |
| |
| /* set up set-features taskfile */ |
| DPRINTK("set features - xfer mode\n"); |
| |
| ata_tf_init(dev, &tf); |
| tf.command = ATA_CMD_SET_FEATURES; |
| tf.feature = SETFEATURES_XFER; |
| tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; |
| tf.protocol = ATA_PROT_NODATA; |
| tf.nsect = dev->xfer_mode; |
| |
| err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); |
| |
| DPRINTK("EXIT, err_mask=%x\n", err_mask); |
| return err_mask; |
| } |
| |
| /** |
| * ata_dev_init_params - Issue INIT DEV PARAMS command |
| * @dev: Device to which command will be sent |
| * @heads: Number of heads (taskfile parameter) |
| * @sectors: Number of sectors (taskfile parameter) |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, AC_ERR_* mask otherwise. |
| */ |
| static unsigned int ata_dev_init_params(struct ata_device *dev, |
| u16 heads, u16 sectors) |
| { |
| struct ata_taskfile tf; |
| unsigned int err_mask; |
| |
| /* Number of sectors per track 1-255. Number of heads 1-16 */ |
| if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) |
| return AC_ERR_INVALID; |
| |
| /* set up init dev params taskfile */ |
| DPRINTK("init dev params \n"); |
| |
| ata_tf_init(dev, &tf); |
| tf.command = ATA_CMD_INIT_DEV_PARAMS; |
| tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; |
| tf.protocol = ATA_PROT_NODATA; |
| tf.nsect = sectors; |
| tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ |
| |
| err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); |
| |
| DPRINTK("EXIT, err_mask=%x\n", err_mask); |
| return err_mask; |
| } |
| |
| /** |
| * ata_sg_clean - Unmap DMA memory associated with command |
| * @qc: Command containing DMA memory to be released |
| * |
| * Unmap all mapped DMA memory associated with this command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| |
| static void ata_sg_clean(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct scatterlist *sg = qc->__sg; |
| int dir = qc->dma_dir; |
| void *pad_buf = NULL; |
| |
| WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP)); |
| WARN_ON(sg == NULL); |
| |
| if (qc->flags & ATA_QCFLAG_SINGLE) |
| WARN_ON(qc->n_elem > 1); |
| |
| VPRINTK("unmapping %u sg elements\n", qc->n_elem); |
| |
| /* if we padded the buffer out to 32-bit bound, and data |
| * xfer direction is from-device, we must copy from the |
| * pad buffer back into the supplied buffer |
| */ |
| if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE)) |
| pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); |
| |
| if (qc->flags & ATA_QCFLAG_SG) { |
| if (qc->n_elem) |
| dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); |
| /* restore last sg */ |
| sg[qc->orig_n_elem - 1].length += qc->pad_len; |
| if (pad_buf) { |
| struct scatterlist *psg = &qc->pad_sgent; |
| void *addr = kmap_atomic(psg->page, KM_IRQ0); |
| memcpy(addr + psg->offset, pad_buf, qc->pad_len); |
| kunmap_atomic(addr, KM_IRQ0); |
| } |
| } else { |
| if (qc->n_elem) |
| dma_unmap_single(ap->dev, |
| sg_dma_address(&sg[0]), sg_dma_len(&sg[0]), |
| dir); |
| /* restore sg */ |
| sg->length += qc->pad_len; |
| if (pad_buf) |
| memcpy(qc->buf_virt + sg->length - qc->pad_len, |
| pad_buf, qc->pad_len); |
| } |
| |
| qc->flags &= ~ATA_QCFLAG_DMAMAP; |
| qc->__sg = NULL; |
| } |
| |
| /** |
| * ata_fill_sg - Fill PCI IDE PRD table |
| * @qc: Metadata associated with taskfile to be transferred |
| * |
| * Fill PCI IDE PRD (scatter-gather) table with segments |
| * associated with the current disk command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| */ |
| static void ata_fill_sg(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct scatterlist *sg; |
| unsigned int idx; |
| |
| WARN_ON(qc->__sg == NULL); |
| WARN_ON(qc->n_elem == 0 && qc->pad_len == 0); |
| |
| idx = 0; |
| ata_for_each_sg(sg, qc) { |
| u32 addr, offset; |
| u32 sg_len, len; |
| |
| /* determine if physical DMA addr spans 64K boundary. |
| * Note h/w doesn't support 64-bit, so we unconditionally |
| * truncate dma_addr_t to u32. |
| */ |
| addr = (u32) sg_dma_address(sg); |
| sg_len = sg_dma_len(sg); |
| |
| while (sg_len) { |
| offset = addr & 0xffff; |
| len = sg_len; |
| if ((offset + sg_len) > 0x10000) |
| len = 0x10000 - offset; |
| |
| ap->prd[idx].addr = cpu_to_le32(addr); |
| ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff); |
| VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len); |
| |
| idx++; |
| sg_len -= len; |
| addr += len; |
| } |
| } |
| |
| if (idx) |
| ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); |
| } |
| /** |
| * ata_check_atapi_dma - Check whether ATAPI DMA can be supported |
| * @qc: Metadata associated with taskfile to check |
| * |
| * Allow low-level driver to filter ATA PACKET commands, returning |
| * a status indicating whether or not it is OK to use DMA for the |
| * supplied PACKET command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: 0 when ATAPI DMA can be used |
| * nonzero otherwise |
| */ |
| int ata_check_atapi_dma(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| int rc = 0; /* Assume ATAPI DMA is OK by default */ |
| |
| if (ap->ops->check_atapi_dma) |
| rc = ap->ops->check_atapi_dma(qc); |
| |
| return rc; |
| } |
| /** |
| * ata_qc_prep - Prepare taskfile for submission |
| * @qc: Metadata associated with taskfile to be prepared |
| * |
| * Prepare ATA taskfile for submission. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_qc_prep(struct ata_queued_cmd *qc) |
| { |
| if (!(qc->flags & ATA_QCFLAG_DMAMAP)) |
| return; |
| |
| ata_fill_sg(qc); |
| } |
| |
| void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } |
| |
| /** |
| * ata_sg_init_one - Associate command with memory buffer |
| * @qc: Command to be associated |
| * @buf: Memory buffer |
| * @buflen: Length of memory buffer, in bytes. |
| * |
| * Initialize the data-related elements of queued_cmd @qc |
| * to point to a single memory buffer, @buf of byte length @buflen. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| |
| void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen) |
| { |
| qc->flags |= ATA_QCFLAG_SINGLE; |
| |
| qc->__sg = &qc->sgent; |
| qc->n_elem = 1; |
| qc->orig_n_elem = 1; |
| qc->buf_virt = buf; |
| qc->nbytes = buflen; |
| |
| sg_init_one(&qc->sgent, buf, buflen); |
| } |
| |
| /** |
| * ata_sg_init - Associate command with scatter-gather table. |
| * @qc: Command to be associated |
| * @sg: Scatter-gather table. |
| * @n_elem: Number of elements in s/g table. |
| * |
| * Initialize the data-related elements of queued_cmd @qc |
| * to point to a scatter-gather table @sg, containing @n_elem |
| * elements. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| |
| void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, |
| unsigned int n_elem) |
| { |
| qc->flags |= ATA_QCFLAG_SG; |
| qc->__sg = sg; |
| qc->n_elem = n_elem; |
| qc->orig_n_elem = n_elem; |
| } |
| |
| /** |
| * ata_sg_setup_one - DMA-map the memory buffer associated with a command. |
| * @qc: Command with memory buffer to be mapped. |
| * |
| * DMA-map the memory buffer associated with queued_cmd @qc. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * Zero on success, negative on error. |
| */ |
| |
| static int ata_sg_setup_one(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| int dir = qc->dma_dir; |
| struct scatterlist *sg = qc->__sg; |
| dma_addr_t dma_address; |
| int trim_sg = 0; |
| |
| /* we must lengthen transfers to end on a 32-bit boundary */ |
| qc->pad_len = sg->length & 3; |
| if (qc->pad_len) { |
| void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); |
| struct scatterlist *psg = &qc->pad_sgent; |
| |
| WARN_ON(qc->dev->class != ATA_DEV_ATAPI); |
| |
| memset(pad_buf, 0, ATA_DMA_PAD_SZ); |
| |
| if (qc->tf.flags & ATA_TFLAG_WRITE) |
| memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len, |
| qc->pad_len); |
| |
| sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); |
| sg_dma_len(psg) = ATA_DMA_PAD_SZ; |
| /* trim sg */ |
| sg->length -= qc->pad_len; |
| if (sg->length == 0) |
| trim_sg = 1; |
| |
| DPRINTK("padding done, sg->length=%u pad_len=%u\n", |
| sg->length, qc->pad_len); |
| } |
| |
| if (trim_sg) { |
| qc->n_elem--; |
| goto skip_map; |
| } |
| |
| dma_address = dma_map_single(ap->dev, qc->buf_virt, |
| sg->length, dir); |
| if (dma_mapping_error(dma_address)) { |
| /* restore sg */ |
| sg->length += qc->pad_len; |
| return -1; |
| } |
| |
| sg_dma_address(sg) = dma_address; |
| sg_dma_len(sg) = sg->length; |
| |
| skip_map: |
| DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg), |
| qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); |
| |
| return 0; |
| } |
| |
| /** |
| * ata_sg_setup - DMA-map the scatter-gather table associated with a command. |
| * @qc: Command with scatter-gather table to be mapped. |
| * |
| * DMA-map the scatter-gather table associated with queued_cmd @qc. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * Zero on success, negative on error. |
| * |
| */ |
| |
| static int ata_sg_setup(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct scatterlist *sg = qc->__sg; |
| struct scatterlist *lsg = &sg[qc->n_elem - 1]; |
| int n_elem, pre_n_elem, dir, trim_sg = 0; |
| |
| VPRINTK("ENTER, ata%u\n", ap->id); |
| WARN_ON(!(qc->flags & ATA_QCFLAG_SG)); |
| |
| /* we must lengthen transfers to end on a 32-bit boundary */ |
| qc->pad_len = lsg->length & 3; |
| if (qc->pad_len) { |
| void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); |
| struct scatterlist *psg = &qc->pad_sgent; |
| unsigned int offset; |
| |
| WARN_ON(qc->dev->class != ATA_DEV_ATAPI); |
| |
| memset(pad_buf, 0, ATA_DMA_PAD_SZ); |
| |
| /* |
| * psg->page/offset are used to copy to-be-written |
| * data in this function or read data in ata_sg_clean. |
| */ |
| offset = lsg->offset + lsg->length - qc->pad_len; |
| psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT); |
| psg->offset = offset_in_page(offset); |
| |
| if (qc->tf.flags & ATA_TFLAG_WRITE) { |
| void *addr = kmap_atomic(psg->page, KM_IRQ0); |
| memcpy(pad_buf, addr + psg->offset, qc->pad_len); |
| kunmap_atomic(addr, KM_IRQ0); |
| } |
| |
| sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); |
| sg_dma_len(psg) = ATA_DMA_PAD_SZ; |
| /* trim last sg */ |
| lsg->length -= qc->pad_len; |
| if (lsg->length == 0) |
| trim_sg = 1; |
| |
| DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n", |
| qc->n_elem - 1, lsg->length, qc->pad_len); |
| } |
| |
| pre_n_elem = qc->n_elem; |
| if (trim_sg && pre_n_elem) |
| pre_n_elem--; |
| |
| if (!pre_n_elem) { |
| n_elem = 0; |
| goto skip_map; |
| } |
| |
| dir = qc->dma_dir; |
| n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir); |
| if (n_elem < 1) { |
| /* restore last sg */ |
| lsg->length += qc->pad_len; |
| return -1; |
| } |
| |
| DPRINTK("%d sg elements mapped\n", n_elem); |
| |
| skip_map: |
| qc->n_elem = n_elem; |
| |
| return 0; |
| } |
| |
| /** |
| * swap_buf_le16 - swap halves of 16-bit words in place |
| * @buf: Buffer to swap |
| * @buf_words: Number of 16-bit words in buffer. |
| * |
| * Swap halves of 16-bit words if needed to convert from |
| * little-endian byte order to native cpu byte order, or |
| * vice-versa. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| void swap_buf_le16(u16 *buf, unsigned int buf_words) |
| { |
| #ifdef __BIG_ENDIAN |
| unsigned int i; |
| |
| for (i = 0; i < buf_words; i++) |
| buf[i] = le16_to_cpu(buf[i]); |
| #endif /* __BIG_ENDIAN */ |
| } |
| |
| /** |
| * ata_mmio_data_xfer - Transfer data by MMIO |
| * @adev: device for this I/O |
| * @buf: data buffer |
| * @buflen: buffer length |
| * @write_data: read/write |
| * |
| * Transfer data from/to the device data register by MMIO. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf, |
| unsigned int buflen, int write_data) |
| { |
| struct ata_port *ap = adev->ap; |
| unsigned int i; |
| unsigned int words = buflen >> 1; |
| u16 *buf16 = (u16 *) buf; |
| void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr; |
| |
| /* Transfer multiple of 2 bytes */ |
| if (write_data) { |
| for (i = 0; i < words; i++) |
| writew(le16_to_cpu(buf16[i]), mmio); |
| } else { |
| for (i = 0; i < words; i++) |
| buf16[i] = cpu_to_le16(readw(mmio)); |
| } |
| |
| /* Transfer trailing 1 byte, if any. */ |
| if (unlikely(buflen & 0x01)) { |
| u16 align_buf[1] = { 0 }; |
| unsigned char *trailing_buf = buf + buflen - 1; |
| |
| if (write_data) { |
| memcpy(align_buf, trailing_buf, 1); |
| writew(le16_to_cpu(align_buf[0]), mmio); |
| } else { |
| align_buf[0] = cpu_to_le16(readw(mmio)); |
| memcpy(trailing_buf, align_buf, 1); |
| } |
| } |
| } |
| |
| /** |
| * ata_pio_data_xfer - Transfer data by PIO |
| * @adev: device to target |
| * @buf: data buffer |
| * @buflen: buffer length |
| * @write_data: read/write |
| * |
| * Transfer data from/to the device data register by PIO. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf, |
| unsigned int buflen, int write_data) |
| { |
| struct ata_port *ap = adev->ap; |
| unsigned int words = buflen >> 1; |
| |
| /* Transfer multiple of 2 bytes */ |
| if (write_data) |
| outsw(ap->ioaddr.data_addr, buf, words); |
| else |
| insw(ap->ioaddr.data_addr, buf, words); |
| |
| /* Transfer trailing 1 byte, if any. */ |
| if (unlikely(buflen & 0x01)) { |
| u16 align_buf[1] = { 0 }; |
| unsigned char *trailing_buf = buf + buflen - 1; |
| |
| if (write_data) { |
| memcpy(align_buf, trailing_buf, 1); |
| outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr); |
| } else { |
| align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr)); |
| memcpy(trailing_buf, align_buf, 1); |
| } |
| } |
| } |
| |
| /** |
| * ata_pio_data_xfer_noirq - Transfer data by PIO |
| * @adev: device to target |
| * @buf: data buffer |
| * @buflen: buffer length |
| * @write_data: read/write |
| * |
| * Transfer data from/to the device data register by PIO. Do the |
| * transfer with interrupts disabled. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf, |
| unsigned int buflen, int write_data) |
| { |
| unsigned long flags; |
| local_irq_save(flags); |
| ata_pio_data_xfer(adev, buf, buflen, write_data); |
| local_irq_restore(flags); |
| } |
| |
| |
| /** |
| * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data. |
| * @qc: Command on going |
| * |
| * Transfer ATA_SECT_SIZE of data from/to the ATA device. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| static void ata_pio_sector(struct ata_queued_cmd *qc) |
| { |
| int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); |
| struct scatterlist *sg = qc->__sg; |
| struct ata_port *ap = qc->ap; |
| struct page *page; |
| unsigned int offset; |
| unsigned char *buf; |
| |
| if (qc->cursect == (qc->nsect - 1)) |
| ap->hsm_task_state = HSM_ST_LAST; |
| |
| page = sg[qc->cursg].page; |
| offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE; |
| |
| /* get the current page and offset */ |
| page = nth_page(page, (offset >> PAGE_SHIFT)); |
| offset %= PAGE_SIZE; |
| |
| DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); |
| |
| if (PageHighMem(page)) { |
| unsigned long flags; |
| |
| /* FIXME: use a bounce buffer */ |
| local_irq_save(flags); |
| buf = kmap_atomic(page, KM_IRQ0); |
| |
| /* do the actual data transfer */ |
| ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write); |
| |
| kunmap_atomic(buf, KM_IRQ0); |
| local_irq_restore(flags); |
| } else { |
| buf = page_address(page); |
| ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write); |
| } |
| |
| qc->cursect++; |
| qc->cursg_ofs++; |
| |
| if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) { |
| qc->cursg++; |
| qc->cursg_ofs = 0; |
| } |
| } |
| |
| /** |
| * ata_pio_sectors - Transfer one or many 512-byte sectors. |
| * @qc: Command on going |
| * |
| * Transfer one or many ATA_SECT_SIZE of data from/to the |
| * ATA device for the DRQ request. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| static void ata_pio_sectors(struct ata_queued_cmd *qc) |
| { |
| if (is_multi_taskfile(&qc->tf)) { |
| /* READ/WRITE MULTIPLE */ |
| unsigned int nsect; |
| |
| WARN_ON(qc->dev->multi_count == 0); |
| |
| nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count); |
| while (nsect--) |
| ata_pio_sector(qc); |
| } else |
| ata_pio_sector(qc); |
| } |
| |
| /** |
| * atapi_send_cdb - Write CDB bytes to hardware |
| * @ap: Port to which ATAPI device is attached. |
| * @qc: Taskfile currently active |
| * |
| * When device has indicated its readiness to accept |
| * a CDB, this function is called. Send the CDB. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) |
| { |
| /* send SCSI cdb */ |
| DPRINTK("send cdb\n"); |
| WARN_ON(qc->dev->cdb_len < 12); |
| |
| ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); |
| ata_altstatus(ap); /* flush */ |
| |
| switch (qc->tf.protocol) { |
| case ATA_PROT_ATAPI: |
| ap->hsm_task_state = HSM_ST; |
| break; |
| case ATA_PROT_ATAPI_NODATA: |
| ap->hsm_task_state = HSM_ST_LAST; |
| break; |
| case ATA_PROT_ATAPI_DMA: |
| ap->hsm_task_state = HSM_ST_LAST; |
| /* initiate bmdma */ |
| ap->ops->bmdma_start(qc); |
| break; |
| } |
| } |
| |
| /** |
| * __atapi_pio_bytes - Transfer data from/to the ATAPI device. |
| * @qc: Command on going |
| * @bytes: number of bytes |
| * |
| * Transfer Transfer data from/to the ATAPI device. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| * |
| */ |
| |
| static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) |
| { |
| int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); |
| struct scatterlist *sg = qc->__sg; |
| struct ata_port *ap = qc->ap; |
| struct page *page; |
| unsigned char *buf; |
| unsigned int offset, count; |
| |
| if (qc->curbytes + bytes >= qc->nbytes) |
| ap->hsm_task_state = HSM_ST_LAST; |
| |
| next_sg: |
| if (unlikely(qc->cursg >= qc->n_elem)) { |
| /* |
| * The end of qc->sg is reached and the device expects |
| * more data to transfer. In order not to overrun qc->sg |
| * and fulfill length specified in the byte count register, |
| * - for read case, discard trailing data from the device |
| * - for write case, padding zero data to the device |
| */ |
| u16 pad_buf[1] = { 0 }; |
| unsigned int words = bytes >> 1; |
| unsigned int i; |
| |
| if (words) /* warning if bytes > 1 */ |
| ata_dev_printk(qc->dev, KERN_WARNING, |
| "%u bytes trailing data\n", bytes); |
| |
| for (i = 0; i < words; i++) |
| ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write); |
| |
| ap->hsm_task_state = HSM_ST_LAST; |
| return; |
| } |
| |
| sg = &qc->__sg[qc->cursg]; |
| |
| page = sg->page; |
| offset = sg->offset + qc->cursg_ofs; |
| |
| /* get the current page and offset */ |
| page = nth_page(page, (offset >> PAGE_SHIFT)); |
| offset %= PAGE_SIZE; |
| |
| /* don't overrun current sg */ |
| count = min(sg->length - qc->cursg_ofs, bytes); |
| |
| /* don't cross page boundaries */ |
| count = min(count, (unsigned int)PAGE_SIZE - offset); |
| |
| DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); |
| |
| if (PageHighMem(page)) { |
| unsigned long flags; |
| |
| /* FIXME: use bounce buffer */ |
| local_irq_save(flags); |
| buf = kmap_atomic(page, KM_IRQ0); |
| |
| /* do the actual data transfer */ |
| ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); |
| |
| kunmap_atomic(buf, KM_IRQ0); |
| local_irq_restore(flags); |
| } else { |
| buf = page_address(page); |
| ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); |
| } |
| |
| bytes -= count; |
| qc->curbytes += count; |
| qc->cursg_ofs += count; |
| |
| if (qc->cursg_ofs == sg->length) { |
| qc->cursg++; |
| qc->cursg_ofs = 0; |
| } |
| |
| if (bytes) |
| goto next_sg; |
| } |
| |
| /** |
| * atapi_pio_bytes - Transfer data from/to the ATAPI device. |
| * @qc: Command on going |
| * |
| * Transfer Transfer data from/to the ATAPI device. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| static void atapi_pio_bytes(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct ata_device *dev = qc->dev; |
| unsigned int ireason, bc_lo, bc_hi, bytes; |
| int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; |
| |
| /* Abuse qc->result_tf for temp storage of intermediate TF |
| * here to save some kernel stack usage. |
| * For normal completion, qc->result_tf is not relevant. For |
| * error, qc->result_tf is later overwritten by ata_qc_complete(). |
| * So, the correctness of qc->result_tf is not affected. |
| */ |
| ap->ops->tf_read(ap, &qc->result_tf); |
| ireason = qc->result_tf.nsect; |
| bc_lo = qc->result_tf.lbam; |
| bc_hi = qc->result_tf.lbah; |
| bytes = (bc_hi << 8) | bc_lo; |
| |
| /* shall be cleared to zero, indicating xfer of data */ |
| if (ireason & (1 << 0)) |
| goto err_out; |
| |
| /* make sure transfer direction matches expected */ |
| i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; |
| if (do_write != i_write) |
| goto err_out; |
| |
| VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes); |
| |
| __atapi_pio_bytes(qc, bytes); |
| |
| return; |
| |
| err_out: |
| ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n"); |
| qc->err_mask |= AC_ERR_HSM; |
| ap->hsm_task_state = HSM_ST_ERR; |
| } |
| |
| /** |
| * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. |
| * @ap: the target ata_port |
| * @qc: qc on going |
| * |
| * RETURNS: |
| * 1 if ok in workqueue, 0 otherwise. |
| */ |
| |
| static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc) |
| { |
| if (qc->tf.flags & ATA_TFLAG_POLLING) |
| return 1; |
| |
| if (ap->hsm_task_state == HSM_ST_FIRST) { |
| if (qc->tf.protocol == ATA_PROT_PIO && |
| (qc->tf.flags & ATA_TFLAG_WRITE)) |
| return 1; |
| |
| if (is_atapi_taskfile(&qc->tf) && |
| !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ata_hsm_qc_complete - finish a qc running on standard HSM |
| * @qc: Command to complete |
| * @in_wq: 1 if called from workqueue, 0 otherwise |
| * |
| * Finish @qc which is running on standard HSM. |
| * |
| * LOCKING: |
| * If @in_wq is zero, spin_lock_irqsave(host lock). |
| * Otherwise, none on entry and grabs host lock. |
| */ |
| static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) |
| { |
| struct ata_port *ap = qc->ap; |
| unsigned long flags; |
| |
| if (ap->ops->error_handler) { |
| if (in_wq) { |
| spin_lock_irqsave(ap->lock, flags); |
| |
| /* EH might have kicked in while host lock is |
| * released. |
| */ |
| qc = ata_qc_from_tag(ap, qc->tag); |
| if (qc) { |
| if (likely(!(qc->err_mask & AC_ERR_HSM))) { |
| ata_irq_on(ap); |
| ata_qc_complete(qc); |
| } else |
| ata_port_freeze(ap); |
| } |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| } else { |
| if (likely(!(qc->err_mask & AC_ERR_HSM))) |
| ata_qc_complete(qc); |
| else |
| ata_port_freeze(ap); |
| } |
| } else { |
| if (in_wq) { |
| spin_lock_irqsave(ap->lock, flags); |
| ata_irq_on(ap); |
| ata_qc_complete(qc); |
| spin_unlock_irqrestore(ap->lock, flags); |
| } else |
| ata_qc_complete(qc); |
| } |
| |
| ata_altstatus(ap); /* flush */ |
| } |
| |
| /** |
| * ata_hsm_move - move the HSM to the next state. |
| * @ap: the target ata_port |
| * @qc: qc on going |
| * @status: current device status |
| * @in_wq: 1 if called from workqueue, 0 otherwise |
| * |
| * RETURNS: |
| * 1 when poll next status needed, 0 otherwise. |
| */ |
| int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, |
| u8 status, int in_wq) |
| { |
| unsigned long flags = 0; |
| int poll_next; |
| |
| WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0); |
| |
| /* Make sure ata_qc_issue_prot() does not throw things |
| * like DMA polling into the workqueue. Notice that |
| * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). |
| */ |
| WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc)); |
| |
| fsm_start: |
| DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", |
| ap->id, qc->tf.protocol, ap->hsm_task_state, status); |
| |
| switch (ap->hsm_task_state) { |
| case HSM_ST_FIRST: |
| /* Send first data block or PACKET CDB */ |
| |
| /* If polling, we will stay in the work queue after |
| * sending the data. Otherwise, interrupt handler |
| * takes over after sending the data. |
| */ |
| poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); |
| |
| /* check device status */ |
| if (unlikely((status & ATA_DRQ) == 0)) { |
| /* handle BSY=0, DRQ=0 as error */ |
| if (likely(status & (ATA_ERR | ATA_DF))) |
| /* device stops HSM for abort/error */ |
| qc->err_mask |= AC_ERR_DEV; |
| else |
| /* HSM violation. Let EH handle this */ |
| qc->err_mask |= AC_ERR_HSM; |
| |
| ap->hsm_task_state = HSM_ST_ERR; |
| goto fsm_start; |
| } |
| |
| /* Device should not ask for data transfer (DRQ=1) |
| * when it finds something wrong. |
| * We ignore DRQ here and stop the HSM by |
| * changing hsm_task_state to HSM_ST_ERR and |
| * let the EH abort the command or reset the device. |
| */ |
| if (unlikely(status & (ATA_ERR | ATA_DF))) { |
| printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n", |
| ap->id, status); |
| qc->err_mask |= AC_ERR_HSM; |
| ap->hsm_task_state = HSM_ST_ERR; |
| goto fsm_start; |
| } |
| |
| /* Send the CDB (atapi) or the first data block (ata pio out). |
| * During the state transition, interrupt handler shouldn't |
| * be invoked before the data transfer is complete and |
| * hsm_task_state is changed. Hence, the following locking. |
| */ |
| if (in_wq) |
| spin_lock_irqsave(ap->lock, flags); |
| |
| if (qc->tf.protocol == ATA_PROT_PIO) { |
| /* PIO data out protocol. |
| * send first data block. |
| */ |
| |
| /* ata_pio_sectors() might change the state |
| * to HSM_ST_LAST. so, the state is changed here |
| * before ata_pio_sectors(). |
| */ |
| ap->hsm_task_state = HSM_ST; |
| ata_pio_sectors(qc); |
| ata_altstatus(ap); /* flush */ |
| } else |
| /* send CDB */ |
| atapi_send_cdb(ap, qc); |
| |
| if (in_wq) |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| /* if polling, ata_pio_task() handles the rest. |
| * otherwise, interrupt handler takes over from here. |
| */ |
| break; |
| |
| case HSM_ST: |
| /* complete command or read/write the data register */ |
| if (qc->tf.protocol == ATA_PROT_ATAPI) { |
| /* ATAPI PIO protocol */ |
| if ((status & ATA_DRQ) == 0) { |
| /* No more data to transfer or device error. |
| * Device error will be tagged in HSM_ST_LAST. |
| */ |
| ap->hsm_task_state = HSM_ST_LAST; |
| goto fsm_start; |
| } |
| |
| /* Device should not ask for data transfer (DRQ=1) |
| * when it finds something wrong. |
| * We ignore DRQ here and stop the HSM by |
| * changing hsm_task_state to HSM_ST_ERR and |
| * let the EH abort the command or reset the device. |
| */ |
| if (unlikely(status & (ATA_ERR | ATA_DF))) { |
| printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n", |
| ap->id, status); |
| qc->err_mask |= AC_ERR_HSM; |
| ap->hsm_task_state = HSM_ST_ERR; |
| goto fsm_start; |
| } |
| |
| atapi_pio_bytes(qc); |
| |
| if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) |
| /* bad ireason reported by device */ |
| goto fsm_start; |
| |
| } else { |
| /* ATA PIO protocol */ |
| if (unlikely((status & ATA_DRQ) == 0)) { |
| /* handle BSY=0, DRQ=0 as error */ |
| if (likely(status & (ATA_ERR | ATA_DF))) |
| /* device stops HSM for abort/error */ |
| qc->err_mask |= AC_ERR_DEV; |
| else |
| /* HSM violation. Let EH handle this. |
| * Phantom devices also trigger this |
| * condition. Mark hint. |
| */ |
| qc->err_mask |= AC_ERR_HSM | |
| AC_ERR_NODEV_HINT; |
| |
| ap->hsm_task_state = HSM_ST_ERR; |
| goto fsm_start; |
| } |
| |
| /* For PIO reads, some devices may ask for |
| * data transfer (DRQ=1) alone with ERR=1. |
| * We respect DRQ here and transfer one |
| * block of junk data before changing the |
| * hsm_task_state to HSM_ST_ERR. |
| * |
| * For PIO writes, ERR=1 DRQ=1 doesn't make |
| * sense since the data block has been |
| * transferred to the device. |
| */ |
| if (unlikely(status & (ATA_ERR | ATA_DF))) { |
| /* data might be corrputed */ |
| qc->err_mask |= AC_ERR_DEV; |
| |
| if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { |
| ata_pio_sectors(qc); |
| ata_altstatus(ap); |
| status = ata_wait_idle(ap); |
| } |
| |
| if (status & (ATA_BUSY | ATA_DRQ)) |
| qc->err_mask |= AC_ERR_HSM; |
| |
| /* ata_pio_sectors() might change the |
| * state to HSM_ST_LAST. so, the state |
| * is changed after ata_pio_sectors(). |
| */ |
| ap->hsm_task_state = HSM_ST_ERR; |
| goto fsm_start; |
| } |
| |
| ata_pio_sectors(qc); |
| |
| if (ap->hsm_task_state == HSM_ST_LAST && |
| (!(qc->tf.flags & ATA_TFLAG_WRITE))) { |
| /* all data read */ |
| ata_altstatus(ap); |
| status = ata_wait_idle(ap); |
| goto fsm_start; |
| } |
| } |
| |
| ata_altstatus(ap); /* flush */ |
| poll_next = 1; |
| break; |
| |
| case HSM_ST_LAST: |
| if (unlikely(!ata_ok(status))) { |
| qc->err_mask |= __ac_err_mask(status); |
| ap->hsm_task_state = HSM_ST_ERR; |
| goto fsm_start; |
| } |
| |
| /* no more data to transfer */ |
| DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", |
| ap->id, qc->dev->devno, status); |
| |
| WARN_ON(qc->err_mask); |
| |
| ap->hsm_task_state = HSM_ST_IDLE; |
| |
| /* complete taskfile transaction */ |
| ata_hsm_qc_complete(qc, in_wq); |
| |
| poll_next = 0; |
| break; |
| |
| case HSM_ST_ERR: |
| /* make sure qc->err_mask is available to |
| * know what's wrong and recover |
| */ |
| WARN_ON(qc->err_mask == 0); |
| |
| ap->hsm_task_state = HSM_ST_IDLE; |
| |
| /* complete taskfile transaction */ |
| ata_hsm_qc_complete(qc, in_wq); |
| |
| poll_next = 0; |
| break; |
| default: |
| poll_next = 0; |
| BUG(); |
| } |
| |
| return poll_next; |
| } |
| |
| static void ata_pio_task(void *_data) |
| { |
| struct ata_queued_cmd *qc = _data; |
| struct ata_port *ap = qc->ap; |
| u8 status; |
| int poll_next; |
| |
| fsm_start: |
| WARN_ON(ap->hsm_task_state == HSM_ST_IDLE); |
| |
| /* |
| * This is purely heuristic. This is a fast path. |
| * Sometimes when we enter, BSY will be cleared in |
| * a chk-status or two. If not, the drive is probably seeking |
| * or something. Snooze for a couple msecs, then |
| * chk-status again. If still busy, queue delayed work. |
| */ |
| status = ata_busy_wait(ap, ATA_BUSY, 5); |
| if (status & ATA_BUSY) { |
| msleep(2); |
| status = ata_busy_wait(ap, ATA_BUSY, 10); |
| if (status & ATA_BUSY) { |
| ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE); |
| return; |
| } |
| } |
| |
| /* move the HSM */ |
| poll_next = ata_hsm_move(ap, qc, status, 1); |
| |
| /* another command or interrupt handler |
| * may be running at this point. |
| */ |
| if (poll_next) |
| goto fsm_start; |
| } |
| |
| /** |
| * ata_qc_new - Request an available ATA command, for queueing |
| * @ap: Port associated with device @dev |
| * @dev: Device from whom we request an available command structure |
| * |
| * LOCKING: |
| * None. |
| */ |
| |
| static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) |
| { |
| struct ata_queued_cmd *qc = NULL; |
| unsigned int i; |
| |
| /* no command while frozen */ |
| if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) |
| return NULL; |
| |
| /* the last tag is reserved for internal command. */ |
| for (i = 0; i < ATA_MAX_QUEUE - 1; i++) |
| if (!test_and_set_bit(i, &ap->qc_allocated)) { |
| qc = __ata_qc_from_tag(ap, i); |
| break; |
| } |
| |
| if (qc) |
| qc->tag = i; |
| |
| return qc; |
| } |
| |
| /** |
| * ata_qc_new_init - Request an available ATA command, and initialize it |
| * @dev: Device from whom we request an available command structure |
| * |
| * LOCKING: |
| * None. |
| */ |
| |
| struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) |
| { |
| struct ata_port *ap = dev->ap; |
| struct ata_queued_cmd *qc; |
| |
| qc = ata_qc_new(ap); |
| if (qc) { |
| qc->scsicmd = NULL; |
| qc->ap = ap; |
| qc->dev = dev; |
| |
| ata_qc_reinit(qc); |
| } |
| |
| return qc; |
| } |
| |
| /** |
| * ata_qc_free - free unused ata_queued_cmd |
| * @qc: Command to complete |
| * |
| * Designed to free unused ata_queued_cmd object |
| * in case something prevents using it. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_qc_free(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| unsigned int tag; |
| |
| WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ |
| |
| qc->flags = 0; |
| tag = qc->tag; |
| if (likely(ata_tag_valid(tag))) { |
| qc->tag = ATA_TAG_POISON; |
| clear_bit(tag, &ap->qc_allocated); |
| } |
| } |
| |
| void __ata_qc_complete(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| |
| WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ |
| WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); |
| |
| if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) |
| ata_sg_clean(qc); |
| |
| /* command should be marked inactive atomically with qc completion */ |
| if (qc->tf.protocol == ATA_PROT_NCQ) |
| ap->sactive &= ~(1 << qc->tag); |
| else |
| ap->active_tag = ATA_TAG_POISON; |
| |
| /* atapi: mark qc as inactive to prevent the interrupt handler |
| * from completing the command twice later, before the error handler |
| * is called. (when rc != 0 and atapi request sense is needed) |
| */ |
| qc->flags &= ~ATA_QCFLAG_ACTIVE; |
| ap->qc_active &= ~(1 << qc->tag); |
| |
| /* call completion callback */ |
| qc->complete_fn(qc); |
| } |
| |
| static void fill_result_tf(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| |
| ap->ops->tf_read(ap, &qc->result_tf); |
| qc->result_tf.flags = qc->tf.flags; |
| } |
| |
| /** |
| * ata_qc_complete - Complete an active ATA command |
| * @qc: Command to complete |
| * @err_mask: ATA Status register contents |
| * |
| * Indicate to the mid and upper layers that an ATA |
| * command has completed, with either an ok or not-ok status. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_qc_complete(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| |
| /* XXX: New EH and old EH use different mechanisms to |
| * synchronize EH with regular execution path. |
| * |
| * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. |
| * Normal execution path is responsible for not accessing a |
| * failed qc. libata core enforces the rule by returning NULL |
| * from ata_qc_from_tag() for failed qcs. |
| * |
| * Old EH depends on ata_qc_complete() nullifying completion |
| * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does |
| * not synchronize with interrupt handler. Only PIO task is |
| * taken care of. |
| */ |
| if (ap->ops->error_handler) { |
| WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); |
| |
| if (unlikely(qc->err_mask)) |
| qc->flags |= ATA_QCFLAG_FAILED; |
| |
| if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { |
| if (!ata_tag_internal(qc->tag)) { |
| /* always fill result TF for failed qc */ |
| fill_result_tf(qc); |
| ata_qc_schedule_eh(qc); |
| return; |
| } |
| } |
| |
| /* read result TF if requested */ |
| if (qc->flags & ATA_QCFLAG_RESULT_TF) |
| fill_result_tf(qc); |
| |
| __ata_qc_complete(qc); |
| } else { |
| if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) |
| return; |
| |
| /* read result TF if failed or requested */ |
| if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) |
| fill_result_tf(qc); |
| |
| __ata_qc_complete(qc); |
| } |
| } |
| |
| /** |
| * ata_qc_complete_multiple - Complete multiple qcs successfully |
| * @ap: port in question |
| * @qc_active: new qc_active mask |
| * @finish_qc: LLDD callback invoked before completing a qc |
| * |
| * Complete in-flight commands. This functions is meant to be |
| * called from low-level driver's interrupt routine to complete |
| * requests normally. ap->qc_active and @qc_active is compared |
| * and commands are completed accordingly. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * Number of completed commands on success, -errno otherwise. |
| */ |
| int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active, |
| void (*finish_qc)(struct ata_queued_cmd *)) |
| { |
| int nr_done = 0; |
| u32 done_mask; |
| int i; |
| |
| done_mask = ap->qc_active ^ qc_active; |
| |
| if (unlikely(done_mask & qc_active)) { |
| ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " |
| "(%08x->%08x)\n", ap->qc_active, qc_active); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < ATA_MAX_QUEUE; i++) { |
| struct ata_queued_cmd *qc; |
| |
| if (!(done_mask & (1 << i))) |
| continue; |
| |
| if ((qc = ata_qc_from_tag(ap, i))) { |
| if (finish_qc) |
| finish_qc(qc); |
| ata_qc_complete(qc); |
| nr_done++; |
| } |
| } |
| |
| return nr_done; |
| } |
| |
| static inline int ata_should_dma_map(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| |
| switch (qc->tf.protocol) { |
| case ATA_PROT_NCQ: |
| case ATA_PROT_DMA: |
| case ATA_PROT_ATAPI_DMA: |
| return 1; |
| |
| case ATA_PROT_ATAPI: |
| case ATA_PROT_PIO: |
| if (ap->flags & ATA_FLAG_PIO_DMA) |
| return 1; |
| |
| /* fall through */ |
| |
| default: |
| return 0; |
| } |
| |
| /* never reached */ |
| } |
| |
| /** |
| * ata_qc_issue - issue taskfile to device |
| * @qc: command to issue to device |
| * |
| * Prepare an ATA command to submission to device. |
| * This includes mapping the data into a DMA-able |
| * area, filling in the S/G table, and finally |
| * writing the taskfile to hardware, starting the command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_qc_issue(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| |
| /* Make sure only one non-NCQ command is outstanding. The |
| * check is skipped for old EH because it reuses active qc to |
| * request ATAPI sense. |
| */ |
| WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag)); |
| |
| if (qc->tf.protocol == ATA_PROT_NCQ) { |
| WARN_ON(ap->sactive & (1 << qc->tag)); |
| ap->sactive |= 1 << qc->tag; |
| } else { |
| WARN_ON(ap->sactive); |
| ap->active_tag = qc->tag; |
| } |
| |
| qc->flags |= ATA_QCFLAG_ACTIVE; |
| ap->qc_active |= 1 << qc->tag; |
| |
| if (ata_should_dma_map(qc)) { |
| if (qc->flags & ATA_QCFLAG_SG) { |
| if (ata_sg_setup(qc)) |
| goto sg_err; |
| } else if (qc->flags & ATA_QCFLAG_SINGLE) { |
| if (ata_sg_setup_one(qc)) |
| goto sg_err; |
| } |
| } else { |
| qc->flags &= ~ATA_QCFLAG_DMAMAP; |
| } |
| |
| ap->ops->qc_prep(qc); |
| |
| qc->err_mask |= ap->ops->qc_issue(qc); |
| if (unlikely(qc->err_mask)) |
| goto err; |
| return; |
| |
| sg_err: |
| qc->flags &= ~ATA_QCFLAG_DMAMAP; |
| qc->err_mask |= AC_ERR_SYSTEM; |
| err: |
| ata_qc_complete(qc); |
| } |
| |
| /** |
| * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner |
| * @qc: command to issue to device |
| * |
| * Using various libata functions and hooks, this function |
| * starts an ATA command. ATA commands are grouped into |
| * classes called "protocols", and issuing each type of protocol |
| * is slightly different. |
| * |
| * May be used as the qc_issue() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * Zero on success, AC_ERR_* mask on failure |
| */ |
| |
| unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| |
| /* Use polling pio if the LLD doesn't handle |
| * interrupt driven pio and atapi CDB interrupt. |
| */ |
| if (ap->flags & ATA_FLAG_PIO_POLLING) { |
| switch (qc->tf.protocol) { |
| case ATA_PROT_PIO: |
| case ATA_PROT_ATAPI: |
| case ATA_PROT_ATAPI_NODATA: |
| qc->tf.flags |= ATA_TFLAG_POLLING; |
| break; |
| case ATA_PROT_ATAPI_DMA: |
| if (qc->dev->flags & ATA_DFLAG_CDB_INTR) |
| /* see ata_dma_blacklisted() */ |
| BUG(); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* Some controllers show flaky interrupt behavior after |
| * setting xfer mode. Use polling instead. |
| */ |
| if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES && |
| qc->tf.feature == SETFEATURES_XFER) && |
| (ap->flags & ATA_FLAG_SETXFER_POLLING)) |
| qc->tf.flags |= ATA_TFLAG_POLLING; |
| |
| /* select the device */ |
| ata_dev_select(ap, qc->dev->devno, 1, 0); |
| |
| /* start the command */ |
| switch (qc->tf.protocol) { |
| case ATA_PROT_NODATA: |
| if (qc->tf.flags & ATA_TFLAG_POLLING) |
| ata_qc_set_polling(qc); |
| |
| ata_tf_to_host(ap, &qc->tf); |
| ap->hsm_task_state = HSM_ST_LAST; |
| |
| if (qc->tf.flags & ATA_TFLAG_POLLING) |
| ata_port_queue_task(ap, ata_pio_task, qc, 0); |
| |
| break; |
| |
| case ATA_PROT_DMA: |
| WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); |
| |
| ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ |
| ap->ops->bmdma_setup(qc); /* set up bmdma */ |
| ap->ops->bmdma_start(qc); /* initiate bmdma */ |
| ap->hsm_task_state = HSM_ST_LAST; |
| break; |
| |
| case ATA_PROT_PIO: |
| if (qc->tf.flags & ATA_TFLAG_POLLING) |
| ata_qc_set_polling(qc); |
| |
| ata_tf_to_host(ap, &qc->tf); |
| |
| if (qc->tf.flags & ATA_TFLAG_WRITE) { |
| /* PIO data out protocol */ |
| ap->hsm_task_state = HSM_ST_FIRST; |
| ata_port_queue_task(ap, ata_pio_task, qc, 0); |
| |
| /* always send first data block using |
| * the ata_pio_task() codepath. |
| */ |
| } else { |
| /* PIO data in protocol */ |
| ap->hsm_task_state = HSM_ST; |
| |
| if (qc->tf.flags & ATA_TFLAG_POLLING) |
| ata_port_queue_task(ap, ata_pio_task, qc, 0); |
| |
| /* if polling, ata_pio_task() handles the rest. |
| * otherwise, interrupt handler takes over from here. |
| */ |
| } |
| |
| break; |
| |
| case ATA_PROT_ATAPI: |
| case ATA_PROT_ATAPI_NODATA: |
| if (qc->tf.flags & ATA_TFLAG_POLLING) |
| ata_qc_set_polling(qc); |
| |
| ata_tf_to_host(ap, &qc->tf); |
| |
| ap->hsm_task_state = HSM_ST_FIRST; |
| |
| /* send cdb by polling if no cdb interrupt */ |
| if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || |
| (qc->tf.flags & ATA_TFLAG_POLLING)) |
| ata_port_queue_task(ap, ata_pio_task, qc, 0); |
| break; |
| |
| case ATA_PROT_ATAPI_DMA: |
| WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); |
| |
| ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ |
| ap->ops->bmdma_setup(qc); /* set up bmdma */ |
| ap->hsm_task_state = HSM_ST_FIRST; |
| |
| /* send cdb by polling if no cdb interrupt */ |
| if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) |
| ata_port_queue_task(ap, ata_pio_task, qc, 0); |
| break; |
| |
| default: |
| WARN_ON(1); |
| return AC_ERR_SYSTEM; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ata_host_intr - Handle host interrupt for given (port, task) |
| * @ap: Port on which interrupt arrived (possibly...) |
| * @qc: Taskfile currently active in engine |
| * |
| * Handle host interrupt for given queued command. Currently, |
| * only DMA interrupts are handled. All other commands are |
| * handled via polling with interrupts disabled (nIEN bit). |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * One if interrupt was handled, zero if not (shared irq). |
| */ |
| |
| inline unsigned int ata_host_intr (struct ata_port *ap, |
| struct ata_queued_cmd *qc) |
| { |
| u8 status, host_stat = 0; |
| |
| VPRINTK("ata%u: protocol %d task_state %d\n", |
| ap->id, qc->tf.protocol, ap->hsm_task_state); |
| |
| /* Check whether we are expecting interrupt in this state */ |
| switch (ap->hsm_task_state) { |
| case HSM_ST_FIRST: |
| /* Some pre-ATAPI-4 devices assert INTRQ |
| * at this state when ready to receive CDB. |
| */ |
| |
| /* Check the ATA_DFLAG_CDB_INTR flag is enough here. |
| * The flag was turned on only for atapi devices. |
| * No need to check is_atapi_taskfile(&qc->tf) again. |
| */ |
| if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) |
| goto idle_irq; |
| break; |
| case HSM_ST_LAST: |
| if (qc->tf.protocol == ATA_PROT_DMA || |
| qc->tf.protocol == ATA_PROT_ATAPI_DMA) { |
| /* check status of DMA engine */ |
| host_stat = ap->ops->bmdma_status(ap); |
| VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat); |
| |
| /* if it's not our irq... */ |
| if (!(host_stat & ATA_DMA_INTR)) |
| goto idle_irq; |
| |
| /* before we do anything else, clear DMA-Start bit */ |
| ap->ops->bmdma_stop(qc); |
| |
| if (unlikely(host_stat & ATA_DMA_ERR)) { |
| /* error when transfering data to/from memory */ |
| qc->err_mask |= AC_ERR_HOST_BUS; |
| ap->hsm_task_state = HSM_ST_ERR; |
| } |
| } |
| break; |
| case HSM_ST: |
| break; |
| default: |
| goto idle_irq; |
| } |
| |
| /* check altstatus */ |
| status = ata_altstatus(ap); |
| if (status & ATA_BUSY) |
| goto idle_irq; |
| |
| /* check main status, clearing INTRQ */ |
| status = ata_chk_status(ap); |
| if (unlikely(status & ATA_BUSY)) |
| goto idle_irq; |
| |
| /* ack bmdma irq events */ |
| ap->ops->irq_clear(ap); |
| |
| ata_hsm_move(ap, qc, status, 0); |
| return 1; /* irq handled */ |
| |
| idle_irq: |
| ap->stats.idle_irq++; |
| |
| #ifdef ATA_IRQ_TRAP |
| if ((ap->stats.idle_irq % 1000) == 0) { |
| ata_irq_ack(ap, 0); /* debug trap */ |
| ata_port_printk(ap, KERN_WARNING, "irq trap\n"); |
| return 1; |
| } |
| #endif |
| return 0; /* irq not handled */ |
| } |
| |
| /** |
| * ata_interrupt - Default ATA host interrupt handler |
| * @irq: irq line (unused) |
| * @dev_instance: pointer to our ata_host information structure |
| * |
| * Default interrupt handler for PCI IDE devices. Calls |
| * ata_host_intr() for each port that is not disabled. |
| * |
| * LOCKING: |
| * Obtains host lock during operation. |
| * |
| * RETURNS: |
| * IRQ_NONE or IRQ_HANDLED. |
| */ |
| |
| irqreturn_t ata_interrupt (int irq, void *dev_instance) |
| { |
| struct ata_host *host = dev_instance; |
| unsigned int i; |
| unsigned int handled = 0; |
| unsigned long flags; |
| |
| /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ |
| spin_lock_irqsave(&host->lock, flags); |
| |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap; |
| |
| ap = host->ports[i]; |
| if (ap && |
| !(ap->flags & ATA_FLAG_DISABLED)) { |
| struct ata_queued_cmd *qc; |
| |
| qc = ata_qc_from_tag(ap, ap->active_tag); |
| if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && |
| (qc->flags & ATA_QCFLAG_ACTIVE)) |
| handled |= ata_host_intr(ap, qc); |
| } |
| } |
| |
| spin_unlock_irqrestore(&host->lock, flags); |
| |
| return IRQ_RETVAL(handled); |
| } |
| |
| /** |
| * sata_scr_valid - test whether SCRs are accessible |
| * @ap: ATA port to test SCR accessibility for |
| * |
| * Test whether SCRs are accessible for @ap. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * 1 if SCRs are accessible, 0 otherwise. |
| */ |
| int sata_scr_valid(struct ata_port *ap) |
| { |
| return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read; |
| } |
| |
| /** |
| * sata_scr_read - read SCR register of the specified port |
| * @ap: ATA port to read SCR for |
| * @reg: SCR to read |
| * @val: Place to store read value |
| * |
| * Read SCR register @reg of @ap into *@val. This function is |
| * guaranteed to succeed if the cable type of the port is SATA |
| * and the port implements ->scr_read. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * 0 on success, negative errno on failure. |
| */ |
| int sata_scr_read(struct ata_port *ap, int reg, u32 *val) |
| { |
| if (sata_scr_valid(ap)) { |
| *val = ap->ops->scr_read(ap, reg); |
| return 0; |
| } |
| return -EOPNOTSUPP; |
| } |
| |
| /** |
| * sata_scr_write - write SCR register of the specified port |
| * @ap: ATA port to write SCR for |
| * @reg: SCR to write |
| * @val: value to write |
| * |
| * Write @val to SCR register @reg of @ap. This function is |
| * guaranteed to succeed if the cable type of the port is SATA |
| * and the port implements ->scr_read. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * 0 on success, negative errno on failure. |
| */ |
| int sata_scr_write(struct ata_port *ap, int reg, u32 val) |
| { |
| if (sata_scr_valid(ap)) { |
| ap->ops->scr_write(ap, reg, val); |
| return 0; |
| } |
| return -EOPNOTSUPP; |
| } |
| |
| /** |
| * sata_scr_write_flush - write SCR register of the specified port and flush |
| * @ap: ATA port to write SCR for |
| * @reg: SCR to write |
| * @val: value to write |
| * |
| * This function is identical to sata_scr_write() except that this |
| * function performs flush after writing to the register. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * 0 on success, negative errno on failure. |
| */ |
| int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val) |
| { |
| if (sata_scr_valid(ap)) { |
| ap->ops->scr_write(ap, reg, val); |
| ap->ops->scr_read(ap, reg); |
| return 0; |
| } |
| return -EOPNOTSUPP; |
| } |
| |
| /** |
| * ata_port_online - test whether the given port is online |
| * @ap: ATA port to test |
| * |
| * Test whether @ap is online. Note that this function returns 0 |
| * if online status of @ap cannot be obtained, so |
| * ata_port_online(ap) != !ata_port_offline(ap). |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * 1 if the port online status is available and online. |
| */ |
| int ata_port_online(struct ata_port *ap) |
| { |
| u32 sstatus; |
| |
| if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3) |
| return 1; |
| return 0; |
| } |
| |
| /** |
| * ata_port_offline - test whether the given port is offline |
| * @ap: ATA port to test |
| * |
| * Test whether @ap is offline. Note that this function returns |
| * 0 if offline status of @ap cannot be obtained, so |
| * ata_port_online(ap) != !ata_port_offline(ap). |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * 1 if the port offline status is available and offline. |
| */ |
| int ata_port_offline(struct ata_port *ap) |
| { |
| u32 sstatus; |
| |
| if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3) |
| return 1; |
| return 0; |
| } |
| |
| int ata_flush_cache(struct ata_device *dev) |
| { |
| unsigned int err_mask; |
| u8 cmd; |
| |
| if (!ata_try_flush_cache(dev)) |
| return 0; |
| |
| if (dev->flags & ATA_DFLAG_FLUSH_EXT) |
| cmd = ATA_CMD_FLUSH_EXT; |
| else |
| cmd = ATA_CMD_FLUSH; |
| |
| err_mask = ata_do_simple_cmd(dev, cmd); |
| if (err_mask) { |
| ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, |
| unsigned int action, unsigned int ehi_flags, |
| int wait) |
| { |
| unsigned long flags; |
| int i, rc; |
| |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| |
| /* Previous resume operation might still be in |
| * progress. Wait for PM_PENDING to clear. |
| */ |
| if (ap->pflags & ATA_PFLAG_PM_PENDING) { |
| ata_port_wait_eh(ap); |
| WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); |
| } |
| |
| /* request PM ops to EH */ |
| spin_lock_irqsave(ap->lock, flags); |
| |
| ap->pm_mesg = mesg; |
| if (wait) { |
| rc = 0; |
| ap->pm_result = &rc; |
| } |
| |
| ap->pflags |= ATA_PFLAG_PM_PENDING; |
| ap->eh_info.action |= action; |
| ap->eh_info.flags |= ehi_flags; |
| |
| ata_port_schedule_eh(ap); |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| /* wait and check result */ |
| if (wait) { |
| ata_port_wait_eh(ap); |
| WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); |
| if (rc) |
| return rc; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ata_host_suspend - suspend host |
| * @host: host to suspend |
| * @mesg: PM message |
| * |
| * Suspend @host. Actual operation is performed by EH. This |
| * function requests EH to perform PM operations and waits for EH |
| * to finish. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep). |
| * |
| * RETURNS: |
| * 0 on success, -errno on failure. |
| */ |
| int ata_host_suspend(struct ata_host *host, pm_message_t mesg) |
| { |
| int i, j, rc; |
| |
| rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); |
| if (rc) |
| goto fail; |
| |
| /* EH is quiescent now. Fail if we have any ready device. |
| * This happens if hotplug occurs between completion of device |
| * suspension and here. |
| */ |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| |
| for (j = 0; j < ATA_MAX_DEVICES; j++) { |
| struct ata_device *dev = &ap->device[j]; |
| |
| if (ata_dev_ready(dev)) { |
| ata_port_printk(ap, KERN_WARNING, |
| "suspend failed, device %d " |
| "still active\n", dev->devno); |
| rc = -EBUSY; |
| goto fail; |
| } |
| } |
| } |
| |
| host->dev->power.power_state = mesg; |
| return 0; |
| |
| fail: |
| ata_host_resume(host); |
| return rc; |
| } |
| |
| /** |
| * ata_host_resume - resume host |
| * @host: host to resume |
| * |
| * Resume @host. Actual operation is performed by EH. This |
| * function requests EH to perform PM operations and returns. |
| * Note that all resume operations are performed parallely. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep). |
| */ |
| void ata_host_resume(struct ata_host *host) |
| { |
| ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET, |
| ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); |
| host->dev->power.power_state = PMSG_ON; |
| } |
| |
| /** |
| * ata_port_start - Set port up for dma. |
| * @ap: Port to initialize |
| * |
| * Called just after data structures for each port are |
| * initialized. Allocates space for PRD table. |
| * |
| * May be used as the port_start() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| int ata_port_start (struct ata_port *ap) |
| { |
| struct device *dev = ap->dev; |
| int rc; |
| |
| ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL); |
| if (!ap->prd) |
| return -ENOMEM; |
| |
| rc = ata_pad_alloc(ap, dev); |
| if (rc) { |
| dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma); |
| return rc; |
| } |
| |
| DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma); |
| |
| return 0; |
| } |
| |
| |
| /** |
| * ata_port_stop - Undo ata_port_start() |
| * @ap: Port to shut down |
| * |
| * Frees the PRD table. |
| * |
| * May be used as the port_stop() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| void ata_port_stop (struct ata_port *ap) |
| { |
| struct device *dev = ap->dev; |
| |
| dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma); |
| ata_pad_free(ap, dev); |
| } |
| |
| void ata_host_stop (struct ata_host *host) |
| { |
| if (host->mmio_base) |
| iounmap(host->mmio_base); |
| } |
| |
| /** |
| * ata_dev_init - Initialize an ata_device structure |
| * @dev: Device structure to initialize |
| * |
| * Initialize @dev in preparation for probing. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| void ata_dev_init(struct ata_device *dev) |
| { |
| struct ata_port *ap = dev->ap; |
| unsigned long flags; |
| |
| /* SATA spd limit is bound to the first device */ |
| ap->sata_spd_limit = ap->hw_sata_spd_limit; |
| |
| /* High bits of dev->flags are used to record warm plug |
| * requests which occur asynchronously. Synchronize using |
| * host lock. |
| */ |
| spin_lock_irqsave(ap->lock, flags); |
| dev->flags &= ~ATA_DFLAG_INIT_MASK; |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, |
| sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); |
| dev->pio_mask = UINT_MAX; |
| dev->mwdma_mask = UINT_MAX; |
| dev->udma_mask = UINT_MAX; |
| } |
| |
| /** |
| * ata_port_init - Initialize an ata_port structure |
| * @ap: Structure to initialize |
| * @host: Collection of hosts to which @ap belongs |
| * @ent: Probe information provided by low-level driver |
| * @port_no: Port number associated with this ata_port |
| * |
| * Initialize a new ata_port structure. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| void ata_port_init(struct ata_port *ap, struct ata_host *host, |
| const struct ata_probe_ent *ent, unsigned int port_no) |
| { |
| unsigned int i; |
| |
| ap->lock = &host->lock; |
| ap->flags = ATA_FLAG_DISABLED; |
| ap->id = ata_unique_id++; |
| ap->ctl = ATA_DEVCTL_OBS; |
| ap->host = host; |
| ap->dev = ent->dev; |
| ap->port_no = port_no; |
| if (port_no == 1 && ent->pinfo2) { |
| ap->pio_mask = ent->pinfo2->pio_mask; |
| ap->mwdma_mask = ent->pinfo2->mwdma_mask; |
| ap->udma_mask = ent->pinfo2->udma_mask; |
| ap->flags |= ent->pinfo2->flags; |
| ap->ops = ent->pinfo2->port_ops; |
| } else { |
| ap->pio_mask = ent->pio_mask; |
| ap->mwdma_mask = ent->mwdma_mask; |
| ap->udma_mask = ent->udma_mask; |
| ap->flags |= ent->port_flags; |
| ap->ops = ent->port_ops; |
| } |
| ap->hw_sata_spd_limit = UINT_MAX; |
| ap->active_tag = ATA_TAG_POISON; |
| ap->last_ctl = 0xFF; |
| |
| #if defined(ATA_VERBOSE_DEBUG) |
| /* turn on all debugging levels */ |
| ap->msg_enable = 0x00FF; |
| #elif defined(ATA_DEBUG) |
| ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; |
| #else |
| ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; |
| #endif |
| |
| INIT_WORK(&ap->port_task, NULL, NULL); |
| INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap); |
| INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap); |
| INIT_LIST_HEAD(&ap->eh_done_q); |
| init_waitqueue_head(&ap->eh_wait_q); |
| |
| /* set cable type */ |
| ap->cbl = ATA_CBL_NONE; |
| if (ap->flags & ATA_FLAG_SATA) |
| ap->cbl = ATA_CBL_SATA; |
| |
| for (i = 0; i < ATA_MAX_DEVICES; i++) { |
| struct ata_device *dev = &ap->device[i]; |
| dev->ap = ap; |
| dev->devno = i; |
| ata_dev_init(dev); |
| } |
| |
| #ifdef ATA_IRQ_TRAP |
| ap->stats.unhandled_irq = 1; |
| ap->stats.idle_irq = 1; |
| #endif |
| |
| memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports)); |
| } |
| |
| /** |
| * ata_port_init_shost - Initialize SCSI host associated with ATA port |
| * @ap: ATA port to initialize SCSI host for |
| * @shost: SCSI host associated with @ap |
| * |
| * Initialize SCSI host @shost associated with ATA port @ap. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost) |
| { |
| ap->scsi_host = shost; |
| |
| shost->unique_id = ap->id; |
| shost->max_id = 16; |
| shost->max_lun = 1; |
| shost->max_channel = 1; |
| shost->max_cmd_len = 12; |
| } |
| |
| /** |
| * ata_port_add - Attach low-level ATA driver to system |
| * @ent: Information provided by low-level driver |
| * @host: Collections of ports to which we add |
| * @port_no: Port number associated with this host |
| * |
| * Attach low-level ATA driver to system. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| * RETURNS: |
| * New ata_port on success, for NULL on error. |
| */ |
| static struct ata_port * ata_port_add(const struct ata_probe_ent *ent, |
| struct ata_host *host, |
| unsigned int port_no) |
| { |
| struct Scsi_Host *shost; |
| struct ata_port *ap; |
| |
| DPRINTK("ENTER\n"); |
| |
| if (!ent->port_ops->error_handler && |
| !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) { |
| printk(KERN_ERR "ata%u: no reset mechanism available\n", |
| port_no); |
| return NULL; |
| } |
| |
| shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port)); |
| if (!shost) |
| return NULL; |
| |
| shost->transportt = &ata_scsi_transport_template; |
| |
| ap = ata_shost_to_port(shost); |
| |
| ata_port_init(ap, host, ent, port_no); |
| ata_port_init_shost(ap, shost); |
| |
| return ap; |
| } |
| |
| /** |
| * ata_sas_host_init - Initialize a host struct |
| * @host: host to initialize |
| * @dev: device host is attached to |
| * @flags: host flags |
| * @ops: port_ops |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| */ |
| |
| void ata_host_init(struct ata_host *host, struct device *dev, |
| unsigned long flags, const struct ata_port_operations *ops) |
| { |
| spin_lock_init(&host->lock); |
| host->dev = dev; |
| host->flags = flags; |
| host->ops = ops; |
| } |
| |
| /** |
| * ata_device_add - Register hardware device with ATA and SCSI layers |
| * @ent: Probe information describing hardware device to be registered |
| * |
| * This function processes the information provided in the probe |
| * information struct @ent, allocates the necessary ATA and SCSI |
| * host information structures, initializes them, and registers |
| * everything with requisite kernel subsystems. |
| * |
| * This function requests irqs, probes the ATA bus, and probes |
| * the SCSI bus. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| * RETURNS: |
| * Number of ports registered. Zero on error (no ports registered). |
| */ |
| int ata_device_add(const struct ata_probe_ent *ent) |
| { |
| unsigned int i; |
| struct device *dev = ent->dev; |
| struct ata_host *host; |
| int rc; |
| |
| DPRINTK("ENTER\n"); |
| |
| if (ent->irq == 0) { |
| dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n"); |
| return 0; |
| } |
| /* alloc a container for our list of ATA ports (buses) */ |
| host = kzalloc(sizeof(struct ata_host) + |
| (ent->n_ports * sizeof(void *)), GFP_KERNEL); |
| if (!host) |
| return 0; |
| |
| ata_host_init(host, dev, ent->_host_flags, ent->port_ops); |
| host->n_ports = ent->n_ports; |
| host->irq = ent->irq; |
| host->irq2 = ent->irq2; |
| host->mmio_base = ent->mmio_base; |
| host->private_data = ent->private_data; |
| |
| /* register each port bound to this device */ |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap; |
| unsigned long xfer_mode_mask; |
| int irq_line = ent->irq; |
| |
| ap = ata_port_add(ent, host, i); |
| host->ports[i] = ap; |
| if (!ap) |
| goto err_out; |
| |
| /* dummy? */ |
| if (ent->dummy_port_mask & (1 << i)) { |
| ata_port_printk(ap, KERN_INFO, "DUMMY\n"); |
| ap->ops = &ata_dummy_port_ops; |
| continue; |
| } |
| |
| /* start port */ |
| rc = ap->ops->port_start(ap); |
| if (rc) { |
| host->ports[i] = NULL; |
| scsi_host_put(ap->scsi_host); |
| goto err_out; |
| } |
| |
| /* Report the secondary IRQ for second channel legacy */ |
| if (i == 1 && ent->irq2) |
| irq_line = ent->irq2; |
| |
| xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) | |
| (ap->mwdma_mask << ATA_SHIFT_MWDMA) | |
| (ap->pio_mask << ATA_SHIFT_PIO); |
| |
| /* print per-port info to dmesg */ |
| ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX " |
| "ctl 0x%lX bmdma 0x%lX irq %d\n", |
| ap->flags & ATA_FLAG_SATA ? 'S' : 'P', |
| ata_mode_string(xfer_mode_mask), |
| ap->ioaddr.cmd_addr, |
| ap->ioaddr.ctl_addr, |
| ap->ioaddr.bmdma_addr, |
| irq_line); |
| |
| ata_chk_status(ap); |
| host->ops->irq_clear(ap); |
| ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */ |
| } |
| |
| /* obtain irq, that may be shared between channels */ |
| rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags, |
| DRV_NAME, host); |
| if (rc) { |
| dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n", |
| ent->irq, rc); |
| goto err_out; |
| } |
| |
| /* do we have a second IRQ for the other channel, eg legacy mode */ |
| if (ent->irq2) { |
| /* We will get weird core code crashes later if this is true |
| so trap it now */ |
| BUG_ON(ent->irq == ent->irq2); |
| |
| rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags, |
| DRV_NAME, host); |
| if (rc) { |
| dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n", |
| ent->irq2, rc); |
| goto err_out_free_irq; |
| } |
| } |
| |
| /* perform each probe synchronously */ |
| DPRINTK("probe begin\n"); |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| u32 scontrol; |
| int rc; |
| |
| /* init sata_spd_limit to the current value */ |
| if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) { |
| int spd = (scontrol >> 4) & 0xf; |
| ap->hw_sata_spd_limit &= (1 << spd) - 1; |
| } |
| ap->sata_spd_limit = ap->hw_sata_spd_limit; |
| |
| rc = scsi_add_host(ap->scsi_host, dev); |
| if (rc) { |
| ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n"); |
| /* FIXME: do something useful here */ |
| /* FIXME: handle unconditional calls to |
| * scsi_scan_host and ata_host_remove, below, |
| * at the very least |
| */ |
| } |
| |
| if (ap->ops->error_handler) { |
| struct ata_eh_info *ehi = &ap->eh_info; |
| unsigned long flags; |
| |
| ata_port_probe(ap); |
| |
| /* kick EH for boot probing */ |
| spin_lock_irqsave(ap->lock, flags); |
| |
| ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1; |
| ehi->action |= ATA_EH_SOFTRESET; |
| ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; |
| |
| ap->pflags |= ATA_PFLAG_LOADING; |
| ata_port_schedule_eh(ap); |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| /* wait for EH to finish */ |
| ata_port_wait_eh(ap); |
| } else { |
| DPRINTK("ata%u: bus probe begin\n", ap->id); |
| rc = ata_bus_probe(ap); |
| DPRINTK("ata%u: bus probe end\n", ap->id); |
| |
| if (rc) { |
| /* FIXME: do something useful here? |
| * Current libata behavior will |
| * tear down everything when |
| * the module is removed |
| * or the h/w is unplugged. |
| */ |
| } |
| } |
| } |
| |
| /* probes are done, now scan each port's disk(s) */ |
| DPRINTK("host probe begin\n"); |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| |
| ata_scsi_scan_host(ap); |
| } |
| |
| dev_set_drvdata(dev, host); |
| |
| VPRINTK("EXIT, returning %u\n", ent->n_ports); |
| return ent->n_ports; /* success */ |
| |
| err_out_free_irq: |
| free_irq(ent->irq, host); |
| err_out: |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| if (ap) { |
| ap->ops->port_stop(ap); |
| scsi_host_put(ap->scsi_host); |
| } |
| } |
| |
| kfree(host); |
| VPRINTK("EXIT, returning 0\n"); |
| return 0; |
| } |
| |
| /** |
| * ata_port_detach - Detach ATA port in prepration of device removal |
| * @ap: ATA port to be detached |
| * |
| * Detach all ATA devices and the associated SCSI devices of @ap; |
| * then, remove the associated SCSI host. @ap is guaranteed to |
| * be quiescent on return from this function. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep). |
| */ |
| void ata_port_detach(struct ata_port *ap) |
| { |
| unsigned long flags; |
| int i; |
| |
| if (!ap->ops->error_handler) |
| goto skip_eh; |
| |
| /* tell EH we're leaving & flush EH */ |
| spin_lock_irqsave(ap->lock, flags); |
| ap->pflags |= ATA_PFLAG_UNLOADING; |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| ata_port_wait_eh(ap); |
| |
| /* EH is now guaranteed to see UNLOADING, so no new device |
| * will be attached. Disable all existing devices. |
| */ |
| spin_lock_irqsave(ap->lock, flags); |
| |
| for (i = 0; i < ATA_MAX_DEVICES; i++) |
| ata_dev_disable(&ap->device[i]); |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| /* Final freeze & EH. All in-flight commands are aborted. EH |
| * will be skipped and retrials will be terminated with bad |
| * target. |
| */ |
| spin_lock_irqsave(ap->lock, flags); |
| ata_port_freeze(ap); /* won't be thawed */ |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| ata_port_wait_eh(ap); |
| |
| /* Flush hotplug task. The sequence is similar to |
| * ata_port_flush_task(). |
| */ |
| flush_workqueue(ata_aux_wq); |
| cancel_delayed_work(&ap->hotplug_task); |
| flush_workqueue(ata_aux_wq); |
| |
| skip_eh: |
| /* remove the associated SCSI host */ |
| scsi_remove_host(ap->scsi_host); |
| } |
| |
| /** |
| * ata_host_remove - PCI layer callback for device removal |
| * @host: ATA host set that was removed |
| * |
| * Unregister all objects associated with this host set. Free those |
| * objects. |
| * |
| * LOCKING: |
| * Inherited from calling layer (may sleep). |
| */ |
| |
| void ata_host_remove(struct ata_host *host) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < host->n_ports; i++) |
| ata_port_detach(host->ports[i]); |
| |
| free_irq(host->irq, host); |
| if (host->irq2) |
| free_irq(host->irq2, host); |
| |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| |
| ata_scsi_release(ap->scsi_host); |
| |
| if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| |
| /* FIXME: Add -ac IDE pci mods to remove these special cases */ |
| if (ioaddr->cmd_addr == ATA_PRIMARY_CMD) |
| release_region(ATA_PRIMARY_CMD, 8); |
| else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD) |
| release_region(ATA_SECONDARY_CMD, 8); |
| } |
| |
| scsi_host_put(ap->scsi_host); |
| } |
| |
| if (host->ops->host_stop) |
| host->ops->host_stop(host); |
| |
| kfree(host); |
| } |
| |
| /** |
| * ata_scsi_release - SCSI layer callback hook for host unload |
| * @shost: libata host to be unloaded |
| * |
| * Performs all duties necessary to shut down a libata port... |
| * Kill port kthread, disable port, and release resources. |
| * |
| * LOCKING: |
| * Inherited from SCSI layer. |
| * |
| * RETURNS: |
| * One. |
| */ |
| |
| int ata_scsi_release(struct Scsi_Host *shost) |
| { |
| struct ata_port *ap = ata_shost_to_port(shost); |
| |
| DPRINTK("ENTER\n"); |
| |
| ap->ops->port_disable(ap); |
| ap->ops->port_stop(ap); |
| |
| DPRINTK("EXIT\n"); |
| return 1; |
| } |
| |
| struct ata_probe_ent * |
| ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port) |
| { |
| struct ata_probe_ent *probe_ent; |
| |
| probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL); |
| if (!probe_ent) { |
| printk(KERN_ERR DRV_NAME "(%s): out of memory\n", |
| kobject_name(&(dev->kobj))); |
| return NULL; |
| } |
| |
| INIT_LIST_HEAD(&probe_ent->node); |
| probe_ent->dev = dev; |
| |
| probe_ent->sht = port->sht; |
| probe_ent->port_flags = port->flags; |
| probe_ent->pio_mask = port->pio_mask; |
| probe_ent->mwdma_mask = port->mwdma_mask; |
| probe_ent->udma_mask = port->udma_mask; |
| probe_ent->port_ops = port->port_ops; |
| probe_ent->private_data = port->private_data; |
| |
| return probe_ent; |
| } |
| |
| /** |
| * ata_std_ports - initialize ioaddr with standard port offsets. |
| * @ioaddr: IO address structure to be initialized |
| * |
| * Utility function which initializes data_addr, error_addr, |
| * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, |
| * device_addr, status_addr, and command_addr to standard offsets |
| * relative to cmd_addr. |
| * |
| * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. |
| */ |
| |
| void ata_std_ports(struct ata_ioports *ioaddr) |
| { |
| ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; |
| ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; |
| ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; |
| ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; |
| ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; |
| ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; |
| ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; |
| ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; |
| ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; |
| ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; |
| } |
| |
| |
| #ifdef CONFIG_PCI |
| |
| void ata_pci_host_stop (struct ata_host *host) |
| { |
| struct pci_dev *pdev = to_pci_dev(host->dev); |
| |
| pci_iounmap(pdev, host->mmio_base); |
| } |
| |
| /** |
| * ata_pci_remove_one - PCI layer callback for device removal |
| * @pdev: PCI device that was removed |
| * |
| * PCI layer indicates to libata via this hook that |
| * hot-unplug or module unload event has occurred. |
| * Handle this by unregistering all objects associated |
| * with this PCI device. Free those objects. Then finally |
| * release PCI resources and disable device. |
| * |
| * LOCKING: |
| * Inherited from PCI layer (may sleep). |
| */ |
| |
| void ata_pci_remove_one (struct pci_dev *pdev) |
| { |
| struct device *dev = pci_dev_to_dev(pdev); |
| struct ata_host *host = dev_get_drvdata(dev); |
| |
| ata_host_remove(host); |
| |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| dev_set_drvdata(dev, NULL); |
| } |
| |
| /* move to PCI subsystem */ |
| int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) |
| { |
| unsigned long tmp = 0; |
| |
| switch (bits->width) { |
| case 1: { |
| u8 tmp8 = 0; |
| pci_read_config_byte(pdev, bits->reg, &tmp8); |
| tmp = tmp8; |
| break; |
| } |
| case 2: { |
| u16 tmp16 = 0; |
| pci_read_config_word(pdev, bits->reg, &tmp16); |
| tmp = tmp16; |
| break; |
| } |
| case 4: { |
| u32 tmp32 = 0; |
| pci_read_config_dword(pdev, bits->reg, &tmp32); |
| tmp = tmp32; |
| break; |
| } |
| |
| default: |
| return -EINVAL; |
| } |
| |
| tmp &= bits->mask; |
| |
| return (tmp == bits->val) ? 1 : 0; |
| } |
| |
| void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) |
| { |
| pci_save_state(pdev); |
| |
| if (mesg.event == PM_EVENT_SUSPEND) { |
| pci_disable_device(pdev); |
| pci_set_power_state(pdev, PCI_D3hot); |
| } |
| } |
| |
| void ata_pci_device_do_resume(struct pci_dev *pdev) |
| { |
| pci_set_power_state(pdev, PCI_D0); |
| pci_restore_state(pdev); |
| pci_enable_device(pdev); |
| pci_set_master(pdev); |
| } |
| |
| int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) |
| { |
| struct ata_host *host = dev_get_drvdata(&pdev->dev); |
| int rc = 0; |
| |
| rc = ata_host_suspend(host, mesg); |
| if (rc) |
| return rc; |
| |
| ata_pci_device_do_suspend(pdev, mesg); |
| |
| return 0; |
| } |
| |
| int ata_pci_device_resume(struct pci_dev *pdev) |
| { |
| struct ata_host *host = dev_get_drvdata(&pdev->dev); |
| |
| ata_pci_device_do_resume(pdev); |
| ata_host_resume(host); |
| return 0; |
| } |
| #endif /* CONFIG_PCI */ |
| |
| |
| static int __init ata_init(void) |
| { |
| ata_probe_timeout *= HZ; |
| ata_wq = create_workqueue("ata"); |
| if (!ata_wq) |
| return -ENOMEM; |
| |
| ata_aux_wq = create_singlethread_workqueue("ata_aux"); |
| if (!ata_aux_wq) { |
| destroy_workqueue(ata_wq); |
| return -ENOMEM; |
| } |
| |
| printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); |
| return 0; |
| } |
| |
| static void __exit ata_exit(void) |
| { |
| destroy_workqueue(ata_wq); |
| destroy_workqueue(ata_aux_wq); |
| } |
| |
| subsys_initcall(ata_init); |
| module_exit(ata_exit); |
| |
| static unsigned long ratelimit_time; |
| static DEFINE_SPINLOCK(ata_ratelimit_lock); |
| |
| int ata_ratelimit(void) |
| { |
| int rc; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ata_ratelimit_lock, flags); |
| |
| if (time_after(jiffies, ratelimit_time)) { |
| rc = 1; |
| ratelimit_time = jiffies + (HZ/5); |
| } else |
| rc = 0; |
| |
| spin_unlock_irqrestore(&ata_ratelimit_lock, flags); |
| |
| return rc; |
| } |
| |
| /** |
| * ata_wait_register - wait until register value changes |
| * @reg: IO-mapped register |
| * @mask: Mask to apply to read register value |
| * @val: Wait condition |
| * @interval_msec: polling interval in milliseconds |
| * @timeout_msec: timeout in milliseconds |
| * |
| * Waiting for some bits of register to change is a common |
| * operation for ATA controllers. This function reads 32bit LE |
| * IO-mapped register @reg and tests for the following condition. |
| * |
| * (*@reg & mask) != val |
| * |
| * If the condition is met, it returns; otherwise, the process is |
| * repeated after @interval_msec until timeout. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * The final register value. |
| */ |
| u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, |
| unsigned long interval_msec, |
| unsigned long timeout_msec) |
| { |
| unsigned long timeout; |
| u32 tmp; |
| |
| tmp = ioread32(reg); |
| |
| /* Calculate timeout _after_ the first read to make sure |
| * preceding writes reach the controller before starting to |
| * eat away the timeout. |
| */ |
| timeout = jiffies + (timeout_msec * HZ) / 1000; |
| |
| while ((tmp & mask) == val && time_before(jiffies, timeout)) { |
| msleep(interval_msec); |
| tmp = ioread32(reg); |
| } |
| |
| return tmp; |
| } |
| |
| /* |
| * Dummy port_ops |
| */ |
| static void ata_dummy_noret(struct ata_port *ap) { } |
| static int ata_dummy_ret0(struct ata_port *ap) { return 0; } |
| static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { } |
| |
| static u8 ata_dummy_check_status(struct ata_port *ap) |
| { |
| return ATA_DRDY; |
| } |
| |
| static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) |
| { |
| return AC_ERR_SYSTEM; |
| } |
| |
| const struct ata_port_operations ata_dummy_port_ops = { |
| .port_disable = ata_port_disable, |
| .check_status = ata_dummy_check_status, |
| .check_altstatus = ata_dummy_check_status, |
| .dev_select = ata_noop_dev_select, |
| .qc_prep = ata_noop_qc_prep, |
| .qc_issue = ata_dummy_qc_issue, |
| .freeze = ata_dummy_noret, |
| .thaw = ata_dummy_noret, |
| .error_handler = ata_dummy_noret, |
| .post_internal_cmd = ata_dummy_qc_noret, |
| .irq_clear = ata_dummy_noret, |
| .port_start = ata_dummy_ret0, |
| .port_stop = ata_dummy_noret, |
| }; |
| |
| /* |
| * libata is essentially a library of internal helper functions for |
| * low-level ATA host controller drivers. As such, the API/ABI is |
| * likely to change as new drivers are added and updated. |
| * Do not depend on ABI/API stability. |
| */ |
| |
| EXPORT_SYMBOL_GPL(sata_deb_timing_normal); |
| EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); |
| EXPORT_SYMBOL_GPL(sata_deb_timing_long); |
| EXPORT_SYMBOL_GPL(ata_dummy_port_ops); |
| EXPORT_SYMBOL_GPL(ata_std_bios_param); |
| EXPORT_SYMBOL_GPL(ata_std_ports); |
| EXPORT_SYMBOL_GPL(ata_host_init); |
| EXPORT_SYMBOL_GPL(ata_device_add); |
| EXPORT_SYMBOL_GPL(ata_port_detach); |
| EXPORT_SYMBOL_GPL(ata_host_remove); |
| EXPORT_SYMBOL_GPL(ata_sg_init); |
| EXPORT_SYMBOL_GPL(ata_sg_init_one); |
| EXPORT_SYMBOL_GPL(ata_hsm_move); |
| EXPORT_SYMBOL_GPL(ata_qc_complete); |
| EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); |
| EXPORT_SYMBOL_GPL(ata_qc_issue_prot); |
| EXPORT_SYMBOL_GPL(ata_tf_load); |
| EXPORT_SYMBOL_GPL(ata_tf_read); |
| EXPORT_SYMBOL_GPL(ata_noop_dev_select); |
| EXPORT_SYMBOL_GPL(ata_std_dev_select); |
| EXPORT_SYMBOL_GPL(ata_tf_to_fis); |
| EXPORT_SYMBOL_GPL(ata_tf_from_fis); |
| EXPORT_SYMBOL_GPL(ata_check_status); |
| EXPORT_SYMBOL_GPL(ata_altstatus); |
| EXPORT_SYMBOL_GPL(ata_exec_command); |
| EXPORT_SYMBOL_GPL(ata_port_start); |
| EXPORT_SYMBOL_GPL(ata_port_stop); |
| EXPORT_SYMBOL_GPL(ata_host_stop); |
| EXPORT_SYMBOL_GPL(ata_interrupt); |
| EXPORT_SYMBOL_GPL(ata_mmio_data_xfer); |
| EXPORT_SYMBOL_GPL(ata_pio_data_xfer); |
| EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq); |
| EXPORT_SYMBOL_GPL(ata_qc_prep); |
| EXPORT_SYMBOL_GPL(ata_noop_qc_prep); |
| EXPORT_SYMBOL_GPL(ata_bmdma_setup); |
| EXPORT_SYMBOL_GPL(ata_bmdma_start); |
| EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); |
| EXPORT_SYMBOL_GPL(ata_bmdma_status); |
| EXPORT_SYMBOL_GPL(ata_bmdma_stop); |
| EXPORT_SYMBOL_GPL(ata_bmdma_freeze); |
| EXPORT_SYMBOL_GPL(ata_bmdma_thaw); |
| EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh); |
| EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); |
| EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); |
| EXPORT_SYMBOL_GPL(ata_port_probe); |
| EXPORT_SYMBOL_GPL(sata_set_spd); |
| EXPORT_SYMBOL_GPL(sata_phy_debounce); |
| EXPORT_SYMBOL_GPL(sata_phy_resume); |
| EXPORT_SYMBOL_GPL(sata_phy_reset); |
| EXPORT_SYMBOL_GPL(__sata_phy_reset); |
| EXPORT_SYMBOL_GPL(ata_bus_reset); |
| EXPORT_SYMBOL_GPL(ata_std_prereset); |
| EXPORT_SYMBOL_GPL(ata_std_softreset); |
| EXPORT_SYMBOL_GPL(sata_port_hardreset); |
| EXPORT_SYMBOL_GPL(sata_std_hardreset); |
| EXPORT_SYMBOL_GPL(ata_std_postreset); |
| EXPORT_SYMBOL_GPL(ata_dev_classify); |
| EXPORT_SYMBOL_GPL(ata_dev_pair); |
| EXPORT_SYMBOL_GPL(ata_port_disable); |
| EXPORT_SYMBOL_GPL(ata_ratelimit); |
| EXPORT_SYMBOL_GPL(ata_wait_register); |
| EXPORT_SYMBOL_GPL(ata_busy_sleep); |
| EXPORT_SYMBOL_GPL(ata_port_queue_task); |
| EXPORT_SYMBOL_GPL(ata_scsi_ioctl); |
| EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); |
| EXPORT_SYMBOL_GPL(ata_scsi_slave_config); |
| EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); |
| EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); |
| EXPORT_SYMBOL_GPL(ata_scsi_release); |
| EXPORT_SYMBOL_GPL(ata_host_intr); |
| EXPORT_SYMBOL_GPL(sata_scr_valid); |
| EXPORT_SYMBOL_GPL(sata_scr_read); |
| EXPORT_SYMBOL_GPL(sata_scr_write); |
| EXPORT_SYMBOL_GPL(sata_scr_write_flush); |
| EXPORT_SYMBOL_GPL(ata_port_online); |
| EXPORT_SYMBOL_GPL(ata_port_offline); |
| EXPORT_SYMBOL_GPL(ata_host_suspend); |
| EXPORT_SYMBOL_GPL(ata_host_resume); |
| EXPORT_SYMBOL_GPL(ata_id_string); |
| EXPORT_SYMBOL_GPL(ata_id_c_string); |
| EXPORT_SYMBOL_GPL(ata_device_blacklisted); |
| EXPORT_SYMBOL_GPL(ata_scsi_simulate); |
| |
| EXPORT_SYMBOL_GPL(ata_pio_need_iordy); |
| EXPORT_SYMBOL_GPL(ata_timing_compute); |
| EXPORT_SYMBOL_GPL(ata_timing_merge); |
| |
| #ifdef CONFIG_PCI |
| EXPORT_SYMBOL_GPL(pci_test_config_bits); |
| EXPORT_SYMBOL_GPL(ata_pci_host_stop); |
| EXPORT_SYMBOL_GPL(ata_pci_init_native_mode); |
| EXPORT_SYMBOL_GPL(ata_pci_init_one); |
| EXPORT_SYMBOL_GPL(ata_pci_remove_one); |
| EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); |
| EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); |
| EXPORT_SYMBOL_GPL(ata_pci_device_suspend); |
| EXPORT_SYMBOL_GPL(ata_pci_device_resume); |
| EXPORT_SYMBOL_GPL(ata_pci_default_filter); |
| EXPORT_SYMBOL_GPL(ata_pci_clear_simplex); |
| #endif /* CONFIG_PCI */ |
| |
| EXPORT_SYMBOL_GPL(ata_scsi_device_suspend); |
| EXPORT_SYMBOL_GPL(ata_scsi_device_resume); |
| |
| EXPORT_SYMBOL_GPL(ata_eng_timeout); |
| EXPORT_SYMBOL_GPL(ata_port_schedule_eh); |
| EXPORT_SYMBOL_GPL(ata_port_abort); |
| EXPORT_SYMBOL_GPL(ata_port_freeze); |
| EXPORT_SYMBOL_GPL(ata_eh_freeze_port); |
| EXPORT_SYMBOL_GPL(ata_eh_thaw_port); |
| EXPORT_SYMBOL_GPL(ata_eh_qc_complete); |
| EXPORT_SYMBOL_GPL(ata_eh_qc_retry); |
| EXPORT_SYMBOL_GPL(ata_do_eh); |