| /* |
| * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_bit.h" |
| #include "xfs_log.h" |
| #include "xfs_inum.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_dir.h" |
| #include "xfs_dir2.h" |
| #include "xfs_alloc.h" |
| #include "xfs_dmapi.h" |
| #include "xfs_quota.h" |
| #include "xfs_mount.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_dir_sf.h" |
| #include "xfs_dir2_sf.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_dinode.h" |
| #include "xfs_inode.h" |
| #include "xfs_bmap.h" |
| #include "xfs_btree.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_rtalloc.h" |
| #include "xfs_error.h" |
| #include "xfs_itable.h" |
| #include "xfs_rw.h" |
| #include "xfs_acl.h" |
| #include "xfs_cap.h" |
| #include "xfs_mac.h" |
| #include "xfs_attr.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_utils.h" |
| #include "xfs_iomap.h" |
| |
| #include <linux/capability.h> |
| #include <linux/writeback.h> |
| |
| |
| #if defined(XFS_RW_TRACE) |
| void |
| xfs_rw_enter_trace( |
| int tag, |
| xfs_iocore_t *io, |
| void *data, |
| size_t segs, |
| loff_t offset, |
| int ioflags) |
| { |
| xfs_inode_t *ip = XFS_IO_INODE(io); |
| |
| if (ip->i_rwtrace == NULL) |
| return; |
| ktrace_enter(ip->i_rwtrace, |
| (void *)(unsigned long)tag, |
| (void *)ip, |
| (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)), |
| (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)), |
| (void *)data, |
| (void *)((unsigned long)segs), |
| (void *)((unsigned long)((offset >> 32) & 0xffffffff)), |
| (void *)((unsigned long)(offset & 0xffffffff)), |
| (void *)((unsigned long)ioflags), |
| (void *)((unsigned long)((io->io_new_size >> 32) & 0xffffffff)), |
| (void *)((unsigned long)(io->io_new_size & 0xffffffff)), |
| (void *)((unsigned long)current_pid()), |
| (void *)NULL, |
| (void *)NULL, |
| (void *)NULL, |
| (void *)NULL); |
| } |
| |
| void |
| xfs_inval_cached_trace( |
| xfs_iocore_t *io, |
| xfs_off_t offset, |
| xfs_off_t len, |
| xfs_off_t first, |
| xfs_off_t last) |
| { |
| xfs_inode_t *ip = XFS_IO_INODE(io); |
| |
| if (ip->i_rwtrace == NULL) |
| return; |
| ktrace_enter(ip->i_rwtrace, |
| (void *)(__psint_t)XFS_INVAL_CACHED, |
| (void *)ip, |
| (void *)((unsigned long)((offset >> 32) & 0xffffffff)), |
| (void *)((unsigned long)(offset & 0xffffffff)), |
| (void *)((unsigned long)((len >> 32) & 0xffffffff)), |
| (void *)((unsigned long)(len & 0xffffffff)), |
| (void *)((unsigned long)((first >> 32) & 0xffffffff)), |
| (void *)((unsigned long)(first & 0xffffffff)), |
| (void *)((unsigned long)((last >> 32) & 0xffffffff)), |
| (void *)((unsigned long)(last & 0xffffffff)), |
| (void *)((unsigned long)current_pid()), |
| (void *)NULL, |
| (void *)NULL, |
| (void *)NULL, |
| (void *)NULL, |
| (void *)NULL); |
| } |
| #endif |
| |
| /* |
| * xfs_iozero |
| * |
| * xfs_iozero clears the specified range of buffer supplied, |
| * and marks all the affected blocks as valid and modified. If |
| * an affected block is not allocated, it will be allocated. If |
| * an affected block is not completely overwritten, and is not |
| * valid before the operation, it will be read from disk before |
| * being partially zeroed. |
| */ |
| STATIC int |
| xfs_iozero( |
| struct inode *ip, /* inode */ |
| loff_t pos, /* offset in file */ |
| size_t count, /* size of data to zero */ |
| loff_t end_size) /* max file size to set */ |
| { |
| unsigned bytes; |
| struct page *page; |
| struct address_space *mapping; |
| char *kaddr; |
| int status; |
| |
| mapping = ip->i_mapping; |
| do { |
| unsigned long index, offset; |
| |
| offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ |
| index = pos >> PAGE_CACHE_SHIFT; |
| bytes = PAGE_CACHE_SIZE - offset; |
| if (bytes > count) |
| bytes = count; |
| |
| status = -ENOMEM; |
| page = grab_cache_page(mapping, index); |
| if (!page) |
| break; |
| |
| kaddr = kmap(page); |
| status = mapping->a_ops->prepare_write(NULL, page, offset, |
| offset + bytes); |
| if (status) { |
| goto unlock; |
| } |
| |
| memset((void *) (kaddr + offset), 0, bytes); |
| flush_dcache_page(page); |
| status = mapping->a_ops->commit_write(NULL, page, offset, |
| offset + bytes); |
| if (!status) { |
| pos += bytes; |
| count -= bytes; |
| if (pos > i_size_read(ip)) |
| i_size_write(ip, pos < end_size ? pos : end_size); |
| } |
| |
| unlock: |
| kunmap(page); |
| unlock_page(page); |
| page_cache_release(page); |
| if (status) |
| break; |
| } while (count); |
| |
| return (-status); |
| } |
| |
| ssize_t /* bytes read, or (-) error */ |
| xfs_read( |
| bhv_desc_t *bdp, |
| struct kiocb *iocb, |
| const struct iovec *iovp, |
| unsigned int segs, |
| loff_t *offset, |
| int ioflags, |
| cred_t *credp) |
| { |
| struct file *file = iocb->ki_filp; |
| struct inode *inode = file->f_mapping->host; |
| size_t size = 0; |
| ssize_t ret; |
| xfs_fsize_t n; |
| xfs_inode_t *ip; |
| xfs_mount_t *mp; |
| vnode_t *vp; |
| unsigned long seg; |
| |
| ip = XFS_BHVTOI(bdp); |
| vp = BHV_TO_VNODE(bdp); |
| mp = ip->i_mount; |
| |
| XFS_STATS_INC(xs_read_calls); |
| |
| /* START copy & waste from filemap.c */ |
| for (seg = 0; seg < segs; seg++) { |
| const struct iovec *iv = &iovp[seg]; |
| |
| /* |
| * If any segment has a negative length, or the cumulative |
| * length ever wraps negative then return -EINVAL. |
| */ |
| size += iv->iov_len; |
| if (unlikely((ssize_t)(size|iv->iov_len) < 0)) |
| return XFS_ERROR(-EINVAL); |
| } |
| /* END copy & waste from filemap.c */ |
| |
| if (unlikely(ioflags & IO_ISDIRECT)) { |
| xfs_buftarg_t *target = |
| (ip->i_d.di_flags & XFS_DIFLAG_REALTIME) ? |
| mp->m_rtdev_targp : mp->m_ddev_targp; |
| if ((*offset & target->bt_smask) || |
| (size & target->bt_smask)) { |
| if (*offset == ip->i_d.di_size) { |
| return (0); |
| } |
| return -XFS_ERROR(EINVAL); |
| } |
| } |
| |
| n = XFS_MAXIOFFSET(mp) - *offset; |
| if ((n <= 0) || (size == 0)) |
| return 0; |
| |
| if (n < size) |
| size = n; |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return -EIO; |
| |
| if (unlikely(ioflags & IO_ISDIRECT)) |
| mutex_lock(&inode->i_mutex); |
| xfs_ilock(ip, XFS_IOLOCK_SHARED); |
| |
| if (DM_EVENT_ENABLED(vp->v_vfsp, ip, DM_EVENT_READ) && |
| !(ioflags & IO_INVIS)) { |
| vrwlock_t locktype = VRWLOCK_READ; |
| int dmflags = FILP_DELAY_FLAG(file) | DM_SEM_FLAG_RD(ioflags); |
| |
| ret = -XFS_SEND_DATA(mp, DM_EVENT_READ, |
| BHV_TO_VNODE(bdp), *offset, size, |
| dmflags, &locktype); |
| if (ret) { |
| xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| goto unlock_mutex; |
| } |
| } |
| |
| if (unlikely((ioflags & IO_ISDIRECT) && VN_CACHED(vp))) |
| VOP_FLUSHINVAL_PAGES(vp, ctooff(offtoct(*offset)), |
| -1, FI_REMAPF_LOCKED); |
| |
| xfs_rw_enter_trace(XFS_READ_ENTER, &ip->i_iocore, |
| (void *)iovp, segs, *offset, ioflags); |
| ret = __generic_file_aio_read(iocb, iovp, segs, offset); |
| if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO)) |
| ret = wait_on_sync_kiocb(iocb); |
| if (ret > 0) |
| XFS_STATS_ADD(xs_read_bytes, ret); |
| |
| xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| |
| unlock_mutex: |
| if (unlikely(ioflags & IO_ISDIRECT)) |
| mutex_unlock(&inode->i_mutex); |
| return ret; |
| } |
| |
| ssize_t |
| xfs_sendfile( |
| bhv_desc_t *bdp, |
| struct file *filp, |
| loff_t *offset, |
| int ioflags, |
| size_t count, |
| read_actor_t actor, |
| void *target, |
| cred_t *credp) |
| { |
| ssize_t ret; |
| xfs_fsize_t n; |
| xfs_inode_t *ip; |
| xfs_mount_t *mp; |
| vnode_t *vp; |
| |
| ip = XFS_BHVTOI(bdp); |
| vp = BHV_TO_VNODE(bdp); |
| mp = ip->i_mount; |
| |
| XFS_STATS_INC(xs_read_calls); |
| |
| n = XFS_MAXIOFFSET(mp) - *offset; |
| if ((n <= 0) || (count == 0)) |
| return 0; |
| |
| if (n < count) |
| count = n; |
| |
| if (XFS_FORCED_SHUTDOWN(ip->i_mount)) |
| return -EIO; |
| |
| xfs_ilock(ip, XFS_IOLOCK_SHARED); |
| |
| if (DM_EVENT_ENABLED(vp->v_vfsp, ip, DM_EVENT_READ) && |
| (!(ioflags & IO_INVIS))) { |
| vrwlock_t locktype = VRWLOCK_READ; |
| int error; |
| |
| error = XFS_SEND_DATA(mp, DM_EVENT_READ, BHV_TO_VNODE(bdp), *offset, count, |
| FILP_DELAY_FLAG(filp), &locktype); |
| if (error) { |
| xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| return -error; |
| } |
| } |
| xfs_rw_enter_trace(XFS_SENDFILE_ENTER, &ip->i_iocore, |
| (void *)(unsigned long)target, count, *offset, ioflags); |
| ret = generic_file_sendfile(filp, offset, count, actor, target); |
| |
| xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| |
| if (ret > 0) |
| XFS_STATS_ADD(xs_read_bytes, ret); |
| |
| return ret; |
| } |
| |
| /* |
| * This routine is called to handle zeroing any space in the last |
| * block of the file that is beyond the EOF. We do this since the |
| * size is being increased without writing anything to that block |
| * and we don't want anyone to read the garbage on the disk. |
| */ |
| STATIC int /* error (positive) */ |
| xfs_zero_last_block( |
| struct inode *ip, |
| xfs_iocore_t *io, |
| xfs_fsize_t isize, |
| xfs_fsize_t end_size) |
| { |
| xfs_fileoff_t last_fsb; |
| xfs_mount_t *mp; |
| int nimaps; |
| int zero_offset; |
| int zero_len; |
| int error = 0; |
| xfs_bmbt_irec_t imap; |
| loff_t loff; |
| |
| ASSERT(ismrlocked(io->io_lock, MR_UPDATE) != 0); |
| |
| mp = io->io_mount; |
| |
| zero_offset = XFS_B_FSB_OFFSET(mp, isize); |
| if (zero_offset == 0) { |
| /* |
| * There are no extra bytes in the last block on disk to |
| * zero, so return. |
| */ |
| return 0; |
| } |
| |
| last_fsb = XFS_B_TO_FSBT(mp, isize); |
| nimaps = 1; |
| error = XFS_BMAPI(mp, NULL, io, last_fsb, 1, 0, NULL, 0, &imap, |
| &nimaps, NULL); |
| if (error) { |
| return error; |
| } |
| ASSERT(nimaps > 0); |
| /* |
| * If the block underlying isize is just a hole, then there |
| * is nothing to zero. |
| */ |
| if (imap.br_startblock == HOLESTARTBLOCK) { |
| return 0; |
| } |
| /* |
| * Zero the part of the last block beyond the EOF, and write it |
| * out sync. We need to drop the ilock while we do this so we |
| * don't deadlock when the buffer cache calls back to us. |
| */ |
| XFS_IUNLOCK(mp, io, XFS_ILOCK_EXCL| XFS_EXTSIZE_RD); |
| loff = XFS_FSB_TO_B(mp, last_fsb); |
| |
| zero_len = mp->m_sb.sb_blocksize - zero_offset; |
| |
| error = xfs_iozero(ip, loff + zero_offset, zero_len, end_size); |
| |
| XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD); |
| ASSERT(error >= 0); |
| return error; |
| } |
| |
| /* |
| * Zero any on disk space between the current EOF and the new, |
| * larger EOF. This handles the normal case of zeroing the remainder |
| * of the last block in the file and the unusual case of zeroing blocks |
| * out beyond the size of the file. This second case only happens |
| * with fixed size extents and when the system crashes before the inode |
| * size was updated but after blocks were allocated. If fill is set, |
| * then any holes in the range are filled and zeroed. If not, the holes |
| * are left alone as holes. |
| */ |
| |
| int /* error (positive) */ |
| xfs_zero_eof( |
| vnode_t *vp, |
| xfs_iocore_t *io, |
| xfs_off_t offset, /* starting I/O offset */ |
| xfs_fsize_t isize, /* current inode size */ |
| xfs_fsize_t end_size) /* terminal inode size */ |
| { |
| struct inode *ip = vn_to_inode(vp); |
| xfs_fileoff_t start_zero_fsb; |
| xfs_fileoff_t end_zero_fsb; |
| xfs_fileoff_t zero_count_fsb; |
| xfs_fileoff_t last_fsb; |
| xfs_extlen_t buf_len_fsb; |
| xfs_mount_t *mp; |
| int nimaps; |
| int error = 0; |
| xfs_bmbt_irec_t imap; |
| |
| ASSERT(ismrlocked(io->io_lock, MR_UPDATE)); |
| ASSERT(ismrlocked(io->io_iolock, MR_UPDATE)); |
| ASSERT(offset > isize); |
| |
| mp = io->io_mount; |
| |
| /* |
| * First handle zeroing the block on which isize resides. |
| * We only zero a part of that block so it is handled specially. |
| */ |
| error = xfs_zero_last_block(ip, io, isize, end_size); |
| if (error) { |
| ASSERT(ismrlocked(io->io_lock, MR_UPDATE)); |
| ASSERT(ismrlocked(io->io_iolock, MR_UPDATE)); |
| return error; |
| } |
| |
| /* |
| * Calculate the range between the new size and the old |
| * where blocks needing to be zeroed may exist. To get the |
| * block where the last byte in the file currently resides, |
| * we need to subtract one from the size and truncate back |
| * to a block boundary. We subtract 1 in case the size is |
| * exactly on a block boundary. |
| */ |
| last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; |
| start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); |
| end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); |
| ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); |
| if (last_fsb == end_zero_fsb) { |
| /* |
| * The size was only incremented on its last block. |
| * We took care of that above, so just return. |
| */ |
| return 0; |
| } |
| |
| ASSERT(start_zero_fsb <= end_zero_fsb); |
| while (start_zero_fsb <= end_zero_fsb) { |
| nimaps = 1; |
| zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; |
| error = XFS_BMAPI(mp, NULL, io, start_zero_fsb, zero_count_fsb, |
| 0, NULL, 0, &imap, &nimaps, NULL); |
| if (error) { |
| ASSERT(ismrlocked(io->io_lock, MR_UPDATE)); |
| ASSERT(ismrlocked(io->io_iolock, MR_UPDATE)); |
| return error; |
| } |
| ASSERT(nimaps > 0); |
| |
| if (imap.br_state == XFS_EXT_UNWRITTEN || |
| imap.br_startblock == HOLESTARTBLOCK) { |
| /* |
| * This loop handles initializing pages that were |
| * partially initialized by the code below this |
| * loop. It basically zeroes the part of the page |
| * that sits on a hole and sets the page as P_HOLE |
| * and calls remapf if it is a mapped file. |
| */ |
| start_zero_fsb = imap.br_startoff + imap.br_blockcount; |
| ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); |
| continue; |
| } |
| |
| /* |
| * There are blocks in the range requested. |
| * Zero them a single write at a time. We actually |
| * don't zero the entire range returned if it is |
| * too big and simply loop around to get the rest. |
| * That is not the most efficient thing to do, but it |
| * is simple and this path should not be exercised often. |
| */ |
| buf_len_fsb = XFS_FILBLKS_MIN(imap.br_blockcount, |
| mp->m_writeio_blocks << 8); |
| /* |
| * Drop the inode lock while we're doing the I/O. |
| * We'll still have the iolock to protect us. |
| */ |
| XFS_IUNLOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD); |
| |
| error = xfs_iozero(ip, |
| XFS_FSB_TO_B(mp, start_zero_fsb), |
| XFS_FSB_TO_B(mp, buf_len_fsb), |
| end_size); |
| |
| if (error) { |
| goto out_lock; |
| } |
| |
| start_zero_fsb = imap.br_startoff + buf_len_fsb; |
| ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); |
| |
| XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD); |
| } |
| |
| return 0; |
| |
| out_lock: |
| |
| XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD); |
| ASSERT(error >= 0); |
| return error; |
| } |
| |
| ssize_t /* bytes written, or (-) error */ |
| xfs_write( |
| bhv_desc_t *bdp, |
| struct kiocb *iocb, |
| const struct iovec *iovp, |
| unsigned int nsegs, |
| loff_t *offset, |
| int ioflags, |
| cred_t *credp) |
| { |
| struct file *file = iocb->ki_filp; |
| struct address_space *mapping = file->f_mapping; |
| struct inode *inode = mapping->host; |
| unsigned long segs = nsegs; |
| xfs_inode_t *xip; |
| xfs_mount_t *mp; |
| ssize_t ret = 0, error = 0; |
| xfs_fsize_t isize, new_size; |
| xfs_iocore_t *io; |
| vnode_t *vp; |
| unsigned long seg; |
| int iolock; |
| int eventsent = 0; |
| vrwlock_t locktype; |
| size_t ocount = 0, count; |
| loff_t pos; |
| int need_i_mutex = 1, need_flush = 0; |
| |
| XFS_STATS_INC(xs_write_calls); |
| |
| vp = BHV_TO_VNODE(bdp); |
| xip = XFS_BHVTOI(bdp); |
| |
| for (seg = 0; seg < segs; seg++) { |
| const struct iovec *iv = &iovp[seg]; |
| |
| /* |
| * If any segment has a negative length, or the cumulative |
| * length ever wraps negative then return -EINVAL. |
| */ |
| ocount += iv->iov_len; |
| if (unlikely((ssize_t)(ocount|iv->iov_len) < 0)) |
| return -EINVAL; |
| if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) |
| continue; |
| if (seg == 0) |
| return -EFAULT; |
| segs = seg; |
| ocount -= iv->iov_len; /* This segment is no good */ |
| break; |
| } |
| |
| count = ocount; |
| pos = *offset; |
| |
| if (count == 0) |
| return 0; |
| |
| io = &xip->i_iocore; |
| mp = io->io_mount; |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return -EIO; |
| |
| fs_check_frozen(vp->v_vfsp, SB_FREEZE_WRITE); |
| |
| if (ioflags & IO_ISDIRECT) { |
| xfs_buftarg_t *target = |
| (xip->i_d.di_flags & XFS_DIFLAG_REALTIME) ? |
| mp->m_rtdev_targp : mp->m_ddev_targp; |
| |
| if ((pos & target->bt_smask) || (count & target->bt_smask)) |
| return XFS_ERROR(-EINVAL); |
| |
| if (!VN_CACHED(vp) && pos < i_size_read(inode)) |
| need_i_mutex = 0; |
| |
| if (VN_CACHED(vp)) |
| need_flush = 1; |
| } |
| |
| relock: |
| if (need_i_mutex) { |
| iolock = XFS_IOLOCK_EXCL; |
| locktype = VRWLOCK_WRITE; |
| |
| mutex_lock(&inode->i_mutex); |
| } else { |
| iolock = XFS_IOLOCK_SHARED; |
| locktype = VRWLOCK_WRITE_DIRECT; |
| } |
| |
| xfs_ilock(xip, XFS_ILOCK_EXCL|iolock); |
| |
| isize = i_size_read(inode); |
| |
| if (file->f_flags & O_APPEND) |
| *offset = isize; |
| |
| start: |
| error = -generic_write_checks(file, &pos, &count, |
| S_ISBLK(inode->i_mode)); |
| if (error) { |
| xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock); |
| goto out_unlock_mutex; |
| } |
| |
| new_size = pos + count; |
| if (new_size > isize) |
| io->io_new_size = new_size; |
| |
| if ((DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_WRITE) && |
| !(ioflags & IO_INVIS) && !eventsent)) { |
| loff_t savedsize = pos; |
| int dmflags = FILP_DELAY_FLAG(file); |
| |
| if (need_i_mutex) |
| dmflags |= DM_FLAGS_IMUX; |
| |
| xfs_iunlock(xip, XFS_ILOCK_EXCL); |
| error = XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, vp, |
| pos, count, |
| dmflags, &locktype); |
| if (error) { |
| xfs_iunlock(xip, iolock); |
| goto out_unlock_mutex; |
| } |
| xfs_ilock(xip, XFS_ILOCK_EXCL); |
| eventsent = 1; |
| |
| /* |
| * The iolock was dropped and reacquired in XFS_SEND_DATA |
| * so we have to recheck the size when appending. |
| * We will only "goto start;" once, since having sent the |
| * event prevents another call to XFS_SEND_DATA, which is |
| * what allows the size to change in the first place. |
| */ |
| if ((file->f_flags & O_APPEND) && savedsize != isize) { |
| pos = isize = xip->i_d.di_size; |
| goto start; |
| } |
| } |
| |
| if (likely(!(ioflags & IO_INVIS))) { |
| file_update_time(file); |
| xfs_ichgtime_fast(xip, inode, |
| XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| } |
| |
| /* |
| * If the offset is beyond the size of the file, we have a couple |
| * of things to do. First, if there is already space allocated |
| * we need to either create holes or zero the disk or ... |
| * |
| * If there is a page where the previous size lands, we need |
| * to zero it out up to the new size. |
| */ |
| |
| if (pos > isize) { |
| error = xfs_zero_eof(BHV_TO_VNODE(bdp), io, pos, |
| isize, pos + count); |
| if (error) { |
| xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock); |
| goto out_unlock_mutex; |
| } |
| } |
| xfs_iunlock(xip, XFS_ILOCK_EXCL); |
| |
| /* |
| * If we're writing the file then make sure to clear the |
| * setuid and setgid bits if the process is not being run |
| * by root. This keeps people from modifying setuid and |
| * setgid binaries. |
| */ |
| |
| if (((xip->i_d.di_mode & S_ISUID) || |
| ((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) == |
| (S_ISGID | S_IXGRP))) && |
| !capable(CAP_FSETID)) { |
| error = xfs_write_clear_setuid(xip); |
| if (likely(!error)) |
| error = -remove_suid(file->f_dentry); |
| if (unlikely(error)) { |
| xfs_iunlock(xip, iolock); |
| goto out_unlock_mutex; |
| } |
| } |
| |
| retry: |
| /* We can write back this queue in page reclaim */ |
| current->backing_dev_info = mapping->backing_dev_info; |
| |
| if ((ioflags & IO_ISDIRECT)) { |
| if (need_flush) { |
| xfs_inval_cached_trace(io, pos, -1, |
| ctooff(offtoct(pos)), -1); |
| VOP_FLUSHINVAL_PAGES(vp, ctooff(offtoct(pos)), |
| -1, FI_REMAPF_LOCKED); |
| } |
| |
| if (need_i_mutex) { |
| /* demote the lock now the cached pages are gone */ |
| XFS_ILOCK_DEMOTE(mp, io, XFS_IOLOCK_EXCL); |
| mutex_unlock(&inode->i_mutex); |
| |
| iolock = XFS_IOLOCK_SHARED; |
| locktype = VRWLOCK_WRITE_DIRECT; |
| need_i_mutex = 0; |
| } |
| |
| xfs_rw_enter_trace(XFS_DIOWR_ENTER, io, (void *)iovp, segs, |
| *offset, ioflags); |
| ret = generic_file_direct_write(iocb, iovp, |
| &segs, pos, offset, count, ocount); |
| |
| /* |
| * direct-io write to a hole: fall through to buffered I/O |
| * for completing the rest of the request. |
| */ |
| if (ret >= 0 && ret != count) { |
| XFS_STATS_ADD(xs_write_bytes, ret); |
| |
| pos += ret; |
| count -= ret; |
| |
| need_i_mutex = 1; |
| ioflags &= ~IO_ISDIRECT; |
| xfs_iunlock(xip, iolock); |
| goto relock; |
| } |
| } else { |
| xfs_rw_enter_trace(XFS_WRITE_ENTER, io, (void *)iovp, segs, |
| *offset, ioflags); |
| ret = generic_file_buffered_write(iocb, iovp, segs, |
| pos, offset, count, ret); |
| } |
| |
| current->backing_dev_info = NULL; |
| |
| if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO)) |
| ret = wait_on_sync_kiocb(iocb); |
| |
| if ((ret == -ENOSPC) && |
| DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_NOSPACE) && |
| !(ioflags & IO_INVIS)) { |
| |
| xfs_rwunlock(bdp, locktype); |
| if (need_i_mutex) |
| mutex_unlock(&inode->i_mutex); |
| error = XFS_SEND_NAMESP(xip->i_mount, DM_EVENT_NOSPACE, vp, |
| DM_RIGHT_NULL, vp, DM_RIGHT_NULL, NULL, NULL, |
| 0, 0, 0); /* Delay flag intentionally unused */ |
| if (error) |
| goto out_nounlocks; |
| if (need_i_mutex) |
| mutex_lock(&inode->i_mutex); |
| xfs_rwlock(bdp, locktype); |
| pos = xip->i_d.di_size; |
| ret = 0; |
| goto retry; |
| } |
| |
| isize = i_size_read(inode); |
| if (unlikely(ret < 0 && ret != -EFAULT && *offset > isize)) |
| *offset = isize; |
| |
| if (*offset > xip->i_d.di_size) { |
| xfs_ilock(xip, XFS_ILOCK_EXCL); |
| if (*offset > xip->i_d.di_size) { |
| xip->i_d.di_size = *offset; |
| i_size_write(inode, *offset); |
| xip->i_update_core = 1; |
| xip->i_update_size = 1; |
| } |
| xfs_iunlock(xip, XFS_ILOCK_EXCL); |
| } |
| |
| error = -ret; |
| if (ret <= 0) |
| goto out_unlock_internal; |
| |
| XFS_STATS_ADD(xs_write_bytes, ret); |
| |
| /* Handle various SYNC-type writes */ |
| if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) { |
| /* |
| * If we're treating this as O_DSYNC and we have not updated the |
| * size, force the log. |
| */ |
| if (!(mp->m_flags & XFS_MOUNT_OSYNCISOSYNC) && |
| !(xip->i_update_size)) { |
| xfs_inode_log_item_t *iip = xip->i_itemp; |
| |
| /* |
| * If an allocation transaction occurred |
| * without extending the size, then we have to force |
| * the log up the proper point to ensure that the |
| * allocation is permanent. We can't count on |
| * the fact that buffered writes lock out direct I/O |
| * writes - the direct I/O write could have extended |
| * the size nontransactionally, then finished before |
| * we started. xfs_write_file will think that the file |
| * didn't grow but the update isn't safe unless the |
| * size change is logged. |
| * |
| * Force the log if we've committed a transaction |
| * against the inode or if someone else has and |
| * the commit record hasn't gone to disk (e.g. |
| * the inode is pinned). This guarantees that |
| * all changes affecting the inode are permanent |
| * when we return. |
| */ |
| if (iip && iip->ili_last_lsn) { |
| xfs_log_force(mp, iip->ili_last_lsn, |
| XFS_LOG_FORCE | XFS_LOG_SYNC); |
| } else if (xfs_ipincount(xip) > 0) { |
| xfs_log_force(mp, (xfs_lsn_t)0, |
| XFS_LOG_FORCE | XFS_LOG_SYNC); |
| } |
| |
| } else { |
| xfs_trans_t *tp; |
| |
| /* |
| * O_SYNC or O_DSYNC _with_ a size update are handled |
| * the same way. |
| * |
| * If the write was synchronous then we need to make |
| * sure that the inode modification time is permanent. |
| * We'll have updated the timestamp above, so here |
| * we use a synchronous transaction to log the inode. |
| * It's not fast, but it's necessary. |
| * |
| * If this a dsync write and the size got changed |
| * non-transactionally, then we need to ensure that |
| * the size change gets logged in a synchronous |
| * transaction. |
| */ |
| |
| tp = xfs_trans_alloc(mp, XFS_TRANS_WRITE_SYNC); |
| if ((error = xfs_trans_reserve(tp, 0, |
| XFS_SWRITE_LOG_RES(mp), |
| 0, 0, 0))) { |
| /* Transaction reserve failed */ |
| xfs_trans_cancel(tp, 0); |
| } else { |
| /* Transaction reserve successful */ |
| xfs_ilock(xip, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, xip, XFS_ILOCK_EXCL); |
| xfs_trans_ihold(tp, xip); |
| xfs_trans_log_inode(tp, xip, XFS_ILOG_CORE); |
| xfs_trans_set_sync(tp); |
| error = xfs_trans_commit(tp, 0, NULL); |
| xfs_iunlock(xip, XFS_ILOCK_EXCL); |
| } |
| if (error) |
| goto out_unlock_internal; |
| } |
| |
| xfs_rwunlock(bdp, locktype); |
| if (need_i_mutex) |
| mutex_unlock(&inode->i_mutex); |
| |
| error = sync_page_range(inode, mapping, pos, ret); |
| if (!error) |
| error = ret; |
| return error; |
| } |
| |
| out_unlock_internal: |
| xfs_rwunlock(bdp, locktype); |
| out_unlock_mutex: |
| if (need_i_mutex) |
| mutex_unlock(&inode->i_mutex); |
| out_nounlocks: |
| return -error; |
| } |
| |
| /* |
| * All xfs metadata buffers except log state machine buffers |
| * get this attached as their b_bdstrat callback function. |
| * This is so that we can catch a buffer |
| * after prematurely unpinning it to forcibly shutdown the filesystem. |
| */ |
| int |
| xfs_bdstrat_cb(struct xfs_buf *bp) |
| { |
| xfs_mount_t *mp; |
| |
| mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *); |
| if (!XFS_FORCED_SHUTDOWN(mp)) { |
| xfs_buf_iorequest(bp); |
| return 0; |
| } else { |
| xfs_buftrace("XFS__BDSTRAT IOERROR", bp); |
| /* |
| * Metadata write that didn't get logged but |
| * written delayed anyway. These aren't associated |
| * with a transaction, and can be ignored. |
| */ |
| if (XFS_BUF_IODONE_FUNC(bp) == NULL && |
| (XFS_BUF_ISREAD(bp)) == 0) |
| return (xfs_bioerror_relse(bp)); |
| else |
| return (xfs_bioerror(bp)); |
| } |
| } |
| |
| |
| int |
| xfs_bmap(bhv_desc_t *bdp, |
| xfs_off_t offset, |
| ssize_t count, |
| int flags, |
| xfs_iomap_t *iomapp, |
| int *niomaps) |
| { |
| xfs_inode_t *ip = XFS_BHVTOI(bdp); |
| xfs_iocore_t *io = &ip->i_iocore; |
| |
| ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG); |
| ASSERT(((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) != 0) == |
| ((ip->i_iocore.io_flags & XFS_IOCORE_RT) != 0)); |
| |
| return xfs_iomap(io, offset, count, flags, iomapp, niomaps); |
| } |
| |
| /* |
| * Wrapper around bdstrat so that we can stop data |
| * from going to disk in case we are shutting down the filesystem. |
| * Typically user data goes thru this path; one of the exceptions |
| * is the superblock. |
| */ |
| int |
| xfsbdstrat( |
| struct xfs_mount *mp, |
| struct xfs_buf *bp) |
| { |
| ASSERT(mp); |
| if (!XFS_FORCED_SHUTDOWN(mp)) { |
| /* Grio redirection would go here |
| * if (XFS_BUF_IS_GRIO(bp)) { |
| */ |
| |
| xfs_buf_iorequest(bp); |
| return 0; |
| } |
| |
| xfs_buftrace("XFSBDSTRAT IOERROR", bp); |
| return (xfs_bioerror_relse(bp)); |
| } |
| |
| /* |
| * If the underlying (data/log/rt) device is readonly, there are some |
| * operations that cannot proceed. |
| */ |
| int |
| xfs_dev_is_read_only( |
| xfs_mount_t *mp, |
| char *message) |
| { |
| if (xfs_readonly_buftarg(mp->m_ddev_targp) || |
| xfs_readonly_buftarg(mp->m_logdev_targp) || |
| (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { |
| cmn_err(CE_NOTE, |
| "XFS: %s required on read-only device.", message); |
| cmn_err(CE_NOTE, |
| "XFS: write access unavailable, cannot proceed."); |
| return EROFS; |
| } |
| return 0; |
| } |