| /* |
| * c 2001 PPC 64 Team, IBM Corp |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * /dev/nvram driver for PPC64 |
| * |
| * This perhaps should live in drivers/char |
| * |
| * TODO: Split the /dev/nvram part (that one can use |
| * drivers/char/generic_nvram.c) from the arch & partition |
| * parsing code. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/fs.h> |
| #include <linux/miscdevice.h> |
| #include <linux/fcntl.h> |
| #include <linux/nvram.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/kmsg_dump.h> |
| #include <linux/pagemap.h> |
| #include <linux/pstore.h> |
| #include <linux/zlib.h> |
| #include <asm/uaccess.h> |
| #include <asm/nvram.h> |
| #include <asm/rtas.h> |
| #include <asm/prom.h> |
| #include <asm/machdep.h> |
| |
| #undef DEBUG_NVRAM |
| |
| #define NVRAM_HEADER_LEN sizeof(struct nvram_header) |
| #define NVRAM_BLOCK_LEN NVRAM_HEADER_LEN |
| |
| /* If change this size, then change the size of NVNAME_LEN */ |
| struct nvram_header { |
| unsigned char signature; |
| unsigned char checksum; |
| unsigned short length; |
| /* Terminating null required only for names < 12 chars. */ |
| char name[12]; |
| }; |
| |
| struct nvram_partition { |
| struct list_head partition; |
| struct nvram_header header; |
| unsigned int index; |
| }; |
| |
| static LIST_HEAD(nvram_partitions); |
| |
| #ifdef CONFIG_PPC_PSERIES |
| struct nvram_os_partition rtas_log_partition = { |
| .name = "ibm,rtas-log", |
| .req_size = 2079, |
| .min_size = 1055, |
| .index = -1, |
| .os_partition = true |
| }; |
| #endif |
| |
| struct nvram_os_partition oops_log_partition = { |
| .name = "lnx,oops-log", |
| .req_size = 4000, |
| .min_size = 2000, |
| .index = -1, |
| .os_partition = true |
| }; |
| |
| static const char *nvram_os_partitions[] = { |
| #ifdef CONFIG_PPC_PSERIES |
| "ibm,rtas-log", |
| #endif |
| "lnx,oops-log", |
| NULL |
| }; |
| |
| static void oops_to_nvram(struct kmsg_dumper *dumper, |
| enum kmsg_dump_reason reason); |
| |
| static struct kmsg_dumper nvram_kmsg_dumper = { |
| .dump = oops_to_nvram |
| }; |
| |
| /* |
| * For capturing and compressing an oops or panic report... |
| |
| * big_oops_buf[] holds the uncompressed text we're capturing. |
| * |
| * oops_buf[] holds the compressed text, preceded by a oops header. |
| * oops header has u16 holding the version of oops header (to differentiate |
| * between old and new format header) followed by u16 holding the length of |
| * the compressed* text (*Or uncompressed, if compression fails.) and u64 |
| * holding the timestamp. oops_buf[] gets written to NVRAM. |
| * |
| * oops_log_info points to the header. oops_data points to the compressed text. |
| * |
| * +- oops_buf |
| * | +- oops_data |
| * v v |
| * +-----------+-----------+-----------+------------------------+ |
| * | version | length | timestamp | text | |
| * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes) | |
| * +-----------+-----------+-----------+------------------------+ |
| * ^ |
| * +- oops_log_info |
| * |
| * We preallocate these buffers during init to avoid kmalloc during oops/panic. |
| */ |
| static size_t big_oops_buf_sz; |
| static char *big_oops_buf, *oops_buf; |
| static char *oops_data; |
| static size_t oops_data_sz; |
| |
| /* Compression parameters */ |
| #define COMPR_LEVEL 6 |
| #define WINDOW_BITS 12 |
| #define MEM_LEVEL 4 |
| static struct z_stream_s stream; |
| |
| #ifdef CONFIG_PSTORE |
| #ifdef CONFIG_PPC_POWERNV |
| static struct nvram_os_partition skiboot_partition = { |
| .name = "ibm,skiboot", |
| .index = -1, |
| .os_partition = false |
| }; |
| #endif |
| |
| #ifdef CONFIG_PPC_PSERIES |
| static struct nvram_os_partition of_config_partition = { |
| .name = "of-config", |
| .index = -1, |
| .os_partition = false |
| }; |
| #endif |
| |
| static struct nvram_os_partition common_partition = { |
| .name = "common", |
| .index = -1, |
| .os_partition = false |
| }; |
| |
| static enum pstore_type_id nvram_type_ids[] = { |
| PSTORE_TYPE_DMESG, |
| PSTORE_TYPE_PPC_COMMON, |
| -1, |
| -1, |
| -1 |
| }; |
| static int read_type; |
| #endif |
| |
| /* nvram_write_os_partition |
| * |
| * We need to buffer the error logs into nvram to ensure that we have |
| * the failure information to decode. If we have a severe error there |
| * is no way to guarantee that the OS or the machine is in a state to |
| * get back to user land and write the error to disk. For example if |
| * the SCSI device driver causes a Machine Check by writing to a bad |
| * IO address, there is no way of guaranteeing that the device driver |
| * is in any state that is would also be able to write the error data |
| * captured to disk, thus we buffer it in NVRAM for analysis on the |
| * next boot. |
| * |
| * In NVRAM the partition containing the error log buffer will looks like: |
| * Header (in bytes): |
| * +-----------+----------+--------+------------+------------------+ |
| * | signature | checksum | length | name | data | |
| * |0 |1 |2 3|4 15|16 length-1| |
| * +-----------+----------+--------+------------+------------------+ |
| * |
| * The 'data' section would look like (in bytes): |
| * +--------------+------------+-----------------------------------+ |
| * | event_logged | sequence # | error log | |
| * |0 3|4 7|8 error_log_size-1| |
| * +--------------+------------+-----------------------------------+ |
| * |
| * event_logged: 0 if event has not been logged to syslog, 1 if it has |
| * sequence #: The unique sequence # for each event. (until it wraps) |
| * error log: The error log from event_scan |
| */ |
| int nvram_write_os_partition(struct nvram_os_partition *part, |
| char *buff, int length, |
| unsigned int err_type, |
| unsigned int error_log_cnt) |
| { |
| int rc; |
| loff_t tmp_index; |
| struct err_log_info info; |
| |
| if (part->index == -1) |
| return -ESPIPE; |
| |
| if (length > part->size) |
| length = part->size; |
| |
| info.error_type = cpu_to_be32(err_type); |
| info.seq_num = cpu_to_be32(error_log_cnt); |
| |
| tmp_index = part->index; |
| |
| rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), |
| &tmp_index); |
| if (rc <= 0) { |
| pr_err("%s: Failed nvram_write (%d)\n", __func__, rc); |
| return rc; |
| } |
| |
| rc = ppc_md.nvram_write(buff, length, &tmp_index); |
| if (rc <= 0) { |
| pr_err("%s: Failed nvram_write (%d)\n", __func__, rc); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| /* nvram_read_partition |
| * |
| * Reads nvram partition for at most 'length' |
| */ |
| int nvram_read_partition(struct nvram_os_partition *part, char *buff, |
| int length, unsigned int *err_type, |
| unsigned int *error_log_cnt) |
| { |
| int rc; |
| loff_t tmp_index; |
| struct err_log_info info; |
| |
| if (part->index == -1) |
| return -1; |
| |
| if (length > part->size) |
| length = part->size; |
| |
| tmp_index = part->index; |
| |
| if (part->os_partition) { |
| rc = ppc_md.nvram_read((char *)&info, |
| sizeof(struct err_log_info), |
| &tmp_index); |
| if (rc <= 0) { |
| pr_err("%s: Failed nvram_read (%d)\n", __func__, rc); |
| return rc; |
| } |
| } |
| |
| rc = ppc_md.nvram_read(buff, length, &tmp_index); |
| if (rc <= 0) { |
| pr_err("%s: Failed nvram_read (%d)\n", __func__, rc); |
| return rc; |
| } |
| |
| if (part->os_partition) { |
| *error_log_cnt = be32_to_cpu(info.seq_num); |
| *err_type = be32_to_cpu(info.error_type); |
| } |
| |
| return 0; |
| } |
| |
| /* nvram_init_os_partition |
| * |
| * This sets up a partition with an "OS" signature. |
| * |
| * The general strategy is the following: |
| * 1.) If a partition with the indicated name already exists... |
| * - If it's large enough, use it. |
| * - Otherwise, recycle it and keep going. |
| * 2.) Search for a free partition that is large enough. |
| * 3.) If there's not a free partition large enough, recycle any obsolete |
| * OS partitions and try again. |
| * 4.) Will first try getting a chunk that will satisfy the requested size. |
| * 5.) If a chunk of the requested size cannot be allocated, then try finding |
| * a chunk that will satisfy the minum needed. |
| * |
| * Returns 0 on success, else -1. |
| */ |
| int __init nvram_init_os_partition(struct nvram_os_partition *part) |
| { |
| loff_t p; |
| int size; |
| |
| /* Look for ours */ |
| p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size); |
| |
| /* Found one but too small, remove it */ |
| if (p && size < part->min_size) { |
| pr_info("nvram: Found too small %s partition," |
| " removing it...\n", part->name); |
| nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL); |
| p = 0; |
| } |
| |
| /* Create one if we didn't find */ |
| if (!p) { |
| p = nvram_create_partition(part->name, NVRAM_SIG_OS, |
| part->req_size, part->min_size); |
| if (p == -ENOSPC) { |
| pr_info("nvram: No room to create %s partition, " |
| "deleting any obsolete OS partitions...\n", |
| part->name); |
| nvram_remove_partition(NULL, NVRAM_SIG_OS, |
| nvram_os_partitions); |
| p = nvram_create_partition(part->name, NVRAM_SIG_OS, |
| part->req_size, part->min_size); |
| } |
| } |
| |
| if (p <= 0) { |
| pr_err("nvram: Failed to find or create %s" |
| " partition, err %d\n", part->name, (int)p); |
| return -1; |
| } |
| |
| part->index = p; |
| part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info); |
| |
| return 0; |
| } |
| |
| /* Derived from logfs_compress() */ |
| static int nvram_compress(const void *in, void *out, size_t inlen, |
| size_t outlen) |
| { |
| int err, ret; |
| |
| ret = -EIO; |
| err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS, |
| MEM_LEVEL, Z_DEFAULT_STRATEGY); |
| if (err != Z_OK) |
| goto error; |
| |
| stream.next_in = in; |
| stream.avail_in = inlen; |
| stream.total_in = 0; |
| stream.next_out = out; |
| stream.avail_out = outlen; |
| stream.total_out = 0; |
| |
| err = zlib_deflate(&stream, Z_FINISH); |
| if (err != Z_STREAM_END) |
| goto error; |
| |
| err = zlib_deflateEnd(&stream); |
| if (err != Z_OK) |
| goto error; |
| |
| if (stream.total_out >= stream.total_in) |
| goto error; |
| |
| ret = stream.total_out; |
| error: |
| return ret; |
| } |
| |
| /* Compress the text from big_oops_buf into oops_buf. */ |
| static int zip_oops(size_t text_len) |
| { |
| struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf; |
| int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len, |
| oops_data_sz); |
| if (zipped_len < 0) { |
| pr_err("nvram: compression failed; returned %d\n", zipped_len); |
| pr_err("nvram: logging uncompressed oops/panic report\n"); |
| return -1; |
| } |
| oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION); |
| oops_hdr->report_length = cpu_to_be16(zipped_len); |
| oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds()); |
| return 0; |
| } |
| |
| #ifdef CONFIG_PSTORE |
| static int nvram_pstore_open(struct pstore_info *psi) |
| { |
| /* Reset the iterator to start reading partitions again */ |
| read_type = -1; |
| return 0; |
| } |
| |
| /** |
| * nvram_pstore_write - pstore write callback for nvram |
| * @type: Type of message logged |
| * @reason: reason behind dump (oops/panic) |
| * @id: identifier to indicate the write performed |
| * @part: pstore writes data to registered buffer in parts, |
| * part number will indicate the same. |
| * @count: Indicates oops count |
| * @compressed: Flag to indicate the log is compressed |
| * @size: number of bytes written to the registered buffer |
| * @psi: registered pstore_info structure |
| * |
| * Called by pstore_dump() when an oops or panic report is logged in the |
| * printk buffer. |
| * Returns 0 on successful write. |
| */ |
| static int nvram_pstore_write(enum pstore_type_id type, |
| enum kmsg_dump_reason reason, |
| u64 *id, unsigned int part, int count, |
| bool compressed, size_t size, |
| struct pstore_info *psi) |
| { |
| int rc; |
| unsigned int err_type = ERR_TYPE_KERNEL_PANIC; |
| struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf; |
| |
| /* part 1 has the recent messages from printk buffer */ |
| if (part > 1 || (type != PSTORE_TYPE_DMESG)) |
| return -1; |
| |
| if (clobbering_unread_rtas_event()) |
| return -1; |
| |
| oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION); |
| oops_hdr->report_length = cpu_to_be16(size); |
| oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds()); |
| |
| if (compressed) |
| err_type = ERR_TYPE_KERNEL_PANIC_GZ; |
| |
| rc = nvram_write_os_partition(&oops_log_partition, oops_buf, |
| (int) (sizeof(*oops_hdr) + size), err_type, count); |
| |
| if (rc != 0) |
| return rc; |
| |
| *id = part; |
| return 0; |
| } |
| |
| /* |
| * Reads the oops/panic report, rtas, of-config and common partition. |
| * Returns the length of the data we read from each partition. |
| * Returns 0 if we've been called before. |
| */ |
| static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type, |
| int *count, struct timespec *time, char **buf, |
| bool *compressed, struct pstore_info *psi) |
| { |
| struct oops_log_info *oops_hdr; |
| unsigned int err_type, id_no, size = 0; |
| struct nvram_os_partition *part = NULL; |
| char *buff = NULL; |
| int sig = 0; |
| loff_t p; |
| |
| read_type++; |
| |
| switch (nvram_type_ids[read_type]) { |
| case PSTORE_TYPE_DMESG: |
| part = &oops_log_partition; |
| *type = PSTORE_TYPE_DMESG; |
| break; |
| case PSTORE_TYPE_PPC_COMMON: |
| sig = NVRAM_SIG_SYS; |
| part = &common_partition; |
| *type = PSTORE_TYPE_PPC_COMMON; |
| *id = PSTORE_TYPE_PPC_COMMON; |
| time->tv_sec = 0; |
| time->tv_nsec = 0; |
| break; |
| #ifdef CONFIG_PPC_PSERIES |
| case PSTORE_TYPE_PPC_RTAS: |
| part = &rtas_log_partition; |
| *type = PSTORE_TYPE_PPC_RTAS; |
| time->tv_sec = last_rtas_event; |
| time->tv_nsec = 0; |
| break; |
| case PSTORE_TYPE_PPC_OF: |
| sig = NVRAM_SIG_OF; |
| part = &of_config_partition; |
| *type = PSTORE_TYPE_PPC_OF; |
| *id = PSTORE_TYPE_PPC_OF; |
| time->tv_sec = 0; |
| time->tv_nsec = 0; |
| break; |
| #endif |
| #ifdef CONFIG_PPC_POWERNV |
| case PSTORE_TYPE_PPC_OPAL: |
| sig = NVRAM_SIG_FW; |
| part = &skiboot_partition; |
| *type = PSTORE_TYPE_PPC_OPAL; |
| *id = PSTORE_TYPE_PPC_OPAL; |
| time->tv_sec = 0; |
| time->tv_nsec = 0; |
| break; |
| #endif |
| default: |
| return 0; |
| } |
| |
| if (!part->os_partition) { |
| p = nvram_find_partition(part->name, sig, &size); |
| if (p <= 0) { |
| pr_err("nvram: Failed to find partition %s, " |
| "err %d\n", part->name, (int)p); |
| return 0; |
| } |
| part->index = p; |
| part->size = size; |
| } |
| |
| buff = kmalloc(part->size, GFP_KERNEL); |
| |
| if (!buff) |
| return -ENOMEM; |
| |
| if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) { |
| kfree(buff); |
| return 0; |
| } |
| |
| *count = 0; |
| |
| if (part->os_partition) |
| *id = id_no; |
| |
| if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) { |
| size_t length, hdr_size; |
| |
| oops_hdr = (struct oops_log_info *)buff; |
| if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) { |
| /* Old format oops header had 2-byte record size */ |
| hdr_size = sizeof(u16); |
| length = be16_to_cpu(oops_hdr->version); |
| time->tv_sec = 0; |
| time->tv_nsec = 0; |
| } else { |
| hdr_size = sizeof(*oops_hdr); |
| length = be16_to_cpu(oops_hdr->report_length); |
| time->tv_sec = be64_to_cpu(oops_hdr->timestamp); |
| time->tv_nsec = 0; |
| } |
| *buf = kmemdup(buff + hdr_size, length, GFP_KERNEL); |
| if (*buf == NULL) |
| return -ENOMEM; |
| kfree(buff); |
| |
| if (err_type == ERR_TYPE_KERNEL_PANIC_GZ) |
| *compressed = true; |
| else |
| *compressed = false; |
| return length; |
| } |
| |
| *buf = buff; |
| return part->size; |
| } |
| |
| static struct pstore_info nvram_pstore_info = { |
| .owner = THIS_MODULE, |
| .name = "nvram", |
| .open = nvram_pstore_open, |
| .read = nvram_pstore_read, |
| .write = nvram_pstore_write, |
| }; |
| |
| static int nvram_pstore_init(void) |
| { |
| int rc = 0; |
| |
| if (machine_is(pseries)) { |
| nvram_type_ids[2] = PSTORE_TYPE_PPC_RTAS; |
| nvram_type_ids[3] = PSTORE_TYPE_PPC_OF; |
| } else |
| nvram_type_ids[2] = PSTORE_TYPE_PPC_OPAL; |
| |
| nvram_pstore_info.buf = oops_data; |
| nvram_pstore_info.bufsize = oops_data_sz; |
| |
| spin_lock_init(&nvram_pstore_info.buf_lock); |
| |
| rc = pstore_register(&nvram_pstore_info); |
| if (rc && (rc != -EPERM)) |
| /* Print error only when pstore.backend == nvram */ |
| pr_err("nvram: pstore_register() failed, returned %d. " |
| "Defaults to kmsg_dump\n", rc); |
| |
| return rc; |
| } |
| #else |
| static int nvram_pstore_init(void) |
| { |
| return -1; |
| } |
| #endif |
| |
| void __init nvram_init_oops_partition(int rtas_partition_exists) |
| { |
| int rc; |
| |
| rc = nvram_init_os_partition(&oops_log_partition); |
| if (rc != 0) { |
| #ifdef CONFIG_PPC_PSERIES |
| if (!rtas_partition_exists) { |
| pr_err("nvram: Failed to initialize oops partition!"); |
| return; |
| } |
| pr_notice("nvram: Using %s partition to log both" |
| " RTAS errors and oops/panic reports\n", |
| rtas_log_partition.name); |
| memcpy(&oops_log_partition, &rtas_log_partition, |
| sizeof(rtas_log_partition)); |
| #else |
| pr_err("nvram: Failed to initialize oops partition!"); |
| return; |
| #endif |
| } |
| oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL); |
| if (!oops_buf) { |
| pr_err("nvram: No memory for %s partition\n", |
| oops_log_partition.name); |
| return; |
| } |
| oops_data = oops_buf + sizeof(struct oops_log_info); |
| oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info); |
| |
| rc = nvram_pstore_init(); |
| |
| if (!rc) |
| return; |
| |
| /* |
| * Figure compression (preceded by elimination of each line's <n> |
| * severity prefix) will reduce the oops/panic report to at most |
| * 45% of its original size. |
| */ |
| big_oops_buf_sz = (oops_data_sz * 100) / 45; |
| big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL); |
| if (big_oops_buf) { |
| stream.workspace = kmalloc(zlib_deflate_workspacesize( |
| WINDOW_BITS, MEM_LEVEL), GFP_KERNEL); |
| if (!stream.workspace) { |
| pr_err("nvram: No memory for compression workspace; " |
| "skipping compression of %s partition data\n", |
| oops_log_partition.name); |
| kfree(big_oops_buf); |
| big_oops_buf = NULL; |
| } |
| } else { |
| pr_err("No memory for uncompressed %s data; " |
| "skipping compression\n", oops_log_partition.name); |
| stream.workspace = NULL; |
| } |
| |
| rc = kmsg_dump_register(&nvram_kmsg_dumper); |
| if (rc != 0) { |
| pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc); |
| kfree(oops_buf); |
| kfree(big_oops_buf); |
| kfree(stream.workspace); |
| } |
| } |
| |
| /* |
| * This is our kmsg_dump callback, called after an oops or panic report |
| * has been written to the printk buffer. We want to capture as much |
| * of the printk buffer as possible. First, capture as much as we can |
| * that we think will compress sufficiently to fit in the lnx,oops-log |
| * partition. If that's too much, go back and capture uncompressed text. |
| */ |
| static void oops_to_nvram(struct kmsg_dumper *dumper, |
| enum kmsg_dump_reason reason) |
| { |
| struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf; |
| static unsigned int oops_count = 0; |
| static bool panicking = false; |
| static DEFINE_SPINLOCK(lock); |
| unsigned long flags; |
| size_t text_len; |
| unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ; |
| int rc = -1; |
| |
| switch (reason) { |
| case KMSG_DUMP_RESTART: |
| case KMSG_DUMP_HALT: |
| case KMSG_DUMP_POWEROFF: |
| /* These are almost always orderly shutdowns. */ |
| return; |
| case KMSG_DUMP_OOPS: |
| break; |
| case KMSG_DUMP_PANIC: |
| panicking = true; |
| break; |
| case KMSG_DUMP_EMERG: |
| if (panicking) |
| /* Panic report already captured. */ |
| return; |
| break; |
| default: |
| pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n", |
| __func__, (int) reason); |
| return; |
| } |
| |
| if (clobbering_unread_rtas_event()) |
| return; |
| |
| if (!spin_trylock_irqsave(&lock, flags)) |
| return; |
| |
| if (big_oops_buf) { |
| kmsg_dump_get_buffer(dumper, false, |
| big_oops_buf, big_oops_buf_sz, &text_len); |
| rc = zip_oops(text_len); |
| } |
| if (rc != 0) { |
| kmsg_dump_rewind(dumper); |
| kmsg_dump_get_buffer(dumper, false, |
| oops_data, oops_data_sz, &text_len); |
| err_type = ERR_TYPE_KERNEL_PANIC; |
| oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION); |
| oops_hdr->report_length = cpu_to_be16(text_len); |
| oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds()); |
| } |
| |
| (void) nvram_write_os_partition(&oops_log_partition, oops_buf, |
| (int) (sizeof(*oops_hdr) + text_len), err_type, |
| ++oops_count); |
| |
| spin_unlock_irqrestore(&lock, flags); |
| } |
| |
| static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin) |
| { |
| if (ppc_md.nvram_size == NULL) |
| return -ENODEV; |
| return generic_file_llseek_size(file, offset, origin, MAX_LFS_FILESIZE, |
| ppc_md.nvram_size()); |
| } |
| |
| |
| static ssize_t dev_nvram_read(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| ssize_t ret; |
| char *tmp = NULL; |
| ssize_t size; |
| |
| if (!ppc_md.nvram_size) { |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| size = ppc_md.nvram_size(); |
| if (size < 0) { |
| ret = size; |
| goto out; |
| } |
| |
| if (*ppos >= size) { |
| ret = 0; |
| goto out; |
| } |
| |
| count = min_t(size_t, count, size - *ppos); |
| count = min(count, PAGE_SIZE); |
| |
| tmp = kmalloc(count, GFP_KERNEL); |
| if (!tmp) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ret = ppc_md.nvram_read(tmp, count, ppos); |
| if (ret <= 0) |
| goto out; |
| |
| if (copy_to_user(buf, tmp, ret)) |
| ret = -EFAULT; |
| |
| out: |
| kfree(tmp); |
| return ret; |
| |
| } |
| |
| static ssize_t dev_nvram_write(struct file *file, const char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| ssize_t ret; |
| char *tmp = NULL; |
| ssize_t size; |
| |
| ret = -ENODEV; |
| if (!ppc_md.nvram_size) |
| goto out; |
| |
| ret = 0; |
| size = ppc_md.nvram_size(); |
| if (*ppos >= size || size < 0) |
| goto out; |
| |
| count = min_t(size_t, count, size - *ppos); |
| count = min(count, PAGE_SIZE); |
| |
| ret = -ENOMEM; |
| tmp = kmalloc(count, GFP_KERNEL); |
| if (!tmp) |
| goto out; |
| |
| ret = -EFAULT; |
| if (copy_from_user(tmp, buf, count)) |
| goto out; |
| |
| ret = ppc_md.nvram_write(tmp, count, ppos); |
| |
| out: |
| kfree(tmp); |
| return ret; |
| |
| } |
| |
| static long dev_nvram_ioctl(struct file *file, unsigned int cmd, |
| unsigned long arg) |
| { |
| switch(cmd) { |
| #ifdef CONFIG_PPC_PMAC |
| case OBSOLETE_PMAC_NVRAM_GET_OFFSET: |
| printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n"); |
| case IOC_NVRAM_GET_OFFSET: { |
| int part, offset; |
| |
| if (!machine_is(powermac)) |
| return -EINVAL; |
| if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0) |
| return -EFAULT; |
| if (part < pmac_nvram_OF || part > pmac_nvram_NR) |
| return -EINVAL; |
| offset = pmac_get_partition(part); |
| if (offset < 0) |
| return offset; |
| if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| #endif /* CONFIG_PPC_PMAC */ |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| const struct file_operations nvram_fops = { |
| .owner = THIS_MODULE, |
| .llseek = dev_nvram_llseek, |
| .read = dev_nvram_read, |
| .write = dev_nvram_write, |
| .unlocked_ioctl = dev_nvram_ioctl, |
| }; |
| |
| static struct miscdevice nvram_dev = { |
| NVRAM_MINOR, |
| "nvram", |
| &nvram_fops |
| }; |
| |
| |
| #ifdef DEBUG_NVRAM |
| static void __init nvram_print_partitions(char * label) |
| { |
| struct nvram_partition * tmp_part; |
| |
| printk(KERN_WARNING "--------%s---------\n", label); |
| printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n"); |
| list_for_each_entry(tmp_part, &nvram_partitions, partition) { |
| printk(KERN_WARNING "%4d \t%02x\t%02x\t%d\t%12.12s\n", |
| tmp_part->index, tmp_part->header.signature, |
| tmp_part->header.checksum, tmp_part->header.length, |
| tmp_part->header.name); |
| } |
| } |
| #endif |
| |
| |
| static int __init nvram_write_header(struct nvram_partition * part) |
| { |
| loff_t tmp_index; |
| int rc; |
| struct nvram_header phead; |
| |
| memcpy(&phead, &part->header, NVRAM_HEADER_LEN); |
| phead.length = cpu_to_be16(phead.length); |
| |
| tmp_index = part->index; |
| rc = ppc_md.nvram_write((char *)&phead, NVRAM_HEADER_LEN, &tmp_index); |
| |
| return rc; |
| } |
| |
| |
| static unsigned char __init nvram_checksum(struct nvram_header *p) |
| { |
| unsigned int c_sum, c_sum2; |
| unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */ |
| c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5]; |
| |
| /* The sum may have spilled into the 3rd byte. Fold it back. */ |
| c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff; |
| /* The sum cannot exceed 2 bytes. Fold it into a checksum */ |
| c_sum2 = (c_sum >> 8) + (c_sum << 8); |
| c_sum = ((c_sum + c_sum2) >> 8) & 0xff; |
| return c_sum; |
| } |
| |
| /* |
| * Per the criteria passed via nvram_remove_partition(), should this |
| * partition be removed? 1=remove, 0=keep |
| */ |
| static int nvram_can_remove_partition(struct nvram_partition *part, |
| const char *name, int sig, const char *exceptions[]) |
| { |
| if (part->header.signature != sig) |
| return 0; |
| if (name) { |
| if (strncmp(name, part->header.name, 12)) |
| return 0; |
| } else if (exceptions) { |
| const char **except; |
| for (except = exceptions; *except; except++) { |
| if (!strncmp(*except, part->header.name, 12)) |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| /** |
| * nvram_remove_partition - Remove one or more partitions in nvram |
| * @name: name of the partition to remove, or NULL for a |
| * signature only match |
| * @sig: signature of the partition(s) to remove |
| * @exceptions: When removing all partitions with a matching signature, |
| * leave these alone. |
| */ |
| |
| int __init nvram_remove_partition(const char *name, int sig, |
| const char *exceptions[]) |
| { |
| struct nvram_partition *part, *prev, *tmp; |
| int rc; |
| |
| list_for_each_entry(part, &nvram_partitions, partition) { |
| if (!nvram_can_remove_partition(part, name, sig, exceptions)) |
| continue; |
| |
| /* Make partition a free partition */ |
| part->header.signature = NVRAM_SIG_FREE; |
| strncpy(part->header.name, "wwwwwwwwwwww", 12); |
| part->header.checksum = nvram_checksum(&part->header); |
| rc = nvram_write_header(part); |
| if (rc <= 0) { |
| printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc); |
| return rc; |
| } |
| } |
| |
| /* Merge contiguous ones */ |
| prev = NULL; |
| list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) { |
| if (part->header.signature != NVRAM_SIG_FREE) { |
| prev = NULL; |
| continue; |
| } |
| if (prev) { |
| prev->header.length += part->header.length; |
| prev->header.checksum = nvram_checksum(&part->header); |
| rc = nvram_write_header(part); |
| if (rc <= 0) { |
| printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc); |
| return rc; |
| } |
| list_del(&part->partition); |
| kfree(part); |
| } else |
| prev = part; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * nvram_create_partition - Create a partition in nvram |
| * @name: name of the partition to create |
| * @sig: signature of the partition to create |
| * @req_size: size of data to allocate in bytes |
| * @min_size: minimum acceptable size (0 means req_size) |
| * |
| * Returns a negative error code or a positive nvram index |
| * of the beginning of the data area of the newly created |
| * partition. If you provided a min_size smaller than req_size |
| * you need to query for the actual size yourself after the |
| * call using nvram_partition_get_size(). |
| */ |
| loff_t __init nvram_create_partition(const char *name, int sig, |
| int req_size, int min_size) |
| { |
| struct nvram_partition *part; |
| struct nvram_partition *new_part; |
| struct nvram_partition *free_part = NULL; |
| static char nv_init_vals[16]; |
| loff_t tmp_index; |
| long size = 0; |
| int rc; |
| |
| /* Convert sizes from bytes to blocks */ |
| req_size = _ALIGN_UP(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN; |
| min_size = _ALIGN_UP(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN; |
| |
| /* If no minimum size specified, make it the same as the |
| * requested size |
| */ |
| if (min_size == 0) |
| min_size = req_size; |
| if (min_size > req_size) |
| return -EINVAL; |
| |
| /* Now add one block to each for the header */ |
| req_size += 1; |
| min_size += 1; |
| |
| /* Find a free partition that will give us the maximum needed size |
| If can't find one that will give us the minimum size needed */ |
| list_for_each_entry(part, &nvram_partitions, partition) { |
| if (part->header.signature != NVRAM_SIG_FREE) |
| continue; |
| |
| if (part->header.length >= req_size) { |
| size = req_size; |
| free_part = part; |
| break; |
| } |
| if (part->header.length > size && |
| part->header.length >= min_size) { |
| size = part->header.length; |
| free_part = part; |
| } |
| } |
| if (!size) |
| return -ENOSPC; |
| |
| /* Create our OS partition */ |
| new_part = kmalloc(sizeof(*new_part), GFP_KERNEL); |
| if (!new_part) { |
| pr_err("%s: kmalloc failed\n", __func__); |
| return -ENOMEM; |
| } |
| |
| new_part->index = free_part->index; |
| new_part->header.signature = sig; |
| new_part->header.length = size; |
| strncpy(new_part->header.name, name, 12); |
| new_part->header.checksum = nvram_checksum(&new_part->header); |
| |
| rc = nvram_write_header(new_part); |
| if (rc <= 0) { |
| pr_err("%s: nvram_write_header failed (%d)\n", __func__, rc); |
| kfree(new_part); |
| return rc; |
| } |
| list_add_tail(&new_part->partition, &free_part->partition); |
| |
| /* Adjust or remove the partition we stole the space from */ |
| if (free_part->header.length > size) { |
| free_part->index += size * NVRAM_BLOCK_LEN; |
| free_part->header.length -= size; |
| free_part->header.checksum = nvram_checksum(&free_part->header); |
| rc = nvram_write_header(free_part); |
| if (rc <= 0) { |
| pr_err("%s: nvram_write_header failed (%d)\n", |
| __func__, rc); |
| return rc; |
| } |
| } else { |
| list_del(&free_part->partition); |
| kfree(free_part); |
| } |
| |
| /* Clear the new partition */ |
| for (tmp_index = new_part->index + NVRAM_HEADER_LEN; |
| tmp_index < ((size - 1) * NVRAM_BLOCK_LEN); |
| tmp_index += NVRAM_BLOCK_LEN) { |
| rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index); |
| if (rc <= 0) { |
| pr_err("%s: nvram_write failed (%d)\n", |
| __func__, rc); |
| return rc; |
| } |
| } |
| |
| return new_part->index + NVRAM_HEADER_LEN; |
| } |
| |
| /** |
| * nvram_get_partition_size - Get the data size of an nvram partition |
| * @data_index: This is the offset of the start of the data of |
| * the partition. The same value that is returned by |
| * nvram_create_partition(). |
| */ |
| int nvram_get_partition_size(loff_t data_index) |
| { |
| struct nvram_partition *part; |
| |
| list_for_each_entry(part, &nvram_partitions, partition) { |
| if (part->index + NVRAM_HEADER_LEN == data_index) |
| return (part->header.length - 1) * NVRAM_BLOCK_LEN; |
| } |
| return -1; |
| } |
| |
| |
| /** |
| * nvram_find_partition - Find an nvram partition by signature and name |
| * @name: Name of the partition or NULL for any name |
| * @sig: Signature to test against |
| * @out_size: if non-NULL, returns the size of the data part of the partition |
| */ |
| loff_t nvram_find_partition(const char *name, int sig, int *out_size) |
| { |
| struct nvram_partition *p; |
| |
| list_for_each_entry(p, &nvram_partitions, partition) { |
| if (p->header.signature == sig && |
| (!name || !strncmp(p->header.name, name, 12))) { |
| if (out_size) |
| *out_size = (p->header.length - 1) * |
| NVRAM_BLOCK_LEN; |
| return p->index + NVRAM_HEADER_LEN; |
| } |
| } |
| return 0; |
| } |
| |
| int __init nvram_scan_partitions(void) |
| { |
| loff_t cur_index = 0; |
| struct nvram_header phead; |
| struct nvram_partition * tmp_part; |
| unsigned char c_sum; |
| char * header; |
| int total_size; |
| int err; |
| |
| if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0) |
| return -ENODEV; |
| total_size = ppc_md.nvram_size(); |
| |
| header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL); |
| if (!header) { |
| printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n"); |
| return -ENOMEM; |
| } |
| |
| while (cur_index < total_size) { |
| |
| err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index); |
| if (err != NVRAM_HEADER_LEN) { |
| printk(KERN_ERR "nvram_scan_partitions: Error parsing " |
| "nvram partitions\n"); |
| goto out; |
| } |
| |
| cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */ |
| |
| memcpy(&phead, header, NVRAM_HEADER_LEN); |
| |
| phead.length = be16_to_cpu(phead.length); |
| |
| err = 0; |
| c_sum = nvram_checksum(&phead); |
| if (c_sum != phead.checksum) { |
| printk(KERN_WARNING "WARNING: nvram partition checksum" |
| " was %02x, should be %02x!\n", |
| phead.checksum, c_sum); |
| printk(KERN_WARNING "Terminating nvram partition scan\n"); |
| goto out; |
| } |
| if (!phead.length) { |
| printk(KERN_WARNING "WARNING: nvram corruption " |
| "detected: 0-length partition\n"); |
| goto out; |
| } |
| tmp_part = kmalloc(sizeof(struct nvram_partition), GFP_KERNEL); |
| err = -ENOMEM; |
| if (!tmp_part) { |
| printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n"); |
| goto out; |
| } |
| |
| memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN); |
| tmp_part->index = cur_index; |
| list_add_tail(&tmp_part->partition, &nvram_partitions); |
| |
| cur_index += phead.length * NVRAM_BLOCK_LEN; |
| } |
| err = 0; |
| |
| #ifdef DEBUG_NVRAM |
| nvram_print_partitions("NVRAM Partitions"); |
| #endif |
| |
| out: |
| kfree(header); |
| return err; |
| } |
| |
| static int __init nvram_init(void) |
| { |
| int rc; |
| |
| BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16); |
| |
| if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0) |
| return -ENODEV; |
| |
| rc = misc_register(&nvram_dev); |
| if (rc != 0) { |
| printk(KERN_ERR "nvram_init: failed to register device\n"); |
| return rc; |
| } |
| |
| return rc; |
| } |
| device_initcall(nvram_init); |